

Acronyms

2DES

double DES

3DES

triple DES

AAL

application adaptation layer

ADSL

asymmetric digital subscriber line

AES

Advanced Encryption Standard

AH

Authentication Header

ANSI

American National Standards
Institute

ANSNET

Advanced Networks and Services
Network

ARP

Address Resolution Protocol

ARPA

Advanced Research Projects Agency

ARPANET

Advanced Research Projects
Agency Network

AS

autonomous system

ASCII

American Standard Code for
 Information Interchange

ASN.1

Abstract Syntax Notation 1

ATM

asynchronous transfer mode

BER

Basic Encoding Rules

BGP

Border Gateway Protocol

BOOTP

Bootstrap Protocol

BSS

basic service set

CA

certification authority

CBC

cipher-block chaining

CBT

core-based tree

CCITT

Consultative Committee for
International Telegraphy and
Telephony

CGI

common gateway interface

CIDR

Classless Interdomain Routing

CMS

Cryptographic Message Syntax

CSMA/CA

carrier sense multiple access with
collision avoidance

CSMA/CD

carrier sense multiple access with
collision detection

CSNET

Computer Science Network

DARPA

Defense Advanced Research
Projects Agency

DDN

Defense Data Network

DDNS

Dynamic Domain Name
System

DES

Data Encryption Standard

DHCP

Dynamic Host Configuration
Protocol

DNS

Domain Name System

DSL

digital subscriber line

DSS

Digital Signature Standard

DSSS

direct sequence spread spectrum

DVMRP

Distance Vector Multicast Routing
Protocol

EBCDIC

Extended Binary Coded Decimal
Interchange Code

EIA

Electronic Industries Alliance

for76042_acronym.fm Page ii Monday, February 23, 2009 5:24 PM

ESP

Encapsulating Security Payload

ESS

extended service set

FCC

Federal Communications
Commission

FCS

frame check sequence

FHSS

frequency hopping spread spectrum

FQDN

fully qualified domain name

FTP

File Transfer Protocol

HDSL

high bit rate digital subscriber
line

HMAC

hashed message authentication
code

HTML

Hypertext Markup Language

HTTP

Hypertext Transfer Protocol

IAB

Internet Architecture Board

IANA

Internet Assigned Numbers
Authority

ICANN

Internet Corporation for Assigned
Names and Numbers

ICMP

Internet Control Message
Protocol

IEEE

Institute of Electrical and
Electronics Engineers

IEGS

Internet Engineering Steering
Group

IETF

Internet Engineering Task Force

IGMP

Internet Group Management
Protocol

IKE

Internet Key Exchange

INTERNIC

Internet Network Information
Center

IP

Internet Protocol

IPng

Internetworking Protocol, next
generation

IPSec

IP Security

IRTF

Internet Research Task Force

ISAKMP

Internet Security Association and
Key Management Protocol

ISO

International Organization for
Standardization

ISOC

Internet Society

ISP

Internet service provider

ITU-T

International Telecommunications
Union–Telecommunication
Standardization Sector

IV

initial vector

KDC

key-distribution center

LAN

local area network

LCP

Link Control Protocol

LIS

logical IP subnet

LSA

link state advertisement

MAA

message access agent

MAC

media access control or message
authentication code

MBONE

multicast backbone

MD

Message Digest

MIB

management information base

MILNET

Military Network

MIME

Multipurpose Internet Mail Extension

MOSPF

Multicast Open Shortest Path First

MSS

maximum segment size

MTA

message transfer agent

MTU

maximum transfer unit

NAP

Network Access Point

NAT

network address translation

NIC

Network Information Center

NIC

network interface card

NIST

National Institute of Standards and
Technology

NSA

National Security Agency

for76042_acronym.fm Page iii Monday, February 23, 2009 5:24 PM

NSF

National Science Foundation

NSFNET

National Science Foundation
Network

NVT

network virtual terminal

OSI

Open Systems Interconnection

OSPF

open shortest path first

PGP

Pretty Good Privacy

PIM

Protocol Independent
 Multicast

PIM-DM

Protocol Independent Multicast,
Dense Mode

PIM-SM

Protocol Independent Multicast,
Sparse Mode

PING

Packet Internet Groper

PKI

public-key infrastructure

POP

Post Office Protocol

PPP

Point-to-Point Protocol

PQDN

partially qualified domain
name

RACE

Research in Advanced
Communications for Europe

RADSL

rate adaptive asymmetrical digital
subscriber line

RARP

Reverse Address Resolution
Protocol

RFC

Request for Comment

RIP

Routing Information Protocol

ROM

read-only memory

RPB

reverse path broadcasting

RPF

reverse path forwarding

RPM

reverse path multicasting

RSA

Rivest, Shamir, Adelman

RTCP

Real-time Transport Control
Protocol

RTP

Real-time Transport Protocol

RTSP

Real-Time Streaming Protocol

RTT

round-trip time

S/MIME

Secure/Multipurpose Internet Mail
Extension

SA

security association

SAD

Security Association Database

SCTP

Stream Control Transmission
Protocol

SDH

synchronous digital hierarchy

SDSL

symmetric digital subscriber
line

SFD

start frame delimiter

SHA

Secure Hash Algorithm

SI

stream identifier

SKEME

Secure Key Exchange
Mechanism

SMI Structure of Management
Information

SNMP Simple Network Management
Protocol

SONET Synchronous Optical Network

SP Security Policy

SPD Security Policy Database

SSH secure shell

SSL Secure Sockets Layer

SSN stream sequence number

SVC switched virtual circuit

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/
Internet Protocol

TELNET Terminal Network

TFTP Trivial File Transfer Protocol

for76042_acronym.fm Page iv Monday, February 23, 2009 5:24 PM

TLS Transport Layer Security

TOS type of service

TSN transmission sequence number

TTL time to live

UA user agent

UDP User Datagram Protocol

UNI user network interface

URL uniform resource locator

VC virtual circuit

VCI virtual channel identifier

VDSL very high bit rate digital
subscriber line

VPI virtual path identifier

VPN virtual private network

WAN wide area network

WWW World Wide Web

for76042_acronym.fm Page v Monday, February 23, 2009 5:24 PM

TCP/IP

Protocol Suite

for76042_fm.fm Page i Friday, February 20, 2009 7:39 PM

McGraw-Hill Forouzan Networking Series

Titles by Behrouz A. Forouzan:

Data Communications and Networking
TCP/IP Protocol Suite
Local Area Networks
Business Data Communications
Cryptography and Network Security

for76042_fm.fm Page ii Friday, February 20, 2009 7:39 PM

TCP/IP

Protocol Suite

Fourth Edition

Behrouz A. Forouzan

for76042_fm.fm Page iii Friday, February 20, 2009 7:39 PM

TCP/IP PROTOCOL SUITE, FOURTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights
reserved. Previous editions © 2006, 2003, and 2001. No part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or
other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9

ISBN 978-0-07-337604-2
MHID 0-07-337604-3

Global Publisher:

Raghothaman Srinivasan

Director of Development:

Kristine Tibbetts

Senior Marketing Manager:

Curt Reynolds

Project Manager:

Joyce Watters

Senior Production Supervisor:

Sherry L. Kane

Lead Media Project Manager:

Stacy A. Patch

Designer:

Laurie B. Janssen

Cover Designer:

Ron Bissell

(USE) Cover Image: ©

Chad Baker/Getty Images

Compositor:

Macmillan Publishing Solutions

Typeface:

10/12 Times Roman

Printer:

R. R. Donnelley Crawfordsville

,

IN

All credits appearing on page or at the end of the book are considered to be an extension of the
copyright page.

Library of Congress Cataloging-in-Publication Data

Forouzan, Behrouz A.
 TCP/IP protocol suite / Behrouz A. Forouzan.—4th ed.
 p. cm.
 Includes index.
 ISBN 978-0-07-337604-2—ISBN 0-07-337604-3 (hard copy : alk. paper) 1. TCP/IP (Computer
network protocol) I. Title.
 TK5105.585.F67 2010
 004.6'2—dc22
 2008051008

www.mhhe.com

for76042_fm.fm Page iv Friday, February 20, 2009 7:39 PM

http://www.mhhe.com

To the memory of my parents,
the source of my inspiration.

—Behrouz A. Forouzan

for76042_fm.fm Page v Friday, February 20, 2009 7:39 PM

for76042_fm.fm Page vi Friday, February 20, 2009 7:39 PM

vii

Brief Contents

Preface xxxi

Trademarks xxxv

Part 1

Introduction and Underlying Technologies 1

Chapter 1

Introduction 2

Chapter 2

The OSI Model and the TCP/IP Protocol Suite 18

Chapter 3

Underlying Technologies 46

Part 2

Network Layer 93

Chapter 4

Introduction to Network Layer 94

Chapter 5

IPv4 Addresses 114

Chapter 6

Delivery and Forwarding of IP Packets 160

Chapter 7

Internet Protocol Version 4 (IPv4) 186

Chapter 8

Address Resolution Protocol (ARP) 220

Chapter 9

Internet Control Message Protocol Version 4 (ICMPv4) 244

Chapter 10

Mobile IP 268

Chapter 11

Unicast Routing Protocols (RIP, OSPF, and BGP) 282

Chapter 12

Multicasting and Multicast Routing Protocols 334

Part 3

Transport Layer 373

Chapter 13

Introduction to the Transport Layer 374

Chapter 14

User Datagram Protocol (UDP) 414

Chapter 15

Transmission Control Protocol (TCP) 432

Chapter 16

Stream Control Transmission Protocol (SCTP) 502

for76042_fm.fm Page vii Friday, February 20, 2009 7:39 PM

viii

BRIEF CONTENTS

Part 4

Application Layer 541

Chapter 17

Introduction to the Application Layer 542

Chapter 18

Host Configuration: DHCP 568

Chapter 19

Domain Name System (DNS) 582

Chapter 20

Remote Login: TELNET and SSH 610

Chapter 21

File Transfer: FTP and TFTP 630

Chapter 22

World Wide Web and HTTP 656

Chapter 23

Electronic Mail: SMTP, POP, IMAP, and MIME 680

Chapter 24

Network Management: SNMP 706

Chapter 25

Multimedia 728

Part 5

Next Generation 767

Chapter 26

IPv6 Addressing 768

Chapter 27

IPv6 Protocol 786

Chapter 28

ICMPv6 800

Part 6

Security 815

Chapter 29

Cryptography and Network Security 816

Chapter 30

Internet Security 858

Part 7

Appendices 891

Appendix A

Unicode 892

Appendix B

Positional Numbering Systems 896

Appendix C

Error Detection Codes 904

Appendix D

Checksum 914

Appendix E

HTML, XHTML, XML, and XSL 920

Appendix F

Client-Server Programming in Java 926

Appendix G

Miscellaneous Information 932

Glossary 935

References 955

Index 957

for76042_fm.fm Page viii Friday, February 20, 2009 7:39 PM

ix

Contents

Preface xxxi

Trademarks xxxv

Part 1

Introduction and Underlying Technologies 1

Chapter 1

Introduction 2

1.1 A BRIEF HISTORY 3

ARPANET 3
Birth of the Internet 3
Transmission Control Protocol/Internetworking Protocol (TCP/IP) 4
MILNET 4
CSNET 4
NSFNET 4
ANSNET 5
The Internet Today 5
World Wide Web 6
Time Line 6
Growth of the Internet 7

1.2 PROTOCOLS AND STANDARDS 7

Protocols 7
Standards 8

1.3 STANDARDS ORGANIZATIONS 8

Standards Creation Committees 8
Forums 10
Regulatory Agencies 10

1.4 INTERNET STANDARDS 10

Maturity Levels 11
Requirement Levels 12

1.5 INTERNET ADMINISTRATION 13

Internet Society (ISOC) 13
Internet Architecture Board (IAB) 13
Internet Engineering Task Force (IETF) 13
Internet Research Task Force (IRTF) 14
Internet Assigned Numbers Authority (IANA) and Internet Corporation
for Assigned Names and Numbers (ICANN) 14
Network Information Center (NIC) 14

for76042_fm.fm Page ix Friday, February 20, 2009 8:03 PM

x

CONTENTS

1.6 FURTHER READING 14

Books and Papers 15
Websites 15

1.7 KEY TERMS 15
1.8 SUMMARY 15
1.9 PRACTICE SET 16

Exercises 16
Research Activities 17

Chapter 2

The OSI Model and the TCP/IP Protocol Suite 18

2.1 PROTOCOL LAYERS 19

Hierarchy 20
Services 20

2.2 THE OSI MODEL 20

Layered Architecture 21
Layer-to-Layer Communication 22
Encapsulation 23
Layers in the OSI Model 24
Summary of OSI Layers 28

2.3 TCP/IP PROTOCOL SUITE 28

Comparison between OSI and TCP/IP Protocol Suite 28
Layers in the TCP/IP Protocol Suite 30

2.4 ADDRESSING 35

Physical Addresses 35
Logical Addresses 37
Port Addresses 39
Application-Specific Addresses 40

2.5 FURTHER READING 40

Books 40
RFCs 40

2.6 KEY TERMS 41
2.7 SUMMARY 41
2.8 PRACTICE SET 42

Exercises 42
Research Activities 44

Chapter 3

Underlying Technologies 46

3.1 WIRED LOCAL AREA NETWORKS 47

IEEE Standards 47
Frame Format 48
Addressing 49
Ethernet Evolution 51
Standard Ethernet 51
Fast Ethernet 55
Gigabit Ethernet 56
Ten-Gigabit Ethernet 59

for76042_fm.fm Page x Friday, February 20, 2009 7:39 PM

CONTENTS

xi

3.2 WIRELESS LANS 59

IEEE 802.11 59
MAC Sublayer 61
Addressing Mechanism 64
Bluetooth 67

3.3 POINT-TO-POINT WANS 70

56K Modems 70
DSL Technology 71
Cable Modem 72
T Lines 75
SONET 75
PPP 76

3.4 SWITCHED WANS 77

X.25 77
Frame Relay 78
ATM 78

3.5 CONNECTING DEVICES 83

Repeaters 83
Bridges 84
Routers 86

3.6 FURTHER READING 88
3.7 KEY TERMS 88
3.8 SUMMARY 89
3.9 PRACTICE SET 89

Exercises 89
Research Activities 90

Part 2

Network Layer 93

Chapter 4

Introduction to Network Layer 94

4.1 INTRODUCTION 95
4.2 SWITCHING 96

Circuit Switching 96
Packet Switching 96

4.3 PACKET SWITCHING AT NETWORK LAYER 97

Connectionless Service 97
Connection-Oriented Service 99

4.4 NETWORK LAYER SERVICES 103

An Example 103
Logical Addressing 104
Services Provided at the Source Computer 105
Services Provided at Each Router 106
Services Provided at the Destination Computer 107

4.5 OTHER NETWORK LAYER ISSUES 108

Error Control 108
Flow Control 109
Congestion Control 110

for76042_fm.fm Page xi Friday, February 20, 2009 7:39 PM

xii

CONTENTS

Quality of Service 111
Routing 111
Security 111

4.6 FURTHER READING 111
4.7 KEY TERMS 112
4.8 SUMMARY 112
4.9 PRACTICE SET 112

Exercises 112

Chapter 5 IPv4 Addresses 114

5.1 INTRODUCTION 115
Address Space 115
Notation 115
Range of Addresses 117
Operations 118

5.2 CLASSFUL ADDRESSING 121
Classes 121
Classes and Blocks 123
Two-Level Addressing 126
An Example 129
Three-Level Addressing: Subnetting 131
Supernetting 134

5.3 CLASSLESS ADDRESSING 135
Variable-Length Blocks 136
Two-Level Addressing 136
Block Allocation 141
Subnetting 142

5.4 SPECIAL ADDRESSES 147
Special Blocks 147
Special Addresses in Each block 148

5.5 NAT 149
Address Translation 150
Translation Table 150

5.6 FURTHER READING 152
Books 152
RFCs 152

5.7 KEY TERMS 153
5.8 SUMMARY 153
5.9 PRACTICE SET 154

Exercises 154

Chapter 6 Delivery and Forwarding of IP Packets 160

6.1 DELIVERY 161
Direct Delivery 161
Indirect Delivery 161

6.2 FORWARDING 162
Forwarding Based on Destination Address 162
Forwarding Based on Label 176

for76042_fm.fm Page xii Friday, February 20, 2009 7:39 PM

CONTENTS xiii

6.3 STRUCTURE OF A ROUTER 178
Components 178

6.4 FURTHER READING 181
Books 182
RFCs 182

6.5 KEY TERMS 182
6.6 SUMMARY 182
6.7 PRACTICE SET 183

Exercises 183
Research Activities 184

Chapter 7 Internet Protocol Version 4 (IPv4) 186

7.1 INTRODUCTION 187
7.2 DATAGRAMS 187
7.3 FRAGMENTATION 192

Maximum Transfer Unit (MTU) 192
Fields Related to Fragmentation 193

7.4 OPTIONS 197
Format 197
Option Types 198

7.5 CHECKSUM 205
Checksum Calculation at the Sender 205
Checksum Calculation at the Receiver 205
Checksum in the IP Packet 206

7.6 IP OVER ATM 207
ATM WANs 208
Routing the Cells 208

7.7 SECURITY 210
Security Issues 210
IPSec 211

7.8 IP PACKAGE 211
Header-Adding Module 212
Processing Module 213
Queues 213
Routing Table 214
Forwarding Module 214
MTU Table 214
Fragmentation Module 214
Reassembly Table 215
Reassembly Module 215

7.9 FURTHER READING 216
Books 216
RFCs 217

7.10 KEY TERMS 217
7.11 SUMMARY 217
7.12 PRACTICE SET 218

Exercises 218
Research Activities 219

for76042_fm.fm Page xiii Friday, February 20, 2009 7:39 PM

xiv CONTENTS

Chapter 8 Address Resolution Protocol (ARP) 220

8.1 ADDRESS MAPPING 221
Static Mapping 221
Dynamic Mapping 222

8.2 THE ARP PROTOCOL 222
Packet Format 223
Encapsulation 224
Operation 224
Proxy ARP 226

8.3 ATMARP 228
Packet Format 228
ATMARP Operation 229
Logical IP Subnet (LIS) 232

8.4 ARP PACKAGE 233
Cache Table 233
Queues 235
Output Module 235
Input Module 236
Cache-Control Module 237
More Examples 238

8.5 FURTHER READING 240
Books 240
RFCs 240

8.6 KEY TERMS 240
8.7 SUMMARY 241
8.8 PRACTICE SET 241

Exercises 241

Chapter 9 Internet Control Message Protocol Version 4
 (ICMPv4) 244

9.1 INTRODUCTION 245
9.2 MESSAGES 246

Message Format 246
Error Reporting Messages 246
Query Messages 253
Checksum 256

9.3 DEBUGGING TOOLS 257
Ping 257
Traceroute 259

9.4 ICMP PACKAGE 262
Input Module 263
Output Module 263

9.5 FURTHER READING 264
Books 264
RFCs 264

9.6 KEY TERMS 264
9.7 SUMMARY 265

for76042_fm.fm Page xiv Friday, February 20, 2009 7:39 PM

CONTENTS xv

9.8 PRACTICE SET 265
Exercises 265
Research Activities 267

Chapter 10 Mobile IP 268

10.1 ADDRESSING 269
Stationary Hosts 269
Mobile Hosts 269

10.2 AGENTS 270
Home Agent 271
Foreign Agent 271

10.3 THREE PHASES 271
Agent Discovery 271
Registration 273
Data Transfer 275

10.4 INEFFICIENCY IN MOBILE IP 277
Double Crossing 277
Triangle Routing 277
Solution 277

10.5 FURTHER READING 278
Books 278
RFCs 278

10.6 KEY TERMS 278
10.7 SUMMARY 279
10.8 PRACTICE SET 279

Exercises 279
Research Activities 280

Chapter 11 Unicast Routing Protocols (RIP, OSPF,
 and BGP) 282

11.1 INTRODUCTION 283
Cost or Metric 283
Static versus Dynamic Routing Tables 283
Routing Protocol 283

11.2 INTRA- AND INTER-DOMAIN ROUTING 284
11.3 DISTANCE VECTOR ROUTING 285

Bellman-Ford Algorithm 285
Distance Vector Routing Algorithm 287
Count to Infinity 291

11.4 RIP 293
RIP Message Format 294
Requests and Responses 295
Timers in RIP 296
RIP Version 2 297
Encapsulation 299

11.5 LINK STATE ROUTING 299
Building Routing Tables 300

for76042_fm.fm Page xv Friday, February 20, 2009 7:39 PM

xvi CONTENTS

11.6 OSPF 304
Areas 304
Metric 305
Types of Links 305
Graphical Representation 307
OSPF Packets 307
Link State Update Packet 309
Other Packets 317
Encapsulation 320

11.7 PATH VECTOR ROUTING 320
Reachability 321
Routing Tables 322

11.8 BGP 323
Types of Autonomous Systems 323
Path Attributes 324
BGP Sessions 324
External and Internal BGP 324
Types of Packets 325
Packet Format 325
Encapsulation 329

11.9 FURTHER READING 329
Books 329
RFCs 330

11.10 KEY TERMS 330
11.11 SUMMARY 330
11.12 PRACTICE SET 331

Exercises 331
Research Activities 333

Chapter 12 Multicasting and Multicast Routing Protocols 334

12.1 INTRODUCTION 335
Unicasting 335
Multicasting 336
Broadcasting 338

12.2 MULTICAST ADDRESSES 338
Multicast Addresses in IPv4 339
Selecting Multicast Address 341
Delivery of Multicast Packets at Data Link Layer 342

12.3 IGMP 343
Group Management 344
IGMP Messages 344
IGMP Protocol Applied to Host 347
IGMP Protocol Applied to Router 351
Role of IGMP in Forwarding 352
Variables and Timers 354
Encapsulation 355
Compatibility with Older Versions 355

12.4 MULTICAST ROUTING 355
Optimal Routing: Shortest Path Trees 355

for76042_fm.fm Page xvi Friday, February 20, 2009 7:39 PM

CONTENTS xvii

12.5 ROUTING PROTOCOLS 358
Multicast Link State Routing: MOSPF 358
Multicast Distance Vector 360
DVMRP 364
CBT 364
PIM 366

12.6 MBONE 367
12.7 FURTHER READING 368

Books 368
RFCs 368

12.8 KEY TERMS 368
12.9 SUMMARY 369
12.10 PRACTICE SET 369

Exercises 369
Research Activities 371

Part 3 Transport Layer 373

Chapter 13 Introduction to the Transport Layer 374

13.1 TRANSPORT-LAYER SERVICES 375
Process-to-Process Communication 375
Addressing: Port Numbers 375
Encapsulation and Decapsulation 378
Multiplexing and Demultiplexing 379
Flow Control 379
Error Control 382
Combination of Flow and Error Control 383
Congestion Control 385
Connectionless and Connection-Oriented Services 386

13.2 TRANSPORT-LAYER PROTOCOLS 389
Simple Protocol 390
Stop-and-Wait Protocol 391
Go-Back-N Protocol 395
Selective-Repeat Protocol 403
Bidirectional Protocols: Piggybacking 408

13.3 FURTHER READING 409
13.4 KEY TERMS 409
13.5 SUMMARY 410
13.6 PRACTICE SET 411

Exercises 411
Research Activities 413

Chapter 14 User Datagram Protocol (UDP) 414

14.1 INTRODUCTION 415
14.2 USER DATAGRAM 416
14.3 UDP SERVICES 417

Process-to-Process Communication 417
Connectionless Services 418

for76042_fm.fm Page xvii Friday, February 20, 2009 7:39 PM

xviii CONTENTS

Flow Control 418
Error Control 418
Congestion Control 420
Encapsulation and Decapsulation 420
Queuing 421
Multiplexing and Demultiplexing 423
Comparison between UDP and Generic Simple Protocol 423

14.4 UDP APPLICATIONS 424
UDP Features 424
Typical Applications 426

14.5 UDP PACKAGE 426
Control-Block Table 426
Input Queues 426
Control-Block Module 426
Input Module 427
Output Module 428
Examples 428

14.6 FURTHER READING 430
Books 430
RFCs 430

14.7 KEY TERMS 430
14.8 SUMMARY 430
14.9 PRACTICE SET 431

Exercises 431

Chapter 15 Transmission Control Protocol (TCP) 432

15.1 TCP SERVICES 433
Process-to-Process Communication 433
Stream Delivery Service 434
Full-Duplex Communication 436
Multiplexing and Demultiplexing 436
Connection-Oriented Service 436
Reliable Service 436

15.2 TCP FEATURES 437
Numbering System 437
Flow Control 438
Error Control 438
Congestion Control 439

15.3 SEGMENT 439
Format 439
Encapsulation 441

15.4 A TCP CONNECTION 442
Connection Establishment 442
Data Transfer 444
Connection Termination 446
Connection Reset 448

15.5 STATE TRANSITION DIAGRAM 449
Scenarios 450

for76042_fm.fm Page xviii Friday, February 20, 2009 7:39 PM

CONTENTS xix

15.6 WINDOWS IN TCP 457
Send Window 457
Receive Window 458

15.7 FLOW CONTROL 459
Opening and Closing Windows 460
Shrinking of Windows 462
Silly Window Syndrome 463

15.8 ERROR CONTROL 465
Checksum 465
Acknowledgment 465
Retransmission 466
Out-of-Order Segments 467
FSMs for Data Transfer in TCP 467
Some Scenarios 468

15.9 CONGESTION CONTROL 473
Congestion Window 473
Congestion Policy 474

15.10 TCP TIMERS 478
Retransmission Timer 478
Persistence Timer 481
Keepalive Timer 482
TIME-WAIT Timer 482

15.11 OPTIONS 482
15.12 TCP PACKAGE 489

Transmission Control Blocks (TCBs) 490
Timers 491
Main Module 491
Input Processing Module 495
Output Processing Module 496

15.13 FURTHER READING 496
Books 496
RFCs 496

15.14 KEY TERMS 496
15.15 SUMMARY 497
15.16 PRACTICE SET 498

Exercises 498
Research Activities 501

Chapter 16 Stream Control Transmission Protocol (SCTP) 502

16.1 INTRODUCTION 503
16.2 SCTP SERVICES 504

Process-to-Process Communication 504
Multiple Streams 504
Multihoming 505
Full-Duplex Communication 506
Connection-Oriented Service 506
Reliable Service 506

for76042_fm.fm Page xix Friday, February 20, 2009 7:39 PM

xx CONTENTS

16.3 SCTP FEATURES 506
Transmission Sequence Number (TSN) 506
Stream Identifier (SI) 506
Stream Sequence Number (SSN) 507
Packets 507
Acknowledgment Number 509
Flow Control 509
Error Control 509
Congestion Control 510

16.4 PACKET FORMAT 510
General Header 510
Chunks 511

16.5 AN SCTP ASSOCIATION 519
Association Establishment 519
Data Transfer 521
Association Termination 524
Association Abortion 524

16.6 STATE TRANSITION DIAGRAM 525
Scenarios 526

16.7 FLOW CONTROL 529
Receiver Site 529
Sender Site 530
A Scenario 530

16.8 ERROR CONTROL 531
Receiver Site 532
Sender Site 532
Sending Data Chunks 534
Generating SACK Chunks 534

16.9 CONGESTION CONTROL 535
Congestion Control and Multihoming 535
Explicit Congestion Notification 535

16.10 FURTHER READING 535
Books 536
RFCs 536

16.11 KEY TERMS 536
16.12 SUMMARY 536
16.13 PRACTICE SET 537

Exercises 537
Research Activities 539

Part 4 Application Layer 541

Chapter 17 Introduction to the Application Layer 542

17.1 CLIENT-SERVER PARADIGM 543
Server 544
Client 544
Concurrency 544

for76042_fm.fm Page xx Friday, February 20, 2009 7:39 PM

CONTENTS

xxi

Socket Interfaces 546
Communication Using UDP 554
Communication Using TCP 558
Predefined Client-Server Applications 564

17.2 PEER-TO-PEER PARADIGM 564
17.3 FURTHER READING 565
17.4 KEY TERMS 565
17.5 SUMMARY 565
17.6 PRACTICE SET 566

Exercises 566

Chapter 18

Host Configuration: DHCP 568

18.1 INTRODUCTION 569

Previous Protocols 569
DHCP 570

18.2 DHCP OPERATION 570

Same Network 570
Different Networks 571
UDP Ports 572
Using TFTP 572
Error Control 573
Packet Format 573

18.3 CONFIGURATION 576

Static Address Allocation 576
Dynamic Address Allocation 576
Transition States 576
Other Issues 578
Exchanging Messages 579

18.4 FURTHER READING 579

Books and RFCs 579

18.5 KEY TERMS 580
18.6 SUMMARY 580
18.7 PRACTICE SET 580

Exercises 580
Research Activities 581

Chapter 19

Domain Name System (DNS) 582

19.1 NEED FOR DNS 583
19.2 NAME SPACE 584

Flat Name Space 584
Hierarchical Name Space 584
Domain Name Space 585
Domain 587
Distribution of Name Space 587

19.3 DNS IN THE INTERNET 589

Generic Domains 589
Country Domains 590

for76042_fm.fm Page xxi Monday, February 23, 2009 8:26 PM

xxii CONTENTS

Inverse Domain 591
Registrar 592

19.4 RESOLUTION 593
Resolver 593
Mapping Names to Addresses 593
Mapping Addresses to Names 593
Recursive Resolution 593
Iterative Resolution 594
Caching 594

19.5 DNS MESSAGES 595
Header 596

19.6 TYPES OF RECORDS 598
Question Record 598
Resource Record 599

19.7 COMPRESSION 600
19.8 ENCAPSULATION 604
19.9 REGISTRARS 604
19.10 DDNS 604
19.11 SECURITY OF DNS 605
19.12 FURTHER READING 605

Books 606
RFCs 606

19.13 KEY TERMS 606
19.14 SUMMARY 606
19.15 PRACTICE SET 607

Exercises 607
Research Activities 608

Chapter 20 Remote Login: TELNET and SSH 610

20.1 TELNET 611
Concepts 611
Time-Sharing Environment 611
Network Virtual Terminal (NVT) 613
Embedding 614
Options 615
Symmetry 618
Suboption Negotiation 618
Controlling the Server 618
Out-of-Band Signaling 620
Escape Character 620
Modes of Operation 621
User Interface 623
Security Issue 624

20.2 SECURE SHELL (SSH) 624
Versions 624
Components 624
Port Forwarding 625
Format of the SSH Packets 626

for76042_fm.fm Page xxii Friday, February 20, 2009 7:39 PM

CONTENTS xxiii

20.3 FURTHER READING 626
Books 626
RFCs 627

20.4 KEY TERMS 627
20.5 SUMMARY 627
20.6 PRACTICE SET 628

Exercises 628
Research Activities 629

Chapter 21 File Transfer: FTP and TFTP 630

21.1 FTP 631
Connections 631
Communication 633
Command Processing 635
File Transfer 639
Anonymous FTP 642
Security for FTP 643
The sftp Program 643

21.2 TFTP 643
Messages 644
Connection 646
Data Transfer 647
UDP Ports 649
TFTP Example 650
TFTP Options 650
Security 651
Applications 651

21.3 FURTHER READING 652
Books 652
RFCs 652

21.4 KEY TERMS 652
21.5 SUMMARY 653
21.6 PRACTICE SET 653

Exercises 653
Research Activities 655

Chapter 22 World Wide Web and HTTP 656

22.1 ARCHITECTURE 657
Hypertext and Hypermedia 658
Web Client (Browser) 658
Web Server 659
Uniform Resource Locator (URL) 659

22.2 WEB DOCUMENTS 660
Static Documents 660
Dynamic Documents 660
Active Documents 663

22.3 HTTP 664
HTTP Transaction 664

for76042_fm.fm Page xxiii Friday, February 20, 2009 7:39 PM

xxiv CONTENTS

Conditional Request 670
Persistence 670
Cookies 672
Web Caching: Proxy Server 675
HTTP Security 675

22.4 FURTHER READING 676
Books 676
RFCs 676

22.5 KEY TERMS 676
22.6 SUMMARY 676
22.7 PRACTICE SET 677

Exercises 677
Research Activities 678

Chapter 23 Electronic Mail: SMTP, POP, IMAP,
 and MIME 680

23.1 ARCHITECTURE 681
First Scenario 681
Second Scenario 682
Third Scenario 682
Fourth Scenario 683

23.2 USER AGENT 684
Services Provided by a User Agent 684
User Agent Types 685
Sending Mail 685
Receiving Mail 686
Addresses 686
Mailing List or Group List 686

23.3 MESSAGE TRANSFER AGENT: SMTP 687
Commands and Responses 687
Mail Transfer Phases 691

23.4 MESSAGE ACCESS AGENT: POP AND IMAP 693
POP3 694
IMAP4 695

23.5 MIME 695
MIME Headers 695

23.6 WEB-BASED MAIL 700
Case I 700
Case II 701

23.7 E-MAIL SECURITY 701
23.8 FURTHER READING 702

Books 702
RFCs 702

23.9 KEY TERMS 702
23.10 SUMMARY 702
23.11 PRACTICE SET 703

Exercises 703
Research Activities 704

for76042_fm.fm Page xxiv Friday, February 20, 2009 7:39 PM

CONTENTS xxv

Chapter 24 Network Management: SNMP 706

24.1 CONCEPT 707
Managers and Agents 707

24.2 MANAGEMENT COMPONENTS 708
Role of SNMP 708
Role of SMI 708
Role of MIB 709
An Analogy 709
An Overview 710

24.3 SMI 711
Name 711
Type 712
Encoding Method 713

24.4 MIB 715
Accessing MIB Variables 716
Lexicographic Ordering 718

24.5 SNMP 719
PDUs 719
Format 721
Messages 722

24.6 UDP PORTS 724
24.7 SECURITY 725
24.8 FURTHER READING 725

Books 725
RFCs 725

24.9 KEY TERMS 726
24.10 SUMMARY 726
24.11 PRACTICE SET 726

Exercises 726
Research Activity 727

Chapter 25 Multimedia 728

25.1 INTRODUCTION 729
25.2 DIGITIZING AUDIO AND VIDEO 730

Digitizing Audio 730
Digitizing Video 730

25.3 AUDIO AND VIDEO COMPRESSION 731
Audio Compression 731
Video Compression 731

25.4 STREAMING STORED AUDIO/VIDEO 736
First Approach: Using a Web Server 736
Second Approach: Using a Web Server with Metafile 737
Third Approach: Using a Media Server 738
Fourth Approach: Using a Media Server and RTSP 738

25.5 STREAMING LIVE AUDIO/VIDEO 739
25.6 REAL-TIME INTERACTIVE AUDIO/VIDEO 740

Characteristics 740

for76042_fm.fm Page xxv Friday, February 20, 2009 7:39 PM

xxvi CONTENTS

25.7 RTP 744
RTP Packet Format 745
UDP Port 746

25.8 RTCP 746
Sender Report 746
Receiver Report 747
Source Description Message 747
Bye Message 747
Application-Specific Message 747
UDP Port 747

25.9 VOICE OVER IP 748
SIP 748
H.323 750

25.10 QUALITY OF SERVICE 752
Flow Characteristics 752
Flow Classes 753
Techniques to Improve QoS 753
Resource Reservation 757
Admission Control 758

25.11 INTEGRATED SERVICES 758
Signaling 758
Flow Specification 758
Admission 759
Service Classes 759
RSVP 759
Problems with Integrated Services 762

25.12 DIFFERENTIATED SERVICES 762
DS Field 762

25.13 RECOMMENDED READING 764
Books 764
RFCs 764

25.14 KEY TERMS 764
25.15 SUMMARY 765
25.16 PRACTICE SET 766

Exercises 766

Part 5 Next Generation 767

Chapter 26 IPv6 Addressing 768

26.1 INTRODUCTION 769
Notations 769
Address Space 772
Three Address Types 772
Broadcasting and Multicasting 773

26.2 ADDRESS SPACE ALLOCATION 773
Assigned and Reserved Blocks 775

26.3 GLOBAL UNICAST ADDRESSES 778
Three Levels of Hierarchy 779

for76042_fm.fm Page xxvi Friday, February 20, 2009 7:39 PM

CONTENTS xxvii

26.4 AUTOCONFIGURATION 781
26.5 RENUMBERING 782
26.6 FURTHER READING 782

Books 782
RFCs 782

26.7 KEY TERMS 783
26.8 SUMMARY 783
26.9 PRACTICE SET 783

Exercises 783

Chapter 27 IPv6 Protocol 786

27.1 INTRODUCTION 787
Rationale for Change 787
Reason for Delay in Adoption 787

27.2 PACKET FORMAT 788
Base Header 788
Flow Label 789
Comparison between IPv4 and IPv6 Headers 790
Extension Headers 790
Comparison between IPv4 and IPv6 795

27.3 TRANSITION FROM IPv4 TO IPv6 796
Dual Stack 796
Tunneling 797
Header Translation 797

27.4 FURTHER READING 798
Books 798
RFCs 798

27.5 KEY TERMS 798
27.6 SUMMARY 799
27.7 PRACTICE SET 799

Exercises 799
Research Activity 799

Chapter 28 ICMPv6 800

28.1 INTRODUCTION 801
28.2 ERROR MESSAGES 802

Destination-Unreachable Message 802
Packet-Too-Big Message 803
Time-Exceeded Message 803
Parameter-Problem Message 804

28.3 INFORMATIONAL MESSAGES 804
Echo-Request Message 804
Echo-Reply Message 805

28.4 NEIGHBOR-DISCOVERY MESSAGES 805
Router-Solicitation Message 805
Router-Advertisement Message 806
Neighbor-Solicitation Message 806

for76042_fm.fm Page xxvii Friday, February 20, 2009 7:39 PM

xxviii CONTENTS

Neighbor-Advertisement Message 807
Redirection Message 808
Inverse-Neighbor-Solicitation Message 808
Inverse-Neighbor-Advertisement Message 808

28.5 GROUP MEMBERSHIP MESSAGES 809
Membership-Query Message 809
Membership-Report Message 810
Functionality 810

28.6 FURTHER READING 812
Books 812
RFCs 812

28.7 KEY TERMS 812
28.8 SUMMARY 812
28.9 PRACTICE SET 813

Exercises 813
Research Activities 813

Part 6 Security 815

Chapter 29 Cryptography and Network Security 816

29.1 INTRODUCTION 817
Security Goals 817
Attacks 818
Services 819
Techniques 819

29.2 TRADITIONAL CIPHERS 820
Key 821
Substitution Ciphers 821
Transposition Ciphers 824
Stream and Block Ciphers 825

29.3 MODERN CIPHERS 826
Modern Block Ciphers 826
Data Encryption Standard (DES) 828
Modern Stream Ciphers 830

29.4 ASYMMETRIC-KEY CIPHERS 831
Keys 832
General Idea 832
RSA Cryptosystem 834
Applications 836

29.5 MESSAGE INTEGRITY 836
Message and Message Digest 836
Hash Functions 837

29.6 MESSAGE AUTHENTICATION 838
HMAC 838

29.7 DIGITAL SIGNATURE 839
Comparison 839
Process 840

for76042_fm.fm Page xxviii Friday, February 20, 2009 7:39 PM

CONTENTS xxix

Signing the Digest 841
Services 842
RSA Digital Signature Scheme 843
Digital Signature Standard (DSS) 844

29.8 ENTITY AUTHENTICATION 844
Entity versus Message Authentication 844
Verification Categories 845
Passwords 845
Challenge-Response 845

29.9 KEY MANAGEMENT 847
Symmetric-Key Distribution 847
Symmetric-Key Agreement 850
Public-Key Distribution 851

29.10 FURTHER READING 853
29.11 KEY TERMS 853
29.12 SUMMARY 854
29.13 PRACTICE SET 855

Exercises 855
Research Activities 856

Chapter 30 Internet Security 858

30.1 NETWORK LAYER SECURITY 859
Two Modes 859
Two Security Protocols 861
Services Provided by IPSec 864
Security Association 865
Internet Key Exchange (IKE) 868
Virtual Private Network (VPN) 868

30.2 TRANSPORT LAYER SECURITY 869
SSL Architecture 869
Four Protocols 872

30.3 APPLICATION LAYER SECURITY 875
E-mail Security 875
Pretty Good Privacy (PGP) 876
Key Rings 878
PGP Certificates 878
S/MIME 881
Applications of S/MIME 885

30.4 FIREWALLS 885
Packet-Filter Firewall 885
Proxy Firewall 886

30.5 RECOMMENDED READING 887
30.6 KEY TERMS 887
30.7 SUMMARY 888
30.8 PRACTICE SET 888

Exercises 888
Research Activities 889

for76042_fm.fm Page xxix Friday, February 20, 2009 7:39 PM

xxx CONTENTS

Part 7 Appendices 891

Appendix A Unicode 892

Appendix B Positional Numbering Systems 896

Appendix C Error Detection Codes 904

Appendix D Checksum 914

Appendix E HTML, XHTML, XML, and XSL 920

Appendix F Client-Server Programming in Java 926

Appendix G Miscellaneous Information 932

Glossary 935

References 955

Index 957

for76042_fm.fm Page xxx Friday, February 20, 2009 7:39 PM

xxxi

Preface

echnologies related to networks and internetworking may be the fastest growing in
our culture today. Many professors and students who have used, read, or reviewed

the third edition of the book suggested the publication of a new edition that include
these changes. In the fourth edition, I have reorganized the book incorporating many
changes and added several new chapters and appendices.

The fourth edition of the book assumes the reader has no prior knowledge of the
TCP/IP protocol suite, although a previous course in data communications is desirable.

Organization

This book is divided into seven parts.

❑

Part I (Introduction and Underlying Technologies), comprising Chapters 1 to 3,
reviews the basic concepts and underlying technologies that, although independent
from the TCP/IP protocols, are needed to support them.

❑

Part II (Network Layer), comprising Chapters 4 to 12, discusses IPv4 addressing,
the IPv4 protocol, all auxiliary protocols helping IPv4 protocol, and unicast and
multicast routing protocols.

❑

Part III (Transport Layer), comprising Chapters 13 to 16, introduces the general
concepts in the transport layer (Chapter 13) and then fully discusses three transport
layer protocols: UDP, TCP, and SCTP (Chapters 14, 15, and 16).

❑

Part IV (Application Layer), comprising Chapters 17 to 25, introduces the general
concepts in the application layer including client-server programming (Chapter 17)
and then fully discusses seven application layer protocols (Chapters 18 to 24).
Chapter 25 is devoted to multimedia in the Internet.

❑

Part V (New Generation), comprising Chapters 26 to 28, introduces the new gener-
ation of IP protocol, IPv6 addressing (Chapter 26), IPv6 protocol (Chapter 27), and
ICMPv6 (Chapter 28).

❑

Part VI (Security), comprising Chapters 29 to 30, discusses the inevitable topics such
as cryptography and network security (Chapter 29) and Internet security (Chapter 30).

❑

Part VII (Appendices) inclosed seven appendices that may be needed when reading
the book.

Features

Several features of this text are designed to make it particularly easy for students to
understand TCP/IP.

T

for76042_fm.fm Page xxxi Monday, February 23, 2009 6:43 PM

xxxii PREFACE

Visual Approach

The book presents highly technical subject matter without complex formulas by using a
balance of text and figures. More than 650 figures accompanying the text provide a
visual and intuitive opportunity for understanding the material. Figures are particularly
important in explaining networking concepts, which are based on connections and
transmission. Often, these are more easily grasped visually rather than verbally.

Highlighted Points

I have repeated important concepts in boxes for quick reference and immediate attention.

Examples and Applications

Whenever appropriate, I have included examples that illustrate the concepts introduced
in the text. Also, I have added real-life applications throughout each chapter to motivate
students.

Protocol Packages

Although I have not tried to give the detailed code for implementing each protocol,
many chapters contain a section that discusses the general idea behind the implementa-
tion of each protocol. These sections provide an understanding of the ideas and issues
involved in each protocol, but may be considered optional material.

Key Terms

The new terms used in each chapter are listed at the end of the chapter and their defini-
tions are included in the glossary.

Summary

Each chapter ends with a summary of the material covered by that chapter. The sum-
mary is a bulleted overview of all the key points in the chapter.

Practice Set

Each chapter includes a practice set designed to reinforce salient concepts and encour-
age students to apply them. It consists of two parts: exercises and research activities.
Exercises require understanding of the material. Research activities challenge those who
want to delve more deeply into the material.

Appendices

The appendices are intended to provide a quick reference or review of materials needed
to understand the concepts discussed in the book. The appendices in the previous edi-
tion have been revised, combined, and some new ones have been added.

Glossary and Acronyms

The book contains an extensive glossary and a list of acronyms.

Instructor Resources

Solutions, PowerPoint presentations, and Student Quizzes are available through the
book’s website at www.mhhe.com/forouzan.

for76042_fm.fm Page xxxii Friday, February 20, 2009 7:39 PM

http://www.mhhe.com/forouzan

PREFACE xxxiii

Electronic Book Options

CourseSmart. This text is offered through CourseSmart for both instructors and stu-
dents. CourseSmart is an online browser where students can purchase access to this and
other McGraw-Hill textbooks in digital format. Through their browser, students can
access a complete text online at almost half the cost of a traditional text. Purchasing the
etextbook also allows students to take advantage of CourseSmart’s Web tools for learn-
ing, which include full text search, notes and highlighting, and e-mail tools for sharing
notes between classmates. To learn more about CourseSmart options, contact your
sales representative or visit www.CourseSmart.com.

VitalSource. VitalSource is a downloadable eBook. Students who choose the Vital-
Source eBook can save up to 45 percent off the cost of the print book, reduce their
impact on the environment, and access powerful digital learning tools. Students can
share notes with others, customize the layout of the etextbook, and quickly search their
entire etextbook library for key concepts. Students can also print sections of the book
for maximum portability.

New and Changes to the Fourth Edition
There are many changes and much new material in the fourth edition, including:

❑ Chapter objectives have been added to the beginning of each chapter.

❑ A brief references list and a list of corresponding RFCs have been added at the end
of each chapter.

❑ Some new exercises and some research activities are added to some chapters.

❑ Figures are revised to reflect their relation to the actual technology used today.

❑ Chapter 3 (Underlying Technologies) has been totally revised to cover new
technologies

❑ Chapter 4 (Introduction to Network Layer) is totally new.

❑ Chapter 13 (Introduction to the Transport Layer) is totally new.

❑ Chapter 17 (Introduction to the Application Layer) is totally new.

❑ Chapter 5 now discusses both classful and classless addressing (a combination of
Chapters 4 and 5 in the third edition).

❑ Chapter 6 has been revised to include MPLS.

❑ Materials on New Generation Internet Protocol (IPv6) has been augmented to three
chapters (Chapters 26, 27, 28).

❑ Materials on security have been augmented to two chapters (Chapters 29, 30).

❑ Some deprecated protocols, such as RARP and BOOTP are removed to provide
space for new material.

❑ Chapters are reorganized according to the layers in TCP/IP protocol suite.

❑ Appendix A (ASCII Code) has been replaced by Unicode.

❑ Appendix C (Error Detection) has been totally revised and augmented.

❑ Appendix D (Checksum) is totally revised.

for76042_fm.fm Page xxxiii Friday, February 20, 2009 7:39 PM

http://www.CourseSmart.com

xxxiv PREFACE

❑ Appendix E (HTML, XHTML, XML, and XSL) is totally new.

❑ Appendix F (Client-Server Programming in Java) is totally new.

❑ Appendix G (Miscellaneous Information) is now a combination of the previous
Appendices F, G, and H.

How to Use the Book
This book is written for both academic and professional audiences. The book can be
used as a self-study guide for interested professionals. As a textbook, it can be used for
a one-semester or one-quarter course. The chapters are organized to provide a great
deal of flexibility. I suggest the following:

❑ Chapters 1 to 3 can be skipped if students have already taken a course in data com-
munications and networking.

❑ Chapters 4 through 25 are essential for understanding the TCP/IP protocol suite.

❑ Chapters 26 to 28 can be used at the professor’s discretion if there is a need for
making the student familiar with the new generation.

❑ Chapters 29 and 30 can prepare the students for a security course, but they can be
skipped if there is time restraint.

Acknowledgments for the Fourth Edition
It is obvious that the development of a book of this scope needs the support of many
people. I acknowledged the contributions of many people in the preface of the first
three editions. For the fourth edition, I would like to acknowledge the contributions
from peer reviewers to the development of the book. These reviewers are:

Dale Buchholz, DePaul University
Victor Clincy, Kennesaw State University
Richard Coppins, Virginia Commonwealth University
Zongming Fei, University of Kentucky
Guy Hembroff, Michigan Tech University
Frank Lin, San Jose State University
Tim Lin, California Polytechnic University–Pomona
Abdallah Shami, University of Western Ontario
Elsa Valeroso, Eastern Michigan University
Mark Weiser, Oklahoma State University
Ben Zhao, University of California at Santa Barbara

I acknowledge the invaluable contributions of professor Paul Amer for providing
comments and feedbacks on the manuscript.

Special thanks go to the staff of McGraw-Hill. Raghu Srinivasan, the publisher,
proved how a proficient publisher can make the impossible, possible. Melinda Bilecki,
the developmental editor, gave help whenever I needed it. Joyce Watters, the project
manager, guided me through the production process with enormous enthusiasm. I also
thank Les Chappell of Macmillan Publishing Solutions in production, Laurie Janssen,
the designer, and George F. Watson, the copy editor.

Behrouz A. Forouzan
January, 2009.

for76042_fm.fm Page xxxiv Friday, February 20, 2009 7:39 PM

xxxv

Trademarks

hroughout the text I have used several trademarks. Rather than insert a trademark
symbol with each mention of the trademark name, I acknowledge the trademarks

here and state that they are used with no intention of infringing upon them. Other prod-
uct names, trademarks, and registered trademarks are the property of their respective
owners.

❑ Network File System and NFS are registered trademarks of Sun Microsystems,
Inc.

❑ UNIX is a registered trademark of UNIX System Laboratories, Inc., a wholly
owned subsidiary of Novell, Inc.

❑ Xerox is a trademark and Ethernet is a registered trademark of Xerox Corp.

T

for76042_fm.fm Page xxxv Friday, February 20, 2009 7:39 PM

for76042_fm.fm Page xxxvi Friday, February 20, 2009 7:39 PM

1

P A R T

1

Introduction and
Underlying Technologies

Chapter 1 Introduction 2

Chapter 2 The OSI Model and the TCP/IP Protocol Suite 18

Chapter 3 Underlying Technologies 46

for76042_ch01.fm Page 1 Thursday, February 12, 2009 5:06 PM

C H A P T E R

1

2

1

Introduction

he Internet is a structured, organized system. Before we discuss how
it works and its relationship to TCP/IP, we first give a brief history of

the Internet. We then define the concepts of protocols and standards and
their relationships to each other. We discuss the various organizations that
are involved in the development of Internet standards. These standards are
not developed by any specific organization, but rather through a consen-
sus of users. We discuss the mechanism through which these standards
originated and matured. Also included in this introductory chapter is a
section on Internet administrative groups.

OBJECTIVES

The chapter has several objectives:

❑

To give a brief history of the Internet.

❑

To give the definition of the two often-used terms in the discussion of
the Internet:

protocol

and

standard

.

❑

To categorize standard organizations involved in the Internet and give
a brief discussion of each.

❑

To define Internet Standards and explain the mechanism through
which these standards are developed.

❑

To discuss the Internet administration and give a brief description of
each branch.

T

for76042_ch01.fm Page 2 Thursday, February 12, 2009 5:06 PM

3

1.1 A BRIEF HISTORY

A

network

 is a group of connected, communicating devices such as computers and
printers. An internet (note the lowercase

i

) is two or more networks that can communi-
cate with each other. The most notable internet is called the

Internet

 (uppercase

I

),
composed of hundreds of thousands of interconnected networks. Private individuals as
well as various organizations such as government agencies, schools, research facilities,
corporations, and libraries in more than 100 countries use the Internet. Millions
of people are users. Yet this extraordinary communication system only came into being
in 1969.

ARPANET

In the mid-1960s, mainframe computers in research organizations were stand-alone
devices. Computers from different manufacturers were unable to communicate with
one another. The

Advanced Research Projects Agency (ARPA)

 in the Department of
Defense (DOD) was interested in finding a way to connect computers together so that
the researchers they funded could share their findings, thereby reducing costs and elim-
inating duplication of effort.

In 1967, at an Association for Computing Machinery (ACM) meeting, ARPA pre-
sented its ideas for

ARPANET,

a small network of connected computers. The idea was
that each host computer (not necessarily from the same manufacturer) would be
attached to a specialized computer, called an

interface message processor

 (IMP). The
IMPs, in turn, would be connected to each other. Each IMP had to be able to communi-
cate with other IMPs as well as with its own attached host.

By 1969, ARPANET was a reality. Four nodes, at the University of California at
Los Angeles (UCLA), the University of California at Santa Barbara (UCSB), Stanford
Research Institute (SRI), and the University of Utah, were connected via the IMPs to
form a network. Software called the

Network Control Protocol

(NCP) provided com-
munication between the hosts.

Birth of the Internet

In 1972, Vint Cerf and Bob Kahn, both of whom were part of the core ARPANET
group, collaborated on what they called the

Internetting Project

. They wanted to link
different networks together so that a host on one network could communicate with a
host on a second, different network. There were many problems to overcome: diverse
packet sizes, diverse interfaces, and diverse transmission rates, as well as differing
reliability requirements. Cerf and Kahn devised the idea of a device called a

gateway

 to
serve as the intermediary hardware to transfer data from one network to another.

for76042_ch01.fm Page 3 Thursday, February 12, 2009 5:06 PM

4

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Transmission Control Protocol/Internetworking Protocol (TCP/IP)

Cerf and Kahn’s landmark 1973 paper outlined the protocols to achieve end-to-end
delivery of data. This was a new version of NCP. This paper on transmission control
protocol (TCP) included concepts such as encapsulation, the datagram, and the func-
tions of a gateway. A radical idea was the transfer of responsibility for error correction
from the IMP to the host machine. This ARPA Internet now became the focus of the
communication effort. Around this time responsibility for the ARPANET was handed
over to the Defense Communication Agency (DCA).

In October 1977, an internet consisting of three different networks (ARPANET,
packet radio, and packet satellite) was successfully demonstrated. Communication
between networks was now possible.

Shortly thereafter, authorities made a decision to split TCP into two protocols:

Transmission Control Protocol (TCP)

 and

Internet Protocol (IP).

 IP would handle
datagram routing while TCP would be responsible for higher level functions such as
segmentation, reassembly, and error detection. The new combination became known as
TCP/IP.

In 1981, under a DARPA contract, UC Berkeley modified the UNIX operating
system to include TCP/IP. This inclusion of network software along with a popular oper-
ating system did much for the popularity of networking. The open (non-manufacturer-
specific) implementation on Berkeley UNIX gave every manufacturer a working code
base on which they could build their products.

In 1983, authorities abolished the original ARPANET protocols, and TCP/IP
became the official protocol for the ARPANET. Those who wanted to use the Internet
to access a computer on a different network had to be running TCP/IP.

MILNET

In 1983, ARPANET split into two networks:

MILNET

 for military users and ARPANET
for nonmilitary users.

CSNET

Another milestone in Internet history was the creation of CSNET in 1981.

CSNET

 was
a network sponsored by the National Science Foundation (NSF). The network was con-
ceived by universities that were ineligible to join ARPANET due to an absence of
defense ties to DARPA. CSNET was a less expensive network; there were no redundant
links and the transmission rate was slower. It featured connections to ARPANET and
Telenet, the first commercial packet data service.

By the middle 1980s, most U.S. universities with computer science departments
were part of CSNET. Other institutions and companies were also forming their own
networks and using TCP/IP to interconnect. The term

Internet,

originally associated
with government-funded connected networks, now referred to the connected networks
using TCP/IP protocols.

NSFNET

With the success of CSNET, the NSF, in 1986, sponsored

NSFNET,

 a backbone that
connected five supercomputer centers located throughout the United States. Community

for76042_ch01.fm Page 4 Thursday, February 12, 2009 5:06 PM

CHAPTER 1 INTRODUCTION

5

networks were allowed access to this backbone, a T-1 line with a 1.544-Mbps data rate,
thus providing connectivity throughout the United States.

In 1990, ARPANET was officially retired and replaced by NSFNET. In 1995,
NSFNET reverted back to its original concept of a research network.

ANSNET

In 1991, the U.S. government decided that NSFNET was not capable of supporting the
rapidly increasing Internet traffic. Three companies, IBM, Merit, and MCI, filled the
void by forming a nonprofit organization called Advanced Network and Services
(ANS) to build a new, high-speed Internet backbone called

ANSNET.

The Internet Today

The Internet today is not a simple hierarchical structure. It is made up of many wide
and local area networks joined by connecting devices and switching stations. It is
difficult to give an accurate representation of the Internet because it is continuously
changing—new networks are being added, existing networks need more addresses, and
networks of defunct companies need to be removed. Today most end users who want
Internet connection use the services of Internet service providers (ISPs). There are
international service providers, national service providers, regional service providers,
and local service providers. The Internet today is run by private companies, not the
government. Figure 1.1 shows a conceptual (not geographical) view of the Internet.

Figure 1.1

Internet today

NAP

NAP

LocalLocal

Regional
ISP

Backbone
ISP

Local Local

Regional
ISP

Backbone
ISP

Regional
ISP

Regional
ISP

LocalLocalLocalLocal

for76042_ch01.fm Page 5 Monday, February 23, 2009 7:40 PM

6

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Backbone ISPs

Backbone ISPs are created and maintained by specialized companies. There are many
backbone ISPs operating in North America; some of the most well-known are Sprint-
Link, PSINet, UUNet Technology, AGIS, and internet MCI. To provide connectivity
between the end users, these backbone networks are connected by complex switching
stations (normally run by a third party) called

network access points (NAPs).

 Some
regional ISP networks are also connected to each other by private switching stations
called peering points. Backbone ISPs normally operate at a high data rate (10 Gbps, for
example).

Regional ISPs

Regional ISPs are small ISPs that are connected to one or more backbone ISPs. They
are at the second level of hierarchy with a lesser data rate.

Local ISPs

Local ISPs provide direct service to the end users. The local ISPs can be connected
to regional ISPs or directly to backbone ISPs. Most end users are connected to the
local ISPs. Note that in this sense, a local ISP can be a company that just provides
Internet services, a corporation with a network to supply services to its own employ-
ees, or a nonprofit organization, such as a college or a university, that runs its own
network. Each of these can be connected to a regional or backbone service provider.

World Wide Web

The 1990s saw the explosion of the Internet applications due to the emergence of the
World Wide Web (WWW). The web was invented at CERN by Tim Berners-Lee. This
invention has added the commercial applications to the Internet.

Time Line

The following is a list of important Internet events in chronological order:

❑

1969.

 Four-node ARPANET established.

❑

1970.

 ARPA hosts implement NCP.

❑

1973.

 Development of TCP/IP suite begins.

❑

1977.

 An internet tested using TCP/IP.

❑

1978.

 UNIX distributed to academic/research sites.

❑

1981.

 CSNET established.

❑

1983.

 TCP/IP becomes the official protocol for ARPANET.

❑

1983.

 MILNET was born.

❑

1986.

 NSFNET established.

❑

1990.

 ARPANET decommissioned and replaced by NSFNET.

❑

1995.

 NSFNET goes back to being a research network.

❑

1995.

 Companies known as

Internet Service Providers (ISPs)

 started.

for76042_ch01.fm Page 6 Thursday, February 12, 2009 5:06 PM

CHAPTER 1 INTRODUCTION

7

Growth of the Internet

The Internet has grown tremendously. In just a few decades, the number of networks has
increased from tens to hundreds of thousands. Concurrently, the number of computers
connected to the networks has grown from hundreds to hundreds of millions. The Internet
is still growing. Factors that have an impact on this growth include the following:

❑

New Protocols.

 New protocols need to be added and deprecated ones need to
be removed. For example, a protocol superior in many respects to IPv4
has been approved as a standard but is not yet fully implemented (see IPv6,
Chapter 27).

❑

New Technology.

 New technologies are under development that will increase the
capacity of networks and provide more bandwidth to the Internet’s users.

❑

Increasing Use of Multimedia.

 It is predicted that the Internet, once just a vehicle
to share data, will be used more and more for multimedia (audio and video).

1.2 PROTOCOLS AND STANDARDS

In this section, we define two widely used terms: protocols and standards. First, we
define

protocol,

which is synonymous with “rule.” Then we discuss

standards,

 which
are agreed-upon rules.

Protocols

Communication between two people or two devices needs to follow some protocol. A

protocol

 is a set of rules that governs communication. For example, in a face-to-face
communication between two persons, there is a set of implicit rules in each culture that
define how two persons should start the communication, how to continue the communi-
cation, and how to end the communication. Similarly, in a telephone conversation, there
are a set of rules that we need to follow. There is a rule how to make connection (dial-
ing the telephone number), how to respond to the call (picking up the receiver), how to
greet, how to let the communication flow smoothly by listening when the other party is
talking, and finally how to end the communication (hanging up).

In computer networks, communication occurs between entities in different sys-
tems. An entity is anything capable of sending or receiving information. However, two
entities cannot simply send bit streams to each other and expect to be understood. For
communication to occur, the entities must agree on a protocol. A protocol defines what
is communicated, how it is communicated, and when it is communicated. The key ele-
ments of a protocol are syntax, semantics, and timing.

❑

Syntax.

 Syntax refers to the structure or format of the data, meaning the order in
which they are presented. For example, a simple protocol might expect the first
8 bits of data to be the address of the sender, the second 8 bits to be the address of
the receiver, and the rest of the stream to be the message itself. The data order is
also applied to the order of bits when they are stored or transmitted. Different com-
puters may store data in different bit orders. When these computers communicate,
this difference needs to be resolved.

for76042_ch01.fm Page 7 Thursday, February 12, 2009 5:06 PM

8

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

❑

Semantics.

 Semantics refers to the meaning of each section of bits. How is a par-
ticular pattern to be interpreted, and what action is to be taken based on that inter-
pretation? For example, does an address identify the route to be taken or the final
destination of the message?

❑

Timing.

 Timing refers to two characteristics: when data should be sent and how
fast it can be sent. For example, if a sender produces data at 100 megabits per sec-
ond (100 Mbps) but the receiver can process data at only 1 Mbps, the transmission
will overload the receiver and data will be largely lost.

Standards

Standards are essential in creating and maintaining an open and competitive market for
equipment manufacturers and also in guaranteeing national and international inter-
operability of data and telecommunications technology and processes. They provide
guidelines to manufacturers, vendors, government agencies, and other service providers
to ensure the kind of interconnectivity necessary in today’s marketplace and in interna-
tional communications.

Data communication standards fall into two categories:

de facto

(meaning “by
fact”

or “by convention”) and

de jure

(meaning

 “

by law” or “by regulation”).

❑

De facto.

 Standards that have not been approved by an organized body but have
been adopted as standards through widespread use are

de facto standards.

 De
facto standards are often established originally by manufacturers that seek to
define the functionality of a new product or technology. Examples of de facto stan-
dards are MS Office and various DVD standards.

❑

De jure.

De jure standards

 are those that have been legislated by an officially rec-
ognized body.

1.3 STANDARDS ORGANIZATIONS

Standards are developed through the cooperation of standards creation committees,
forums, and government regulatory agencies.

Standards Creation Committees

While many organizations are dedicated to the establishment of standards, data com-
munications in North America rely primarily on those published by the following:

❑

International Standards Organization (ISO).

 The International Standards Orga-
nization (ISO; also referred to as the International Organization for Standardiza-
tion) is a multinational body whose membership is drawn mainly from the
standards creation committees of various governments throughout the world. Cre-
ated in 1947, the ISO is an entirely voluntary organization dedicated to worldwide
agreement on international standards. With a membership that currently includes
representative bodies from many industrialized nations, it aims to facilitate the
international exchange of goods and services by providing models for compatibility,
improved quality, increased productivity, and decreased prices. The ISO is active

for76042_ch01.fm Page 8 Thursday, February 12, 2009 5:06 PM

CHAPTER 1 INTRODUCTION 9

in developing cooperation in the realms of scientific, technological, and economic
activity. Of primary concern to this book are the ISO’s efforts in the field of infor-
mation technology, which have resulted in the creation of the Open Systems Inter-
connection (OSI) model for network communications. The United States is
represented in the ISO by ANSI.

❑ International Telecommunications Union–Telecommunications Standards Sec-
tor (ITU-T). By the early 1970s, a number of countries were defining national stan-
dards for telecommunications, but there was still little international compatibility. The
United Nations responded by forming, as part of its International Telecommunications
Union (ITU), a committee, the Consultative Committee for International Telegra-
phy and Telephony (CCITT). This committee was devoted to the research and estab-
lishment of standards for telecommunications in general and phone and data systems
in particular. On March 1, 1993, the name of this committee was changed to the Inter-
national Telecommunications Union–Telecommunications Standards Sector (ITU-T).

❑ American National Standards Institute (ANSI). Despite its name, the American
National Standards Institute (ANSI) is a completely private, nonprofit corporation
not affiliated with the U.S. federal government. However, all ANSI activities are
undertaken with the welfare of the United States and its citizens occupying primary
importance. ANSI’s expressed aims include serving as the national coordinating
institution for voluntary standardization in the United States, furthering the adoption
of standards as a way of advancing the U.S. economy, and ensuring the participation
and protection of the public interests. ANSI members include professional societies,
industry associations, governmental and regulatory bodies, and consumer groups.

❑ Institute of Electrical and Electronics Engineers (IEEE). The Institute of Electri-
cal and Electronics Engineers (IEEE) is the largest professional engineering society
in the world. International in scope, it aims to advance theory, creativity, and product
quality in the fields of electrical engineering, electronics, and radio as well as in all
related branches of engineering. As one of its goals, the IEEE oversees the develop-
ment and adoption of international standards for computing and communication.

❑ Electronic Industries Association (EIA). Aligned with ANSI, the Electronic
Industries Association (EIA) is a nonprofit organization devoted to the promotion
of electronics manufacturing concerns. Its activities include public awareness edu-
cation and lobbying efforts in addition to standards development. In the field of
information technology, the EIA has made significant contributions by defining
physical connection interfaces and electronic signaling specifications for data
communications.

❑ World Wide Web Consortium (W3C). Tim Berners-Lee founded this consortium
at Massachusetts Institutue of Technology Laboratory for Computer Science. It
was founded to provide computability in industry for new standards. W3C has cre-
ated regional offices around the world.

❑ Open Mobile Alliance (OMA). The standards organizaion OMA was created to
gather different forums in computer networking and wireless technology under the
umbrella of one single authority. Its mission is to provide unified standards for
application protocols.

for76042_ch01.fm Page 9 Thursday, February 12, 2009 5:06 PM

10 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Forums
Telecommunications technology development is moving faster than the ability of stan-
dards committees to ratify standards. Standards committees are procedural bodies and
by nature slow moving. To accommodate the need for working models and agreements
and to facilitate the standardization process, many special-interest groups have devel-
oped forums made up of representatives from interested corporations. The forums
work with universities and users to test, evaluate, and standardize new technologies. By
concentrating their efforts on a particular technology, the forums are able to speed
acceptance and use of those technologies in the telecommunications community. The
forums present their conclusions to the standards bodies. Some important forums for
the telecommunications industry include the following:

❑ Frame Relay Forum. The Frame Relay Forum was formed by Digital Equipment Cor-
poration, Northern Telecom, Cisco, and StrataCom to promote the acceptance and
implementation of Frame Relay. Today, it has around 40 members representing North
America, Europe, and the Pacific Rim. Issues under review include flow control, encap-
sulation, translation, and multicasting. The forum’s results are submitted to the ISO.

❑ ATM Forum. The ATM Forum promotes the acceptance and use of Asynchronous
Transfer Mode (ATM) technology. The ATM Forum is made up of customer prem-
ises equipment (e.g., PBX systems) vendors and central office (e.g., telephone
exchange) providers. It is concerned with the standardization of services to ensure
interoperability.

❑ Universal Plug and Play (UPnP) Forum. The UPnP forum is a computer net-
work forum that supports and promotes simplifying the implementation of
networks by creating zero-configuration networking devices. A UPnP-compatible
device can join a network without any configuration.

Regulatory Agencies
All communications technology is subject to regulation by government agencies such
as the Federal Communications Commission in the United States. The purpose of these
agencies is to protect the public interest by regulating radio, television, and wire/cable
communications.

❑ Federal Communications Commission (FCC). The Federal Communications
Commission (FCC) has authority over interstate and international commerce as it
relates to communications.

1.4 INTERNET STANDARDS
An Internet standard is a thoroughly tested specification that is useful to and adhered to
by those who work with the Internet. It is a formalized regulation that must be followed.
There is a strict procedure by which a specification attains Internet standard status. A spec-
ification begins as an Internet draft. An Internet draft is a working document (a work in
progress) with no official status and a six-month lifetime. Upon recommendation from the

The websites for the above organizations are given in Appendix G.

for76042_ch01.fm Page 10 Thursday, February 12, 2009 5:06 PM

CHAPTER 1 INTRODUCTION

11

Internet authorities, a draft may be published as a

Request for Comment (RFC).

 Each
RFC is edited, assigned a number, and made available to all interested parties.

RFCs go through maturity levels and are categorized according to their require-
ment level.

Maturity Levels

An RFC, during its lifetime, falls into one of six

maturity levels:

 proposed standard, draft
standard, Internet standard, historic, experimental, and informational (see Figure 1.2).

Proposed Standard

A proposed standard is a specification that is stable, well understood, and of sufficient
interest to the Internet community. At this level, the specification is usually tested and
implemented by several different groups.

Draft Standard

A proposed standard is elevated to draft standard status after at least two successful indepen-
dent and interoperable implementations. Barring difficulties, a draft standard, with modifica-
tions if specific problems are encountered, normally becomes an Internet standard.

Internet Standard

A draft standard reaches Internet standard status after demonstrations of successful
implementation.

Historic

The historic RFCs are significant from a historical perspective. They either have been
superseded by later specifications or have never passed the necessary maturity levels to
become an Internet standard.

Experimental

An RFC classified as experimental describes work related to an experimental situation
that does not affect the operation of the Internet. Such an RFC should not be imple-
mented in any functional Internet service.

Figure 1.2

Maturity levels of an RFC

Proposed standardExperimental Informational

Draft standard

Six months and two tries

Four months and two tries

Internet standard

Historic

Internet draft

for76042_ch01.fm Page 11 Monday, February 23, 2009 7:41 PM

12

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Informational

An RFC classified as informational contains general, historical, or tutorial information
related to the Internet. It is usually written by someone in a non-Internet organization,
such as a vendor.

Requirement Levels

RFCs are classified into five

requirement levels:

 required, recommended, elective,
limited use, and not recommended (see Figure 1.3).

Required

An RFC is labeled

required

 if it must be implemented by all Internet systems to achieve
minimum conformance. For example, IP (Chapter 7) and ICMP (Chapter 9) are
required protocols.

Recommended

An RFC labeled

recommended

 is not required for minimum conformance; it is recom-
mended because of its usefulness. For example, FTP (Chapter 21) and TELNET
(Chapter 20) are recommended protocols.

Elective

An RFC labeled

elective

 is not required and not recommended. However, a system can
use it for its own benefit.

Limited Use

An RFC labeled

limited

use

 should be used only in limited situations. Most of the
experimental RFCs fall under this category.

Not Recommended

An RFC labeled

not recommended

 is inappropriate for general use. Normally a historic
(deprecated) RFC may fall under this category.

Figure 1.3

Requirement levels of an RFC

RFCs can be found at http://www.rfc-editor.org.

Required

Recommended

Requirement levels Elective

Limited use

Not recommended

for76042_ch01.fm Page 12 Monday, February 23, 2009 7:41 PM

http://www.rfc-editor.org

CHAPTER 1 INTRODUCTION

13

1.5 INTERNET ADMINISTRATION

The Internet, with its roots primarily in the research domain, has evolved and gained
a broader user base with significant commercial activity. Various groups that coordinate
Internet issues have guided this growth and development. Appendix G gives the addresses,
e-mail addresses, and telephone numbers for some of these groups. Figure 1.4
shows the general organization of Internet administration.

Internet Society (ISOC)

The

Internet Society (ISOC)

 is an international, nonprofit organization formed in
1992 to provide support for the Internet standards process. ISOC accomplishes this
through maintaining and supporting other Internet administrative bodies such as IAB,
IETF, IRTF, and IANA (see the following sections). ISOC also promotes research and
other scholarly activities relating to the Internet.

Internet Architecture Board (IAB)

The

Internet Architecture Board (IAB)

 is the technical advisor to the ISOC. The
main purposes of the IAB are to oversee the continuing development of the TCP/IP
Protocol Suite and to serve in a technical advisory capacity to research members of the
Internet community. IAB accomplishes this through its two primary components, the
Internet Engineering Task Force (IETF) and the Internet Research Task Force (IRTF).
Another responsibility of the IAB is the editorial management of the RFCs, described
earlier in this chapter. IAB is also the external liaison between the Internet and other
standards organizations and forums.

Internet Engineering Task Force (IETF)

The

Internet Engineering Task Force (IETF)

is a forum of working groups man-
aged by the Internet Engineering Steering Group (IESG). IETF is responsible for
identifying operational problems and proposing solutions to these problems. IETF

Figure 1.4

Internet administration

IETFIRTF

RGRG RGRG

IESGIRSG

Area Area

WGWG WGWG

ISOC

IAB

for76042_ch01.fm Page 13 Monday, February 23, 2009 7:42 PM

14 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

also develops and reviews specifications intended as Internet standards. The working
groups are collected into areas, and each area concentrates on a specific topic. Cur-
rently nine areas have been defined, although this is by no means a hard and fast
number. The areas are:

❑ Applications

❑ Internet protocols

❑ Routing

❑ Operations

❑ User services

❑ Network management

❑ Transport

❑ Internet protocol next generation (IPng)

❑ Security

Internet Research Task Force (IRTF)
The Internet Research Task Force (IRTF) is a forum of working groups managed by
the Internet Research Steering Group (IRSG). IRTF focuses on long-term research top-
ics related to Internet protocols, applications, architecture, and technology.

Internet Assigned Numbers Authority (IANA) and Internet
Corporation for Assigned Names and Numbers (ICANN)
The Internet Assigned Numbers Authority (IANA), supported by the U.S. govern-
ment, was responsible for the management of Internet domain names and addresses
until October 1998. At that time the Internet Corporation for Assigned Names and
Numbers (ICANN), a private nonprofit corporation managed by an international
board, assumed IANA operations.

Network Information Center (NIC)
The Network Information Center (NIC) is responsible for collecting and distributing
information about TCP/IP protocols.

1.6 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and websites. The items enclosed in brackets refer to the reference list at the end
of the book.

The addresses and websites for Internet organizations can be found in Appendix G.

for76042_ch01.fm Page 14 Thursday, February 12, 2009 5:06 PM

CHAPTER 1 INTRODUCTION

15

Books and Papers

Several books and papers give an easy but thorough coverage of Internet history includ-
ing [Seg 98], [Lei et al. 98], [Kle 04], [Cer 89], and [Jen et al. 86].

Websites

The following websites give more information about topics discussed in this chapter.

1.7 KEY TERMS

1.8 SUMMARY

❑

A network is a group of connected, communicating devices. An internet is two or
more networks that can communicate with each other. The most notable internet is
called the Internet, composed of hundreds of thousands of interconnected networks.

❑

The history of internetworking started with ARPA in the mid-1960s. The birth of
the Internet can be associated with the work of Cerf and Kahn and the invention

ietf.org The site of IETF

w3c.org The site of W3C standard organization

Advanced Research Projects Agency
(ARPA)

Internet draft
Internet Engineering Task Force (IETF)

American National Standards Institute (ANSI) Internet Research Task Force (IRTF)
ANSNET Internet Service Provider (ISP)
ARPANET Internet Society (ISOC)
ATM Forum Internet standard
Consultative Committee for International

Telegraphy and Telephony (CCITT)
Internet Protocol (IP)
maturity levels

CSNET MILNET
de facto standards network
de jure standards network access points (NAPs)
Electronic Industries Association (EIA) Network Information Center (NIC)
Federal Communications Commission (FCC) NSFNET
Frame Relay Forum protocol
Institute of Electrical and Electronics

Engineers (IEEE)
Open Mobile Alliance (OMA)
Request for Comment (RFC)

International Standards Organization (ISO) requirement levels
International Telecommunications

Union–Telecommunications Standards
Sector (ITUT)

semantics
syntax
timing

Internet Architecture Board (IAB) Transmission Control Protocol (TCP)
Internet Assigned Numbers Authority (IANA) Universal Plug and Play (UPnP) Forum
Internet Corporation for Assigned Names and

Numbers (ICANN)
World Wide Web Consortium (W3C)

for76042_ch01.fm Page 15 Friday, February 13, 2009 12:34 PM

16 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

of a gateway to connect networks. In 1977, the Defense Communication Agency
(DCA) took the responsibility of the ARPANET and used two protocols called
TCP and IP to handle the routing of datagrams between individual networks.
MILNET, CSNET, NSFNET, ANSNET, are all evolved from the ARPANET.

❑ The Internet today is made up of many wide and local area networks joined by
connecting devices and switching stations. Today most end users who want Inter-
net connection use the services of Internet service providers (ISPs). There are
backbone ISPs, regional ISPs, and local ISPs.

❑ A protocol is a set of rules that governs communication. The key elements of a pro-
tocol are syntax, semantics, and timing. In computer networks, communication
occurs between entities in different systems. For communication to occur, the enti-
ties must agree on a protocol. A protocol defines what is communicated, how it is
communicated, and when it is communicated.

❑ Standards are essential in creating and maintaining an open and competitive mar-
ket. They provide guidelines to manufacturers, vendors, government agencies, and
other service providers to ensure the kind of interconnectivity necessary in today’s
marketplace and in international communications. Data communication standards
fall into two categories: de facto and de jure.

❑ An Internet standard is a thoroughly tested specification that is useful to and
adhered to by those who work with the Internet. An Internet draft is a working doc-
ument (a work in progress) with no official status and a six-month lifetime. Upon
recommendation from the Internet authorities, a draft may be published as a
Request for Comment (RFC). Each RFC is edited, assigned a number, and made
available to all interested parties. RFCs go through maturity levels and are catego-
rized according to their requirement level.

❑ The Internet administration has evolved with the Internet. ISOC promotes research
and activities. IAB is the technical advisor to the ISOC. IETF is a forum of work-
ing groups responsible for operational problems. IRTF is a forum of working
groups focusing on long-term research topics. ICANN is responsible for the man-
agement of Internet domain names and addresses. NIC is responsible for collecting
and distributing information about TCP/IP protocols.

1.9 PRACTICE SET

Exercises
1. Use the Internet to find the number of RFCs.

2. Use the Internet to find the subject matter of RFCs 2418 and 1603.

3. Use the Internet to find the RFC that discusses the IRTF working group guidelines
and procedures.

4. Use the Internet to find two examples of historic RFCs.

5. Use the Internet to find two examples of experimental RFCs.

for76042_ch01.fm Page 16 Thursday, February 12, 2009 5:06 PM

CHAPTER 1 INTRODUCTION 17

6. Use the Internet to find two examples of informational RFCs.

7. Use the Internet to find the RFC that discusses the FTP application.

8. Use the Internet to find the RFC for the Internet Protocol (IP).

9. Use the Internet to find the RFC for the Transmission Control Protocol (TCP).

10. Use the Internet to find the RFC that details the Internet standards process.

Research Activities
11. Research and find three standards developed by ITU-T.

12. Research and find three standards developed by ANSI.

13. EIA has developed some standards for interfaces. Research and find two of these
standards. What is EIA 232?

14. Research and find three regulations devised by FCC concerning AM and FM
transmission.

for76042_ch01.fm Page 17 Thursday, February 12, 2009 5:06 PM

C H A P T E R

2

18

2

The OSI Model and
the TCP/IP Protocol Suite

he layered model that dominated data communication and network-
ing literature before 1990 was the

Open Systems Interconnection
(OSI) model.

 Everyone believed that the OSI model would become the
ultimate standard for data communications—but this did not happen. The

TCP/IP protocol suite

 became the dominant commercial architecture
because it was used and tested extensively in the Internet; the OSI model
was never fully implemented.

In this chapter, we first briefly discuss the OSI model and then we
concentrate on TCP/IP as a protocol suite.

OBJECTIVES

The chapter has several objectives:

❑

To discuss the idea of multiple layering in data communication and
networking and the interrelationship between layers.

❑

To discuss the OSI model and its layer architecture and to show the
interface between the layers.

❑

To briefly discuss the functions of each layer in the OSI model.

❑

To introduce the TCP/IP protocol suite and compare its layers with
the ones in the OSI model.

❑

To show the functionality of each layer in the TCP/IP protocol with
some examples.

❑

To discuss the addressing mechanism used in some layers of the
TCP/IP protocol suite for the delivery of a message from the source
to the destination.

T

for76042_ch02.fm Page 18 Thursday, February 12, 2009 6:00 PM

19

2.1 PROTOCOL LAYERS

In Chapter 1, we discussed that a protocol is required when two entities need to com-
municate. When communication is not simple, we may divide the complex task of
communication into several layers. In this case, we may need several protocols, one for
each layer.

 Let us use a scenario in communication in which the role of protocol layering may
be better understood. We use two examples. In the first example, communication is so
simple that it can occur in only one layer. In the second example, we need three layers.

Example 2.1

Assume Maria and Ann are neighbors with a lot of common ideas. However, Maria speaks only
Spanish, and Ann speaks only English. Since both have learned the sign language in their child-
hood, they enjoy meeting in a cafe a couple of days per week and exchange their ideas using
signs. Occasionally, they also use a bilingual dictionary. Communication is face to face and hap-
pens in one layer as shown in Figure 2.1.

Example 2.2

Now assume that Ann has to move to another town because of her job. Before she moves, the
two meet for the last time in the same cafe. Although both are sad, Maria surprises Ann when
she opens a packet that contains two small machines. The first machine can scan and transform
a letter in English to a secret code or vice versa. The other machine can scan and translate a
letter in Spanish to the same secret code or vice versa. Ann takes the first machine; Maria keeps
the second one. The two friends can still communicate using the secret code, as shown in
Figure 2.2.

Communication between Maria and Ann happens as follows. At the third layer, Maria writes
a letter in Spanish, the language she is comfortable with. She then uses the translator machine
that scans the letter and creates a letter in the secret code. Maria then puts the letter in an envelop
and drops it to the post office box. The letter is carried by the post office truck to the post office of
the city where Ann lives now. In the post office, the letter is delivered to the Ann residence. Ann
uses her own machine to change the secret code to a letter in the English language. The commu-
nication from Ann to Maria uses the same process, but in the reverse direction. The communica-
tion in both directions is carried in the secret code, a language that neither Maria nor Ann
understands, but through the layered communication, they can exchange ideas.

Figure 2.1

Example 2.1

Maria Ann
Layer 1

Signs
Layer 1

for76042_ch02.fm Page 19 Friday, February 13, 2009 4:31 PM

20

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Hierarchy

Using Example 2.2, there are three different activities at the sender site and another
three activities at the receiver site. The task of transporting the letter between the
sender and the receiver is done by the carrier. Something that is not obvious immedi-
ately is that the tasks must be done in the order given in the hierarchy. At the sender
site, the letter must be written, translated to secret code, and dropped in the mailbox
before being picked up by the letter carrier and delivered to the post office. At the
receiver site, the letter must be dropped in the recipient mailbox before being picked
up and read by the recipient.

Services

Each layer at the sending site uses the services of the layer immediately below it. The
sender at the higher layer uses the services of the middle layer. The middle layer uses
the services of the lower layer. The lower layer uses the services of the carrier.

2.2 THE OSI MODEL

Established in 1947, the

International Standards Organization (ISO)

 is a multi-
national body dedicated to worldwide agreement on international standards. Almost
three-fourths of countries in the world are represented in the ISO. An ISO standard that
covers all aspects of network communications is the Open Systems Interconnection
(OSI) model. It was first introduced in the late 1970s.

An

open system

 is a set of protocols that allows any two different systems to com-
municate regardless of their underlying architecture. The purpose of the OSI model is

Figure 2.2

Example 2.2

ISO is the organization; OSI is the model.

Maria Ann

Translator

Post Office

Layer 3 Layer 3

Layer 2 Layer 2

Layer 1 Layer 1

Spanish

Secret code Secret code

English

US Post US Post

Translator

Post Office

for76042_ch02.fm Page 20 Thursday, February 12, 2009 6:00 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE

21

to show how to facilitate communication between different systems without requiring
changes to the logic of the underlying hardware and software. The OSI model is not a
protocol; it is a model for understanding and designing a network architecture that is
flexible, robust, and interoperable. The OSI model was intended to be the basis for the
creation of the protocols in the OSI stack.

The OSI model is a layered framework for the design of network systems that
allows communication between all types of computer systems. It consists of seven sep-
arate but related layers, each of which defines a part of the process of moving information
across a network (see Figure 2.3). Understanding the fundamentals of the OSI model
provides a solid basis for exploring data communications.

Layered Architecture

The OSI model is composed of seven ordered layers: physical (layer 1), data link
(layer 2), network (layer 3), transport (layer 4), session (layer 5), presentation (layer 6),
and application (layer 7). Figure 2.4 shows the layers involved when a message is sent
from device A to device B. As the message travels from A to B, it may pass through
many intermediate nodes. These intermediate nodes usually involve only the first three
layers of the OSI model.

In developing the model, the designers distilled the process of transmitting data to
its most fundamental elements. They identified which networking functions had related
uses and collected those functions into discrete groups that became the layers. Each
layer defines a family of functions distinct from those of the other layers. By defining
and localizing functionality in this fashion, the designers created an architecture that is
both comprehensive and flexible. Most important, the OSI model allows complete
interoperability between otherwise incompatible systems.

Within a single machine, each layer calls upon the services of the layer just below
it. Layer 3, for example, uses the services provided by layer 2 and provides services for
layer 4. Between machines, layer

x

 on one machine logically communicates with layer

x

on another machine. This communication is governed by an agreed-upon series of rules
and conventions called protocols.

Figure 2.3

The OSI model

Transport

Application

Presentation

Session

Network

Data link

PhysicalLayer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

for76042_ch02.fm Page 21 Friday, February 13, 2009 12:38 PM

22

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Layer-to-Layer Communication

In Figure 2.4, device A sends a message to device B (through intermediate nodes). At
the sending site, the message is moved down from layer 7 to layer 1. At layer 1 the
entire package is converted to a form that can be transferred to the receiving site. At the
receiving site, the message is moved up from layer 1 to layer 7.

Interfaces between Layers

The passing of the data and network information down through the layers of the send-
ing device and back up through the layers of the receiving device is made possible by
an

interface

 between each pair of adjacent layers. Each interface defines what informa-
tion and services a layer must provide for the layer above it. Well-defined interfaces and
layer functions provide modularity to a network. As long as a layer provides the
expected services to the layer above it, the specific implementation of its functions can
be modified or replaced without requiring changes to the surrounding layers.

Organization of the Layers

The seven layers can be thought of as belonging to three subgroups. Layers 1, 2, and
3—physical, data link, and network—are the network support layers; they deal with
the physical aspects of moving data from one device to another (such as electrical
specifications, physical connections, physical addressing, and transport timing and
reliability). Layers 5, 6, and 7—session, presentation, and application—can be
thought of as the user support layers; they allow interoperability among unrelated
software systems. Layer 4, the transport layer, links the two subgroups and ensures
that what the lower layers have transmitted is in a form that the upper layers can use.

Figure 2.4

OSI layers

Application
Layer-to-layer communication (7th layer)

Layer-to-layer communication (6th layer)

Layer-to-layer communication (5th layer)

Layer-to-layer communication (4th layer)

Intermediate
node

7-6 interface
Presentation
6-5 interface

Session
5-4 interface
Transport

4-3 interface
Network

3-2 interface
Data link

2-1 interface
Physical

7

6

5

4

3

2

1

7

6

5

4

3

2

1

Application
7-6 interface
Presentation
6-5 interface

Session
5-4 interface
Transport

4-3 interface
Network

3-2 interface
Data link

2-1 interface
Physical

Network

Data link

Physical

Network

Data link

Physical

Physical communication

3rd

2nd

1st

3rd

2nd

1st

3rd

2nd

1st

Device A Device BIntermediate
node

for76042_ch02.fm Page 22 Thursday, February 12, 2009 6:00 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE

23

The upper OSI layers are almost always implemented in software; lower layers are a
combination of hardware and software, except for the physical layer, which is mostly
hardware.

In Figure 2.5, which gives an overall view of the OSI layers, D7 data means the
data unit at layer 7, D6 data means the data unit at layer 6, and so on. The process
starts at layer 7 (the application layer), then moves from layer to layer in descending,
sequential order. At each layer, a header can be added to the data unit. At layer 2, a
trailer may also be added. When the formatted data unit passes through the physical
layer (layer 1), it is changed into an electromagnetic signal and transported along a
physical link.

Upon reaching its destination, the signal passes into layer 1 and is transformed
back into digital form. The data units then move back up through the OSI layers. As
each block of data reaches the next higher layer, the headers and trailers attached to it at
the corresponding sending layer are removed, and actions appropriate to that layer are
taken. By the time it reaches layer 7, the message is again in a form appropriate to the
application and is made available to the recipient.

Encapsulation

Figure 2.5 reveals another aspect of data communications in the OSI model: encapsula-
tion. A packet at level 7 is encapsulated in the packet at level 6. The whole packet at
level 6 is encapsulated in a packet at level 5, and so on.

In other words, the data part of a packet at level

N

 is carrying the whole packet
(data and overhead) from level

N

+

 1. The concept is called encapsulation because level

N

 is not aware what part of the encapsulated packet is data and what part is the header
or trailer. For level

N

, the whole packet coming from level

N

+

 1 is treated as one
integral unit.

Figure 2.5

An exchange using the OSI model

D7

D6 H6

H7

H5

H4

H3

H2T2

D5

D4

D3

D2

010101010101101010000010000 H1

D7

D6 H6

H7

H5

H4

H3

H2T2

D5

D4

D3

D2

010101010101101010000010000 H1

Transmission medium

for76042_ch02.fm Page 23 Thursday, February 12, 2009 6:00 PM

24

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Layers in the OSI Model

In this section we briefly describe the functions of each layer in the OSI model.

Physical Layer

The

physical layer

 coordinates the functions required to carry a bit stream over a physi-
cal medium. It deals with the mechanical and electrical specifications of the interface and
transmission media. It also defines the procedures and functions that physical devices
and interfaces have to perform for transmission to occur.

The physical layer is also concerned with the following:

❑

Physical characteristics of interfaces and media.

 The physical layer defines the
characteristics of the interface between the devices and the transmission media. It
also defines the type of transmission media (see Chapter 3).

❑

Representation of bits.

 The physical layer data consists of a stream of

bits

(sequence of 0s or 1s) with no interpretation. To be transmitted, bits must be
encoded into signals—electrical or optical. The physical layer defines the type of

encoding

 (how 0s and 1s are changed to signals).

❑

Data rate.

 The

transmission rate

—the number of bits sent each second—is also
defined by the physical layer. In other words, the physical layer defines the dura-
tion of a bit, which is how long it lasts.

❑

Synchronization of bits.

 The sender and receiver must not only use the same bit
rate but must also be synchronized at the bit level. In other words, the sender and
the receiver clocks must be synchronized.

❑

Line configuration.

 The physical layer is concerned with the connection of
devices to the media. In a

 point-to-point configuration,

 two devices are con-
nected together through a dedicated link. In a

multipoint configuration,

 a link is
shared between several devices.

❑

Physical topology.

 The physical topology defines how devices are connected to
make a network. Devices can be connected using a

mesh topology

 (every device
connected to every other device), a

star topology

 (devices are connected through a
central device), a

ring topology

 (each device is connected to the next, forming a
ring), or a

bus topology

 (every device on a common link).

❑

Transmission mode.

 The physical layer also defines the direction of transmission
between two devices: simplex, half-duplex, or full-duplex. In the

simplex mode,

only one device can send; the other can only receive. The simplex mode is a one-
way communication. In the

half-duplex mode,

 two devices can send and receive,
but not at the same time. In a

 full-duplex

 (or simply duplex)

mode,

 two devices
can send and receive at the same time.

The physical layer is responsible for moving individual bits from one
(node) to the next.

for76042_ch02.fm Page 24 Thursday, February 12, 2009 6:00 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE

25

Data Link Layer

The

data link layer

 transforms the physical layer, a raw transmission facility, to a reli-
able link. It makes the physical layer appear error-free to the upper layer (network
layer). Other responsibilities of the data link layer include the following:

❑

Framing.

 The data link layer divides the stream of bits received from the network
layer into manageable data units called

 frames

.

❑

Physical addressing.

 If frames are to be distributed to different systems on the
network, the data link layer adds a header to the frame to define the sender and/or
receiver of the frame. If the frame is intended for a system outside the sender’s
network, the receiver address is the address of the connecting device that connects
the network to the next one.

❑

Flow control.

 If the rate at which the data is absorbed by the receiver is less than
the rate produced at the sender, the data link layer imposes a flow control mecha-
nism to prevent overwhelming the receiver.

❑

Error control.

 The data link layer adds reliability to the physical layer by adding
mechanisms to detect and retransmit damaged or lost frames. It also uses a mecha-
nism to recognize duplicate frames. Error control is normally achieved through a
trailer added to the end of the frame.

❑

Access control.

 When two or more devices are connected to the same link, data
link layer protocols are necessary to determine which device has control over the
link at any given time.

Network Layer

The

network layer

is responsible for the source-to-destination delivery of a packet,
possibly across multiple networks (links). Whereas the data link layer oversees the
delivery of the packet between two systems on the same network (link), the network
layer ensures that each packet gets from its point of origin to its final destination.

If two systems are connected to the same link, there is usually no need for a net-
work layer. However, if the two systems are attached to different networks (links) with
connecting devices between the networks (links), there is often a need for the network
layer to accomplish source-to-destination delivery. Other responsibilities of the net-
work layer include the following:

❑

Logical addressing.

 The physical addressing implemented by the data link layer
handles the addressing problem locally. If a packet passes the network boundary,
we need another addressing system to help distinguish the source and destination
systems. The network layer adds a header to the packet coming from the upper
layer that, among other things, includes the logical addresses of the sender and
receiver.

❑

Routing.

 When independent networks or links are connected together to create

internetworks

 (network of networks) or a large network, the connecting devices
(called

routers

 or

switches

) route or switch the packets to their final destination.
One of the functions of the network layer is to provide this mechanism.

for76042_ch02.fm Page 25 Thursday, February 12, 2009 6:00 PM

26

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Transport Layer

The

transport layer

 is responsible for

process-to-process

delivery

 of the entire mes-
sage. A process is an application program running on the host. Whereas the network
layer oversees

source-to-destination delivery

 of individual packets, it does not recog-
nize any relationship between those packets. It treats each one independently, as though
each piece belonged to a separate message, whether or not it does. The transport layer,
on the other hand, ensures that the whole message arrives intact and in order, oversee-
ing both error control and flow control at the source-to-destination level. Other respon-
sibilities of the transport layer include the following:

❑

Service-point addressing.

 Computers often run several programs at the same
time. For this reason, source-to-destination delivery means delivery not only from
one computer to the next but also from a specific process (running program) on
one computer to a specific process (running program) on the other. The transport
layer header must therefore include a type of address called a

 service-point
address

 (or port address). The network layer gets each packet to the correct com-
puter; the transport layer gets the entire message to the correct process on that
computer.

❑

Segmentation and reassembly.

 A message is divided into transmittable segments,
with each segment containing a sequence number. These numbers enable the trans-
port layer to reassemble the message correctly upon arriving at the destination and
to identify and replace packets that were lost in transmission.

❑

Connection control.

 The transport layer can be either connectionless or connection-
oriented. A connectionless transport layer treats each segment as an independent
packet and delivers it to the transport layer at the destination machine. A connection-
oriented transport layer makes a connection with the transport layer at the destina-
tion machine first before delivering the packets. After all the data are transferred,
the connection is terminated.

❑

Flow control.

 Like the data link layer, the transport layer is responsible for flow
control. However, flow control at this layer is performed end to end rather than
across a single link.

❑ Error control. Like the data link layer, the transport layer is responsible for error
control. However, error control at this layer is performed process-to-process rather
than across a single link. The sending transport layer makes sure that the entire
message arrives at the receiving transport layer without error (damage, loss, or
duplication). Error correction is usually achieved through retransmission.

Session Layer

The services provided by the first four layers (physical, data link, network and transport)
are not sufficient for some processes. The session layer is the network dialog controller.
It establishes, maintains, and synchronizes the interaction between communicating
systems. Specific responsibilities of the session layer include the following:

❑ Dialog control. The session layer allows two systems to enter into a dialog. It
allows the communication between two processes to take place in either half-
duplex (one way at a time) or full-duplex (two ways at a time) mode.

for76042_ch02.fm Page 26 Thursday, February 12, 2009 6:00 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE 27

❑ Synchronization. The session layer allows a process to add checkpoints (synchro-
nization points) into a stream of data. For example, if a system is sending a file of
2,000 pages, it is advisable to insert checkpoints after every 100 pages to ensure
that each 100-page unit is received and acknowledged independently. In this case,
if a crash happens during the transmission of page 523, the only pages that need to
be resent after system recovery are pages 501 to 523. Pages previous to 501 need
not be resent.

Presentation Layer

The presentation layer is concerned with the syntax and semantics of the information
exchanged between two systems. Specific responsibilities of the presentation layer
include the following:

❑ Translation. The processes (running programs) in two systems are usually exchang-
ing information in the form of character strings, numbers, and so on. The informa-
tion should be changed to bit streams before being transmitted. Because different
computers use different encoding systems, the presentation layer is responsible for
interoperability between these different encoding methods. The presentation layer
at the sender changes the information from its sender-dependent format into a
common format. The presentation layer at the receiving machine changes the com-
mon format into its receiver-dependent format.

❑ Encryption. To carry sensitive information a system must be able to assure pri-
vacy. Encryption means that the sender transforms the original information to
another form and sends the resulting message out over the network. Decryption
reverses the original process to transform the message back to its original form.

❑ Compression. Data compression reduces the number of bits contained in the
information. Data compression becomes particularly important in the transmission
of multimedia such as text, audio, and video.

Application Layer

The application layer enables the user, whether human or software, to access the net-
work. It provides user interfaces and support for services such as electronic mail,
remote file access and transfer, shared database management, and other types of distrib-
uted information services. Specific services provided by the application layer include
the following:

❑ Network virtual terminal. A network virtual terminal is a software version of a
physical terminal and allows a user to log on to a remote host. To do so, the appli-
cation creates a software emulation of a terminal at the remote host. The user’s
computer talks to the software terminal, which, in turn, talks to the host, and vice
versa. The remote host believes it is communicating with one of its own terminals
and allows you to log on.

❑ File transfer, access, and management (FTAM). This application allows a user
to access files in a remote host (to make changes or read data), to retrieve files from
a remote computer for use in the local computer, and to manage or control files in a
remote computer locally.

for76042_ch02.fm Page 27 Thursday, February 12, 2009 6:00 PM

28 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

❑ E-mail services. This application provides the basis for e-mail forwarding and
storage.

❑ Directory services. This application provides distributed database sources and
access for global information about various objects and services.

Summary of OSI Layers
Figure 2.6 shows a summary of duties for each layer. In the next section, we describe
how some of these duties are mixed and spread into five categories in the TCP/IP proto-
col suite.

2.3 TCP/IP PROTOCOL SUITE
The TCP/IP protocol suite was developed prior to the OSI model. Therefore, the
layers in the TCP/IP protocol suite do not match exactly with those in the OSI model.
The original TCP/IP protocol suite was defined as four software layers built upon the
hardware. Today, however, TCP/IP is thought of as a five-layer model with the layers
named similarly to the ones in the OSI model. Figure 2.7 shows both configurations.

Comparison between OSI and TCP/IP Protocol Suite
When we compare the two models, we find that two layers, session and presentation,
are missing from the TCP/IP protocol suite. These two layers were not added to the
TCP/IP protocol suite after the publication of the OSI model. The application layer in
the suite is usually considered to be the combination of three layers in the OSI model,
as shown in Figure 2.8.

Figure 2.6 Summary of OSI layers

Physical To transmit bits over a medium; to provide
mechanical and electrical specifications

Data link To organize bits into frames; to provide
hop-to-hop delivery

Application To allow access to network resources

Session To establish, manage, and terminate sessions

Presentation To translate, encrypt, and compress data

To move packets from source to destination;
to provide internetworkingNetwork

To provide reliable process-to-process
message delivery and error recoveryTransport

1

2

7

5

6

3

4

for76042_ch02.fm Page 28 Thursday, February 12, 2009 6:00 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE 29

Two reasons were mentioned for this decision. First, TCP/IP has more than one
transport-layer protocol. Some of the functionalities of the session layer are available in
some of the transport layer protocols. Second, the application layer is not only one
piece of software. Many applications can be developed at this layer. If some of the
functionalities mentioned in the session and presentation are needed for a particular
application, it can be included in the development of that piece of software.

TCP/IP is a hierarchical protocol made up of interactive modules, each of which
provides a specific functionality, but the modules are not necessarily interdependent.
Whereas the OSI model specifies which functions belong to each of its layers, the lay-
ers of the TCP/IP protocol suite contain relatively independent protocols that can be
mixed and matched, depending on the needs of the system. The term hierarchical
means that each upper level protocol is supported by one or more lower level protocols.

Figure 2.7 Layers in the TCP/IP Protocol Suite

Figure 2.8 TCP/IP and OSI model

Application

Internet

Network Interface

Hardware Devices Layer 1

a. Original layers b. Layers used in this book

Layer 2

Layer 3

Layer 4

Layer 5

Transport

Application

Network

Data Link

Physical

Transport

Physical Physical

OSI Model TCP/IP Protocol Suite

Underlying
LAN and WAN

technology

Internet Protocol
and some helping

protocols

Several transport
protocols

Several application
protocols

Session

Presentation

Application

Application

Data link Data link

Network Network

Transport Transport

for76042_ch02.fm Page 29 Thursday, February 12, 2009 6:00 PM

30 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Layers in the TCP/IP Protocol Suite
In this section, we briefly discuss the purpose of each layer in the TCP/IP protocol suite.
When we study the purpose of each layer, it is easier to think of a private internet,
instead of the global Internet. We assume that we want to use the TCP/IP suite in a small,
private internet. Such an internet is made up of several small networks, which we call
links. A link is a network that allows a set of computers to communicate with each other.
For example, if all computers in an office are wired together, the connection makes a
link. If several computers belonging to a private company are connected via a satellite
channel, the connection is a link. A link, as we discussed in Chapter 3, can be a LAN
(local area network) serving a small area or a WAN (wide area network) serving a larger
area. We also assume that different links are connected together by devices called rout-
ers or switches that route the data to reach their final destinations. Figure 2.9 shows our
imaginary internet that is used to show the purpose of each layer. We have six links and
four routers (R1 to R4). We have shown only two computers, A and B.

Physical Layer

TCP/IP does not define any specific protocol for the physical layer. It supports all of the
standard and proprietary protocols. At this level, the communication is between two hops
or nodes, either a computer or router. The unit of communication is a single bit. When the
connection is established between the two nodes, a stream of bits is flowing between
them. The physical layer, however, treats each bit individually. Figure 2.10 shows the
communication between nodes. We are assuming that at this moment the two computers
have discovered that the most efficient way to communicate with each other is via routers
R1, R3, and R4. How this decision is made is the subject of some future chapters.

Note that if a node is connected to n links, it needs n physical-layer protocols, one for
each link. The reason is that different links may use different physical-layer protocols. The
figure, however, shows only physical layers involved in the communication. Each com-
puter involves with only one link; each router involves with only two links. As Figure 2.10
shows, the journey of bits between computer A and computer B is made of four indepen-
dent short trips. Computer A sends each bit to router R1 in the format of the protocol used
by link 1. Router 1 sends each bit to router R3 in the format dictated by the protocol used
by link 3. And so on. Router R1 has two three physical layers (two are shown in our sce-
nario). The layer connected to link 1 receives bits according to the format of the protocol

Figure 2.9 A private internet

Link 1

A
R1 R2

R3 R4

B

Link 2

Link 3

Link 5

Link 4 Link 6

for76042_ch02.fm Page 30 Thursday, February 12, 2009 6:00 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE

31

used by link 1; the layer connected to link 3 sends bits according to the format of the proto-
col used by link 3. It is the same situation with the other two routers involved in the
communication.

The responsibility of the physical layer, in addition to delivery of bits, matches
with what mentioned for the physical layer of the OSI model, but it mostly depends on
the underlying technologies that provide links. We see in the next chapter that they are,
for example, many protocols for the physical layer of LANs or WANs.

Data Link Layer

TCP/IP does not define any specific protocol for the data link layer either. It supports
all of the standard and proprietary protocols. At this level, the communication is also
between two hops or nodes. The unit of communication however, is a packet called a

frame

. A frame is a packet that encapsulates the data received from the network layer
with an added header and sometimes a trailer. The head, among other communication
information, includes the source and destination of frame. The destination address is
needed to define the right recipient of the frame because many nodes may have been
connected to the link. The source address is needed for possible response or acknowl-
edgment as may be required by some protocols. Figure 2.11 shows the communication
at the data link layer.

Note that the frame that is travelling between computer A and router R1 may be
different from the one travelling between router R1 and R3. When the frame is received
by router R1, this router passes the frame to the data link layer protocol shown at the
left. The frame is opened, the data are removed. The data are then passed to the data

Figure 2.10

Communication at the physical layer

The unit of communication at the physical layer is a bit.

A
Physical

layer
Physical

layer

R1 R3 R4 B

Link 3 Link 5 Link 6Link 1

Link 1

011 ... 101

011 ... 101

011 ... 101

Source DestinationLegend

A
R1 R2

R3 R4
B

Link 2

Link 3

Link 5

Link 4 Link 6

011 ... 101

for76042_ch02.fm Page 31 Monday, February 23, 2009 8:09 PM

32 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

link layer protocol shown at the right to create a new frame to be sent to the router R3.
The reason is that the two links, link 1 and link 3, may be using different protocols and
require frames of different formats. Note also that the figure does not show the physical
movement of frames; the physical movement happens only at the physical layer. The
two nodes communicate logically at the data link layer, not physically. In other words,
the data link layer at router R1 only thinks that a frame has been sent directly from the
data link layer at computer A. What is sent from A to R1 is a stream of bits from one
physical layer to another. Since a frame at A is transformed to a stream of bits, and the
bits at R1 are transformed to a frame, it gives this impression to the two data link layer
that a frame has been exchanged.

Network Layer

At the network layer (or, more accurately, the internetwork layer), TCP/IP supports the
Internet Protocol (IP). The Internet Protocol (IP) is the transmission mechanism used
by the TCP/IP protocols. IP transports data in packets called datagrams, each of which
is transported separately. Datagrams can travel along different routes and can arrive out
of sequence or be duplicated. IP does not keep track of the routes and has no facility for
reordering datagrams once they arrive at their destination. Figure 2.12 shows the com-
munication at the network layer.

Note that there is a main difference between the communication at the network
layer and the communication at data link or physical layers. Communication at the

Figure 2.11 Communication at the data link layer

The unit of communication at the data link layer is a frame.

A

Physical Physical

Data linkData link

R1 R3 R4 B

Link 3 Link 5 Link 6Link 1

Frame

Frame Frame

D2 H2

D2 H2

Fram
e

D2 H2

Source Destination DataD HeaderHLegend

Link 1

A
R1 R2

R3 R4
B

Link 2

Link 3

Link 5

Link 4 Link 6

D
2

H
2

for76042_ch02.fm Page 32 Thursday, February 12, 2009 6:00 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE

33

network layer is end to end while the communication at the other two layers are node to
node. The datagram started at computer A is the one that reaches computer B. The net-
work layers of the routers can inspect the source and destination of the packet for find-
ing the best route, but they are not allowed to change the contents of the packet. Of
course, the communication is logical, not physical. Although the network layer of com-
puter A and B

think

that

they are sending and receiving datagrams, the actual communi-
cation again is done at the physical level.

Transport Layer

There is a main difference between the transport layer and the network layer.
Although all nodes in a network need to have the network layer, only the two end
computers need to have the transport layer. The network layer is responsible for send-
ing individual datagrams from computer A to computer B; the transport layer is
responsible for delivering the whole message, which is called a segment, a user data-
gram, or a packet, from A to B. A segment may consist of a few or tens of datagrams.
The segments need to be broken into datagrams and each datagram has to be deliv-
ered to the network layer for transmission. Since the Internet defines a different route
for each datagram, the datagrams may arrive out of order and may be lost. The trans-
port layer at computer B needs to wait until all of these datagrams to arrive, assemble

Figure 2.12

Communication at the network layer

The unit of communication at the network layer is a datagram.

A

Physical Physical

Data linkData link

R1 R3 R4 B

NetworkNetwork

Datagram
D3 H3

Datagram
D3 H3

Source Destination DataD HeaderHLegend

Link 1

A
R1 R2

R3 R4
B

Link 2

Link 3

Link 5

Link 4 Link 6

for76042_ch02.fm Page 33 Friday, February 13, 2009 12:39 PM

34

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

them and make a segment out of them. Figure 2.13 shows the communication at the
transport layer.

Again, we should know that the two transport layers only think that they are com-
municating with each other using a segment; the communication is done through the
physical layer and the exchange of bits.

Traditionally, the transport layer was represented in the TCP/IP suite by two proto-
cols:

User Datagram Protocol (UDP)

 and

Transmission Control Protocol (TCP)

. A
new protocol called

Stream Control Transmission Protocol (SCTP)

 has been intro-
duced in the last few years.

Application Layer

The application layer in TCP/IP is equivalent to the combined session, presentation, and
application layers in the OSI model. The application layer allows a user to access the ser-
vices of our private internet or the global Internet. Many protocols are defined at this layer
to provide services such as electronic mail, file transfer, accessing the World Wide Web,
and so on. We cover most of the standard protocols in later chapters. Figure 2.14 shows
the communication at the application layer.

Figure 2.13

Communication at the transport layer

The unit of communication at the transport layer is a segment, user datagram, or a
packet, depending on the specific protocol used in this layer.

A

Physical Physical

Data linkData link

R1 R3 R4

B

NetworkNetwork

Transport Transport

Segment
D4 H4

Segment
D4 H4

Source Destination DataD HeaderHLegend

Link 1

A
R1 R2

R3 R4
B

Link 2

Link 3

Link 5

Link 4 Link 6

for76042_ch02.fm Page 34 Friday, February 13, 2009 12:40 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE 35

Note that the communication at the application layer, like the one at the transport
layer, is end to end. A message generated at computer A is sent to computer B without
being changed during the transmission.

2.4 ADDRESSING
Four levels of addresses are used in an internet employing the TCP/IP protocols: phys-
ical address, logical address, port address, and application-specific address. Each
address is related to a one layer in the TCP/IP architecture, as shown in Figure 2.15.

Physical Addresses
The physical address, also known as the link address, is the address of a node as defined
by its LAN or WAN. It is included in the frame used by the data link layer. It is the
lowest-level address. The physical addresses have authority over the link (LAN or
WAN). The size and format of these addresses vary depending on the network. For
example, Ethernet uses a 6-byte (48-bit) physical address that is imprinted on the net-
work interface card (NIC). LocalTalk (Apple), however, has a 1-byte dynamic address
that changes each time the station comes up.

Figure 2.14 Communication at the application layer

The unit of communication at the application layer is a message.

A

Physical Physical

Data linkData link

R1 R3 R4

B

NetworkNetwork

Transport Transport

ApplicationApplication

Message
D5 D5

D5 D5
Message

Source Destination DataD HeaderHLegend

Link 1

A
R1 R2

R3 R4
B

Link 2

Link 3

Link 5

Link 4 Link 6

for76042_ch02.fm Page 35 Thursday, February 12, 2009 6:00 PM

36

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Example 2.3

In Figure 2.16 a node with physical address 10 sends a frame to a node with physical address 87.
The two nodes are connected by a link (a LAN). At the data link layer, this frame contains
physical (link) addresses in the header. These are the only addresses needed. The rest of the
header contains other information needed at this level. The trailer usually contains extra bits
needed for error detection. As the figure shows, the computer with physical address 10 is the
sender, and the computer with physical address 87 is the receiver. The data link layer at the
sender receives data from an upper layer. It encapsulates the data in a frame, adding a header
and a trailer. The header, among other pieces of information, carries the receiver and the sender
physical (link) addresses. Note that in most data link protocols, the destination address 87 in
this case, comes before the source address (10 in this case). The frame is propagated through
the LAN. Each station with a physical address other than 87 drops the frame because the desti-
nation address in the frame does not match its own physical address. The intended destination
computer, however, finds a match between the destination address in the frame and its own
physical address. The frame is checked, the header and trailer are dropped, and the data part is
decapsulated and delivered to the upper layer.

Figure 2.15

Addresses in the TCP/IP Protocol Suite

Figure 2.16

Example 2.3: physical addresses

Physical layer

Message

Segment

Datagram

Frame

Bits

Physical
addresses

Data link layer

Port
addresses

Transport layer

Application-Specific
addressesApplication layer

Network layer Logical
addresses

5328 8710

Destination
address

Sender
Receiver

LAN

 packet
discarded

 packet
discarded

 packet
accepted

 Frame

Source
address

Data87 10

Data87 10

Data87 10
1

2 3
4

for76042_ch02.fm Page 36 Friday, February 13, 2009 12:41 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE 37

Example 2.4

As we will see in Chapter 3, most local area networks use a 48-bit (6-byte) physical address writ-
ten as 12 hexadecimal digits; every byte (2 hexadecimal digits) is separated by a colon, as shown
below:

Unicast, Multicast, and Broadcast Physical Addresses

Physical addresses can be either unicast (one single recipient), multicast (a group of
recipients), or broadcast (to be received by all systems in the network). Some networks
support all three addresses. For example, Ethernet (see Chapter 3) supports the unicast
physical addresses (6 bytes), the multicast addresses, and the broadcast addresses.
Some networks do not support the multicast or broadcast physical addresses. If a frame
must be sent to a group of recipients or to all systems, the multicast or broadcast
address must be simulated using unicast addresses. This means that multiple packets
are sent out using unicast addresses.

Logical Addresses
Logical addresses are necessary for universal communications that are independent of
underlying physical networks. Physical addresses are not adequate in an internetwork
environment where different networks can have different address formats. A universal
addressing system is needed in which each host can be identified uniquely, regardless
of the underlying physical network. The logical addresses are designed for this pur-
pose. A logical address in the Internet is currently a 32-bit address that can uniquely
define a host connected to the Internet. No two publicly addressed and visible hosts on
the Internet can have the same IP address.

Example 2.5

Figure 2.17 shows a part of an internet with two routers connecting three LANs.
Each device (computer or router) has a pair of addresses (logical and physical) for each con-

nection. In this case, each computer is connected to only one link and therefore has only one pair
of addresses. Each router, however, is connected to three networks (only two are shown in the
figure). So each router has three pairs of addresses, one for each connection. Although it may be
obvious that each router must have a separate physical address for each connection, it may not
be obvious why it needs a logical address for each connection. We discuss these issues in
Chapters 11 and 12 when we discuss routing.

The computer with logical address A and physical address 10 needs to send a packet to the
computer with logical address P and physical address 95. We use letters to show the logical
addresses and numbers for physical addresses, but note that both are actually numbers, as we will
see in later chapters.

The sender encapsulates its data in a packet at the network layer and adds two logical
addresses (A and P). Note that in most protocols, the logical source address comes before the log-
ical destination address (contrary to the order of physical addresses). The network layer, however,
needs to find the physical address of the next hop before the packet can be delivered. The network
layer consults its routing table (see Chapter 6) and finds the logical address of the next hop

07:01:02:01:2C:4B
A 6-byte (12 hexadecimal digits) physical address

for76042_ch02.fm Page 37 Thursday, February 12, 2009 6:00 PM

38 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

(router 1) to be F. Another protocol, Address Resolution Protocol (ARP), which will be dis-
cussed in later chapters, finds the physical address of router 1 that corresponds to its logical
address (20). Now the network layer passes this address to the data link layer, which in turn,
encapsulates the packet with physical destination address 20 and physical source address 10.

The frame is received by every device on LAN 1, but is discarded by all except router 1,
which finds that the destination physical address in the frame matches with its own physical
address. The router decapsulates the packet from the frame to read the logical destination
address P. Since the logical destination address does not match the router’s logical address, the
router knows that the packet needs to be forwarded. The router consults its routing table and
ARP to find the physical destination address of the next hop (router 2), creates a new frame,
encapsulates the packet, and sends it to router 2.

Note the physical addresses in the frame. The source physical address changes from 10 to
99. The destination physical address changes from 20 (router 1 physical address) to 33 (router 2
physical address). The logical source and destination addresses must remain the same; otherwise
the packet will be lost.

At router 2 we have a similar scenario. The physical addresses are changed, and a new frame
is sent to the destination computer. When the frame reaches the destination, the packet is decap-
sulated. The destination logical address P matches the logical address of the computer. The data
are decapsulated from the packet and delivered to the upper layer. Note that although physical
addresses will change from hop to hop, logical addresses remain the same from the source to des-
tination. There are some exceptions to this rule that we discover later in the book.

Figure 2.17 Example 2.5: logical addresses

The physical addresses will change from hop to hop,
but the logical addresses remain the same.

F/20

Z/66P/95

A/10
To another

network

To another
network

T/99

N/33

Sender

Receiver

LAN 1

LAN 3

L
A

N
 2

Router 1

Router 2

Physical
addresses
changed

Physical
addresses
changed

DataA P33 99

DataA P33 99

DataA P20 10 DataA P20 10

DataA P95 66 DataA P95 66

for76042_ch02.fm Page 38 Thursday, February 12, 2009 6:00 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE 39

Unicast, Multicast, and Broadcast Addresses

The logical addresses can be either unicast (one single recipient), multicast (a group of
recipients), or broadcast (all systems in the network). There are limitations on broad-
cast addresses.

Port Addresses
The IP address and the physical address are necessary for a quantity of data to travel
from a source to the destination host. However, arrival at the destination host is not the
final objective of data communications on the Internet. A system that sends nothing but
data from one computer to another is not complete. Today, computers are devices that
can run multiple processes at the same time. The end objective of Internet communica-
tion is a process communicating with another process. For example, computer A can
communicate with computer C by using TELNET. At the same time, computer A com-
municates with computer B by using the File Transfer Protocol (FTP). For these pro-
cesses to receive data simultaneously, we need a method to label the different processes.
In other words, they need addresses. In the TCP/IP architecture, the label assigned to a
process is called a port address. A port address in TCP/IP is 16 bits in length.

Example 2.6

Figure 2.18 shows two computers communicating via the Internet. The sending computer is run-
ning three processes at this time with port addresses a, b, and c. The receiving computer is running
two processes at this time with port addresses j and k. Process a in the sending computer needs to
communicate with process j in the receiving computer. Note that although both computers are
using the same application, FTP, for example, the port addresses are different because one is a client

Figure 2.18 Example 2.6: port numbers

A Sender Receiver

a b c j k

a DatajA PH2

a DatajA P

a Dataj

Data

P

a DatajA PH2

a DatajA P

a Dataj

DataApplication layer

Application programs

Transport layer

Network layer

Data link layer

Internet

for76042_ch02.fm Page 39 Thursday, February 12, 2009 6:00 PM

40 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

program and the other is a server program, as we will see in Chapter 17. To show that data from
process a need to be delivered to process j, and not k, the transport layer encapsulates data from
the application layer in a packet and adds two port addresses (a and j), source and destination.
The packet from the transport layer is then encapsulated in another packet at the network layer
with logical source and destination addresses (A and P). Finally, this packet is encapsulated in a
frame with the physical source and destination addresses of the next hop. We have not shown the
physical addresses because they change from hop to hop inside the cloud designated as the Inter-
net. Note that although physical addresses change from hop to hop, logical and port addresses
remain the same from the source to destination. There are some exceptions to this rule that we
discuss later in the book.

Example 2.7

As we will see in future chapters, a port address is a 16-bit address represented by one decimal
number as shown.

Application-Specific Addresses
Some applications have user-friendly addresses that are designed for that specific appli-
cation. Examples include the e-mail address (for example, forouzan@fhda.edu) and the
Universal Resource Locator (URL) (for example, www.mhhe.com). The first defines
the recipient of an e-mail; the second is used to find a document on the World Wide
Web. These addresses, however, get changed to the corresponding port and logical
addresses by the sending computer, as we will see in later chapters.

2.5 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give thorough coverage of materials discussed in this chapter. We recom-
mend [Com 06], [Tan 03], [Pet & Dav 03], [Kur & Ros 08], and [Gar & Vid 04].

RFCs
Two RFCs in particular discuss the TCP/IP suite: RFC 791 (IP) and RFC 817 (TCP). In
future chapters we list different RFCs related to each protocol in each layer.

The physical addresses change from hop to hop,
but the logical and port addresses usually remain the same.

753
A 16-bit port address represented as one single number

for76042_ch02.fm Page 40 Thursday, February 12, 2009 6:00 PM

mailto:forouzan@fhda.edu
http://www.mhhe.com
http://www.mhhe.com

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE

41

2.6 KEY TERMS

2.7 SUMMARY

❑

The International Standards Organization (ISO) created a model called the Open
Systems Interconnection (OSI), which allows diverse systems to communicate.
The seven-layer OSI model provides guidelines for the development of universally
compatible networking protocols. The physical, data link, and network layers are
the network support layers.The session, presentation, and application layers are the
user support layers.The transport layer links the network support layers and the user
support layers.

❑

The physical layer coordinates the functions required to transmit a bit stream over
a physical medium.

The data link layer is responsible for delivering data units

access control
Address Resolution Protocol (ARP)
application layer
application-specific address
bit
broadcast physical address
bus topology
compression
connection control
datagram
data link layer
dialog control
directory services
encoding
encryption
error control
file transfer, access, and management
 (FTAM)
flow control
frame
full-duplex mode
half-duplex mode
interface
International Standards Organization

(ISO)

internetwork
line configuration
link
logical address
logical addressing
mesh topology
multicast physical address

multipoint configuration
network layer
network virtual terminal
open system
Open Systems Interconnection (OSI) model
peer-to-peer processes
physical address
physical layer
physical topology
point-to-point configuration
port address
presentation layer
process-to-process delivery
ring topology
routing
segmentation
service-point addressing
session layer
simplex mode
source-to-destination delivery
star topology
Stream Control Transmission Protocol (SCTP)
synchronization points
TCP/IP protocol suite
translation
Transmission Control Protocol (TCP)
transmission mode
transmission rate
transport layer
unicast physical address
User Datagram Protocol (UDP)

for76042_ch02.fm Page 41 Monday, February 23, 2009 3:08 PM

42 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

from one station to the next without errors. The network layer is responsible for
the source-to-destination delivery of a packet across multiple network links. The
transport layer is responsible for the process-to-process delivery of the entire
message. The session layer establishes, maintains, and synchronizes the interac-
tions between communicating devices. The presentation layer ensures interopera-
bility between communicating devices through transformation of data into a
mutually agreed-upon format. The application layer enables the users to access
the network.

❑ TCP/IP is a five-layer hierarchical protocol suite developed before the OSI model.
The TCP/IP application layer is equivalent to the combined session, presentation,
and application layers of the OSI model.

❑ Four types of addresses are used by systems using the TCP/IP protocol: the physical
address, the internetwork address (IP address), the port address, and application-
specific address. The physical address, also known as the link address, is the address
of a node as defined by its LAN or WAN. The IP address uniquely defines a host on
the Internet. The port address identifies a process on a host. The application-specific
address is used by some applications to provide user-friendly access.

2.8 PRACTICE SET

Exercises
1. How are OSI and ISO related to each other?

2. Match the following to one or more layers of the OSI model:

a. route determination

b. flow control

c. interface to transmission media

d. provides access for the end user

3. Match the following to one or more layers of the OSI model:

a. reliable process-to-process message delivery

b. route selection

c. defines frames

d. provides user services such as e-mail and file transfer

e. transmission of bit stream across physical medium

4. Match the following to one or more layers of the OSI model:

a. communicates directly with user’s application program

b. error correction and retransmission

c. mechanical, electrical, and functional interface

d. responsibility for carrying frames between adjacent nodes

5. Match the following to one or more layers of the OSI model:

a. format and code conversion services

b. establishes, manages, and terminates sessions

for76042_ch02.fm Page 42 Thursday, February 12, 2009 6:00 PM

CHAPTER 2 THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE 43

c. ensures reliable transmission of data

d. log-in and log-out procedures

e. provides independence from differences in data representation

6. Show the communication at the application layer (see Figure 2.14) for the simple
private internet in Figure 2.19.

7. Show the communication at the application layer (see Figure 2.14) for the simple
private internet in Figure 2.20.

8. A 100-byte message is sent through a private internet using the TCP/IP protocol
suite. If the protocol adds a 10-byte header at each layer, what is the efficiency
of the system (the ratio of the number of useful bytes to the number of total
bytes)?

9. If a port number is 16 bits (2 bytes), what is the minimum header size at transport
layer of the TCP/IP protocol suite?

10. If a logical address is 32 bits (4 bytes), what is the minimum header size at network
layer of the TCP/IP protocol suite?

11. If a physical address is 48 bits (6 bytes) what is the minimum header size at the
data link layer of the TCP/IP protocol suite?

12. Do we encapsulate our message when we send a regular letter to a friend? When
we send a post card to a friend while we are vacationing in another country, do we
encapsulate our message?

13. Why do you think that we do not need addresses at the physical layer?

14. Why do you think a radio station does not need the addresses of its listeners when
a message is broadcast?

15. Why do you think both the sender and receiver addresses are needed in the Internet?

16. Why do you think there is a need for four levels of addresses in the Internet, but
only one level of addresses (telephone numbers) in a telephone network?

Figure 2.19 Exercise 6

Figure 2.20 Exercise 7

A B

Link

A BR1

Link 1 Link 2

for76042_ch02.fm Page 43 Thursday, February 12, 2009 6:00 PM

44 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Research Activities
17. Domain Name System or DNS (see Chapter 19) is an application program in the

TCP/IP protocol suite. Research and find the equivalent of this protocol (if any) in
the OSI model. Compare and contrast the two.

18. File Transfer Protocol or FTP (see Chapter 21) is an application program in the
TCP/IP protocol suite. Research and find the equivalent of this protocol (if any) in
the OSI model. Compare and contrast the two.

19. Trivial File Transfer Protocol or TFTP (see Chapter 21) is an application program
in the TCP/IP protocol suite. Research and find the equivalent of this protocol (if
any) in the OSI model. Compare and contrast the two.

20. There are several transport layer models proposed in the OSI model. Research and
find all of them. Explain the differences between them.

21. There are several network layer models proposed in the OSI model. Research and
find all of them. Explain the differences between them.

for76042_ch02.fm Page 44 Thursday, February 12, 2009 6:00 PM

for76042_ch02.fm Page 45 Thursday, February 12, 2009 6:00 PM

C H A P T E R

3

46

3

Underlying Technologies

e can think of the Internet as a series of backbone networks that are
run by international, national, and regional ISPs. The backbones

are joined together by connecting devices such as routers or switching
stations. The end users are either part of the local ISP LAN or connected
via point-to-point networks to the LANs. Conceptually, the Internet is a
set of switched WANs (backbones), LANs, point-to-point WANs, and
connecting or switching devices.

Although the TCP/IP Protocol Suite is normally shown as a five-layer
stack, it only defines the three upper layers; TCP/IP is only concerned
with the network, transport, and application layers. This means that TCP/IP
assumes the existence of these WANs, LANs, and the connecting devices
that join them.

 As a brief review, we touch upon some of these underlying technolo-
gies in this chapter.

OBJECTIVES

The chapter has several objectives:

❑

To briefly discuss the technology of dominant wired LANs, Ethernet,
including traditional, fast, gigabit, and ten-gigabit Ethernet.

❑

To briefly discuss the technology of wireless WANs, including IEEE
802.11 LANs, and Bluetooth.

❑

To briefly discuss the technology of point-to-point WANs including
56K modems, DSL, cable modem, T-lines, and SONET.

❑

To briefly discuss the technology of switched WANs including X.25,
Frame Relay, and ATM.

❑

To discuss the need and use of connecting devices such as repeaters
(hubs), bridges (two-layer switches), and routers (three-layer switches).

W

for76042_ch03.fm Page 46 Friday, February 13, 2009 12:57 PM

47

3.1 WIRED LOCAL AREA NETWORKS

A local area network (LAN) is a computer network that is designed for a limited geo-
graphic area such as a building or a campus. Although a LAN can be used as an isolated
network to connect computers in an organization for the sole purpose of sharing resources,
most LANs today are also linked to a wide area network (WAN) or the Internet.

The LAN market has seen several technologies such as Ethernet, token ring, token
bus, FDDI, and ATM LAN. Some of these technologies survived for a while, but Ethernet
is by far the dominant technology.

In this section, we first briefly discuss the IEEE Standard Project 802, designed to
regulate the manufacturing and interconnectivity between different LANs. We then
concentrate on the Ethernet LANs.

Although Ethernet has gone through a four-generation evolution during the last
few decades, the main concept has remained the same. Ethernet has changed to meet
the market needs and to make use of the new technologies.

IEEE Standards

In 1985, the Computer Society of the IEEE started a project, called

Project 802,

 to set
standards to enable intercommunication among equipment from a variety of manufac-
turers. Project 802 does not seek to replace any part of the OSI or the Internet model.
Instead, it is a way of specifying functions of the physical layer and the data link layer
of major LAN protocols.

The standard was adopted by the American National Standards Institute (ANSI). In
1987, the International Standards Organization (ISO) also approved it as an international
standard under the designation ISO 8802.

The relationship of the 802 Standard to the traditional OSI model is shown in Fig-
ure 3.1. The IEEE has subdivided the data link layer into two sublayers:

logical link
control (LLC)

 and

media access control

 (

MAC

)

.

 IEEE has also created several phys-
ical layer standards for different LAN protocols.

Figure 3.1

IEEE standard for LANs

LLC

LLC: Logical link control
MAC: Media access control

 Ethernet
MAC

 Token ring
MAC

 Token bus
MAC

Data link layer

Physical layer
Ethernet
physical
layers

Token ring
physical

layer

Token bus
physical

layer

IEEE StandardOSI or TCP/IP Suite

Transmission medium Transmission medium

• • •

• • •

for76042_ch03.fm Page 47 Friday, February 13, 2009 12:57 PM

48

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

In this text, however, we treat physical and data link layer together as the underly-
ing technology supporting other layers in the TCP/IP protocol suite. For more details
about physical and data link layer technology see Forouzan,

Data Communications and
Networking,

4th ed., McGraw-Hill, 2007.

Frame Format

The packet sent in an Ethernet LAN is called a frame. In this section we discuss the for-
mat and the length of the frame that is used in our versions of the Ethernet.

Frame Format

The Ethernet frame contains seven fields: preamble, SFD, DA, SA, length or type of
data unit, upper-layer data, and the CRC. Ethernet does not provide any mechanism for
acknowledging received frames, making it what is known as an unreliable medium.
Acknowledgments must be implemented at the higher layers. The format of the MAC
frame is shown in Figure 3.2.

❑

Preamble.

The first field of the 802.3 frame contains 7 bytes (56 bits) of alternat-
ing 0s and 1s that alerts the receiving system to the coming frame and enables it to
synchronize its input timing. The pattern provides only an alert and a timing pulse.
The 56-bit pattern allows the stations to miss some bits at the beginning of the
frame. The preamble is actually added at the physical layer and is not (formally)
part of the frame.

❑

Start frame delimiter (SFD).

The second field (1 byte: 10101011) signals the
beginning of the frame. The SFD warns the station or stations that this is the last
chance for synchronization. The last 2 bits are 11 and alert the receiver that the
next field is the destination address. The SFD is also added at the physical layer.

❑

Destination address (DA).

The DA field is 6 bytes and contains the physical
address of the destination station or stations to receive the packet. We will discuss
addressing shortly.

❑

Source address (SA).

The SA field is also 6 bytes and contains the physical
address of the sender of the packet.

❑

Length or type.

This field is defined as a type field or length field. The original
Ethernet used this field as the type field to define the upper-layer protocol using the
MAC frame. The IEEE standard used it as the length field to define the number of
bytes in the data field. Both uses are common today.

Figure 3.2

Ethernet frame

CRC
Source
address

Destination
address

Length
or type

Data and padding

4 bytes2 bytes6 bytes 6 bytes

 Physical layer
header

7 bytes 1 byte

SFD: Start frame delimiter, flag (10101011)

Preamble: 56 bits of alternating 1s and 0s.

Preamble SFD

for76042_ch03.fm Page 48 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES

49

❑

Data.

This field carries data encapsulated from the upper-layer protocols. It is a
minimum of 46 and a maximum of 1500 bytes, as we will see later.

❑

CRC.

The last field contains error detection information, in this case a CRC-32
(See Appendix C).

Frame Length

Ethernet has imposed restrictions on both the minimum and maximum lengths of a frame,
as shown in Figure 3.3.

The minimum length restriction is required for the correct operation of CSMA/CD,
as we will see shortly. An Ethernet frame needs to have a minimum length of 512 bits
or 64 bytes. Part of this length is the header and the trailer. If we count 18 bytes of
header and trailer (6 bytes of source address, 6 bytes of destination address, 2 bytes of
length or type, and 4 bytes of CRC), then the minimum length of data from the upper
layer is 64

−

 18

=

 46 bytes. If the upper-layer packet is less than 46 bytes, padding is
added to make up the difference.

The standard defines the maximum length of a frame (without preamble and SFD
field) as 1518 bytes. If we subtract the 18 bytes of header and trailer, the maximum
length of the payload is 1500 bytes. The maximum length restriction has two historical
reasons. First, memory was very expensive when Ethernet was designed: a maximum
length restriction helped to reduce the size of the buffer. Second, the maximum length
restriction prevents one station from monopolizing the shared medium, blocking other
stations that have data to send.

Addressing

Each station on an Ethernet network (such as a PC, workstation, or printer) has its own

network interface card (NIC).

 The NIC fits inside the station and provides the station
with a 6-byte physical address. As shown in Figure 3.4, the Ethernet address is 6 bytes
(48 bits), normally written in

hexadecimal notation,

 with a colon between the bytes.
The address normally is referred to as the data link address, physical address, or MAC
address.

Figure 3.3

Minimum and maximum lengths

Minimum length: 64 bytes (512 bits) Maximum length: 1518 bytes (12,144 bits)

CRC
Source
address

Destination
address

Length
or

Type
Data and padding

4 bytes2 bytes

Minimum frame length: 512 bits or 64 bytes

Minimum payload length: 46 bytes
Maximum payload length: 1500 bytes

6 bytes 6 bytes

Maximum frame length: 12,144 bits or 1518 bytes

for76042_ch03.fm Page 49 Friday, February 13, 2009 12:57 PM

50

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

For example, the following shows an Ethernet MAC address:

Unicast, Multicast, and Broadcast Addresses

A source address is always a unicast address—the frame comes from only one station.
The destination address, however, can be unicast, multicast, or broadcast. Figure 3.5
shows how to distinguish a unicast address from a multicast address. If the least signif-
icant bit of the first byte in a destination address is 0, the address is unicast; otherwise,
it is multicast.

A unicast destination address defines only one recipient; the relationship between
the sender and the receiver is one-to-one. A multicast destination address defines a group
of addresses; the relationship between the sender and the receivers is one-to-many.

The broadcast address is a special case of the multicast address; the recipients are
all the stations on the LAN. A broadcast destination address is forty-eight 1s.

Example 3.1

Define the type of the following destination addresses:

a.

4A:30:10:21:10:1A

b.

47:20:1B:2E:08:EE

c.

FF:FF:FF:FF:FF:FF

Figure 3.4

Ethernet address in hexadecimal notation

4A:30:10:21:10:1A

Figure 3.5

Unicast and multicast addresses

The least significant bit of the first byte defines the type of address.
If the bit is 0, the address is unicast; otherwise, it is multicast.

The broadcast destination address is a special case of the multicast address
in which all bits are 1s.

d1d2 : d3d4 : d5d6 : d7d8 : d9d10 : d11d12

d: Hexadecimal digit

6 bytes = 12 hexadecimal digits = 48 bits

multicast: 1unicast: 0

Byte 1 Byte 2 Byte 6

• • •

for76042_ch03.fm Page 50 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES

51

Solution

To find the type of the address, we need to look at the second hexadecimal digit from the left. If it
is even, the address is unicast. If it is odd, the address is multicast. If all digits are F’s, the address
is broadcast. Therefore, we have the following:

a.

This is a unicast address because A in binary is 1010 (even).

b.

This is a multicast address because 7 in binary is 0111 (odd).

c.

This is a broadcast address because all digits are F’s.

The way the addresses are sent out on line is different from the way they are written in hexadeci-
mal notation. The transmission is left-to-right, byte by byte; however, for each byte, the least sig-
nificant bit is sent first and the most significant bit is sent last. This means that the bit that defines
an address as unicast or multicast arrives first at the receiver.

Example 3.2

Show how the address 47:20:1B:2E:08:EE is sent out on line.

Solution

The address is sent left-to-right, byte by byte; for each byte, it is sent right-to-left, bit by bit, as
shown below:

Ethernet Evolution

Ethernet was created in 1976 at Xerox’s Palo Alto Research Center (PARC). Since then,
it has gone through four generations:

Standard Ethernet

 (10 Mbps),

Fast Ethernet

(100 Mbps),

Gigabit Ethernet

 (1 Gbps), and

Ten-Gigabit Ethernet

 (10 Gbps), as
shown in Figure 3.6. We briefly discuss all these generations starting with the first,
Standard (or traditional) Ethernet.

Standard Ethernet

The original Ethernet with 10-Mbps data rate is now history, but we briefly discuss its
characteristics to pave the way for understanding other Ethernet versions.

←

 11100010 00000100 11011000 01110100 00010000 01110111

Figure 3.6

Ethernet evolution through four generations

Ethernet
evolution

10 Mbps 100 Mbps 1 Gbps 10 Gbps

Standard
Ethernet

Gigabit
Ethernet

Ten-Gigabit
Ethernet

Fast
Ethernet

for76042_ch03.fm Page 51 Friday, February 13, 2009 12:57 PM

52

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Access Method: CSMA/CD

The IEEE 802.3 standard defines

carrier sense multiple access with collision detec-
tion (CSMA/CD)

 as the access method for traditional Ethernet. Stations on a tradi-
tional Ethernet can be connected together using a physical bus or star topology, but
the logical topology is always a bus. By this, we mean that the medium (channel) is
shared between stations and only one station at a time can use it. It also implies that
all stations receive a frame sent by a station (broadcasting). The real destination
keeps the frame while the rest drop it. In this situation, how can we be sure that two
stations are not using the medium at the same time? If they do, their frames will col-
lide with each other.

To minimize the chance of collision and, therefore, increase the performance, the
CSMA method was developed. The chance of collision can be reduced if a station
senses the medium before trying to use it.

Carrier sense multiple access (CSMA)

requires that each station first listen to the medium (or check the state of the medium)
before sending. In other words, CSMA is based on the principle “sense before
transmit” or “listen before talk.” CSMA can reduce the possibility of collision, but it
cannot eliminate it. The reason for this is shown in Figure 3.7, a space and time model
of a CSMA network. Stations are connected to a shared channel (usually a dedicated
medium).

The possibility of collision still exists because of propagation delay; when a station
sends a frame, it still takes time (although very short) for the first bit to reach every sta-
tion and for every station to sense it. In other words, a station may sense the medium
and find it idle, only because the first bit sent by another station has not yet been
received.

Figure 3.7

Space/time model of a collision in CSMA

t1

t2

Time Time

B starts
at time t1

Area where
A’s signal exists

Area where
both signals exist

Area where
B’s signal exists

C starts
at time t2

BA C D

for76042_ch03.fm Page 52 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES

53

At time

t

1

, station B senses the medium and finds it idle, so it sends a frame. At
time

t

2

 (

t

2

 >

t

1

), station C senses the medium and finds it idle because, at this time, the
first bits from station B have not reached station C. Station C also sends a frame. The
two signals collide and both frames are destroyed.

Carrier sense multiple access with collision detection (CSMA/CD) augments the
algorithm to handle the collision. In this method, a station monitors the medium after it
sends a frame to see if the transmission was successful. If so, the station is finished. If,
however, there is a collision, the frame is sent again. To better understand CSMA/CD,
let us look at the first bits transmitted by the two stations involved in the collision.
Although each station continues to send bits in the frame until it detects the collision,
we show what happens as the first bits collide. In Figure 3.8, stations A and C are
involved in the collision.

At time

t

1

, station A has started sending the bits of its frame. At time

t

2

, station C
has not yet sensed the first bit sent by A. Station C starts sending the bits in its frame,
which propagate both to the left and to the right. The collision occurs sometime after
time

t

2

. Station C detects a collision at time

t

3

 when it receives the first bit of A’s frame.
Station C immediately (or after a short time, but we assume immediately) aborts trans-
mission. Station A detects collision at time

t

4

 when it receives the first bit of C’s frame; it
also immediately aborts transmission. Looking at the figure, we see that A transmits for
the duration

t

4

−

t

1

; C transmits for the duration

t

3

−

t

2

. Later we show that, for the proto-
col to work, the length of any frame divided by the bit rate in this protocol must be more
than either of these durations. At time

t

4

, the transmission of A’s frame, though incom-
plete, is aborted; at time

t

3

, the transmission of B’s frame, though incomplete, is aborted.

Minimum Frame Size

For CSMA/CD to work, we need a restriction on the frame size. Before sending the last
bit of the frame, the sending station must detect a collision, if any, and abort the transmis-
sion. This is so because the station, once the entire frame is sent, does not keep a copy
of the frame and does not monitor the line for collision detection. Therefore, the frame

Figure 3.8

Collision of the first bit in CSMA/CD

Collision
occurs

Part of A’s frame
Part of C’s frame

A detects
collision and

aborts C detects
collision

and aborts

t4

t2
t3

Transmission
time

Transmission
time

t1

TimeTime

A starts
at time t1

C starts
at time t2

BA C D

for76042_ch03.fm Page 53 Friday, February 13, 2009 12:57 PM

54

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

transmission time

T

fr

 must be at least two times the maximum propagation time

T

p

. To
understand the reason, let us think about the worst-case scenario. If the two stations
involved in a collision are the maximum distance apart, the signal from the first takes time

T

p

 to reach the second, and the effect of the collision takes another time

T

P

 to reach the
first. So the requirement is that the first station must still be transmitting after 2

T

p

.

Example 3.3

In the standard Ethernet, if the maximum propagation time is 25.6

µ

s, what is the minimum size
of the frame?

Solution
The frame transmission time is Tfr = 2 × Tp = 51.2 µs. This means, in the worst case, a station
needs to transmit for a period of 51.2 µs to detect the collision. The minimum size of the frame
is 10 Mbps × 51.2 µs = 512 bits or 64 bytes. This is actually the minimum size of the frame for
Standard Ethernet, as we discussed before.

Procedure

Figure 3.9 shows the flow diagram for CSMA/CD. We need to sense the channel before
we start sending the frame. We do not send the entire frame and then look for a colli-
sion. The station transmits and receives continuously and simultaneously (using two
different ports). We use a loop to show that transmission is a continuous process. We
constantly monitor in order to detect one of two conditions: either transmission is fin-
ished or a collision is detected. Either event stops transmission. When we come out of
the loop, if a collision has not been detected, it means that transmission is complete; the
entire frame is transmitted. Otherwise, a collision has occurred. The diagram also shows
a short jamming signal that enforces the collision in case other stations have not yet
sensed the collision.

Figure 3.9 CSMA/CD flow diagram

Station has
a frame to send

Legend

SuccessAbort

K: Number of attempts
Tfr: Frame average transmission time

R (random number): 0 to 2K _ 1

[true]

[true]

[true]

[true]

[false]

[false]

[false][false]

K = 0

K = K + 1

Wait TB
seconds

Transmit
and receive

Send a
jamming

signal

Create random
number R

Channel free?

Done or
collision?

Collision
detected?K < 15 ?

TfrTB(Back-off time) = R

for76042_ch03.fm Page 54 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 55

Implementation

The Standard Ethernet defined several implementations, but only four of them became
popular during ’80s. Table 3.1 shows a summary of Standard Ethernet implementa-
tions. In the nomenclature 10Base-X, the number defines the data rate (10 Mbps), the
term Base means baseband (digital) signal, and X approximately defines either the
maximum size of the cable in 100 meters (for example 5 for 500 or 2 for 185 meters) or
the type of the cable, T for unshielded twisted pair cable (UTP) and F for fiber-optic.

Figure 3.10 shows simplified diagrams of each implementation.

Fast Ethernet
Fast Ethernet was designed to compete with LAN protocols such as FDDI or Fiber
Channel. IEEE created Fast Ethernet under the name 802.3u. Fast Ethernet is
backward-compatible with Standard Ethernet, but it can transmit data 10 times faster at
a rate of 100 Mbps. The goals of Fast Ethernet can be summarized as follows:

1. Upgrade the data rate to 100 Mbps.

2. Make it compatible with Standard Ethernet.

Table 3.1 Summary of Standard Ethernet implementations

Characteristics 10Base5 10Base2 10Base-T 10Base-F
Medium Thick coax Thin coax 2 UTP 2 Fiber
Maximum length 500 m 185 m 100 m 2000 m

Figure 3.10 Standard Ethernet Implementation

Thick coaxial cable
Maximum 500 meters

Two pairs of
UTP cable

Two pairs of
UTP cable

Two fiber
optic cable

Two fiber
optic cable

TapTap

Thin coaxial cable
Maximum 185 meters

TeeTee

10BASE-T Hub 10BASE-F Hub

a. 10BASE5 b. 10BASE2

c. 10BASE-T d. 10BASE-F

for76042_ch03.fm Page 55 Friday, February 13, 2009 12:57 PM

56 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

3. Keep the same 48-bit address.

4. Keep the same frame format.

5. Keep the same minimum and maximum frame lengths.

MAC Sublayer

A main consideration in the evolution of Ethernet from 10 to 100 Mbps was to keep the
MAC sublayer untouched. However, a decision was made to drop the bus topologies
and keep only the star topology. For the star topology, there are two choices: half
duplex and full duplex. In the half-duplex approach, the stations are connected via a
hub; in the full-duplex approach, the connection is made via a switch with buffers at
each port (see Section 3.5, Connecting Devices, at the end of the chapter).

The access method is the same (CSMA/CD) for the half-duplex approach; for full-
duplex Fast Ethernet, there is no need for CSMA/CD. However, the implementations
keep CSMA/CD for backward compatibility with Standard Ethernet.

Autonegotiation

A new feature added to Fast Ethernet is called autonegotiation. It allows a station or a
hub a range of capabilities. Autonegotiation allows two devices to negotiate the mode
or data rate of operation. It was designed particularly for the following purposes:

❑ To allow incompatible devices to connect to one another. For example, a device with
a maximum capacity of 10 Mbps can communicate with a device with a 100 Mbps
capacity (but can work at a lower rate).

❑ To allow one device to have multiple capabilities.

❑ To allow a station to check a hub’s capabilities.

Implementation

Fast Ethernet implementation at the physical layer can be categorized as either two-wire
or four-wire. The two-wire implementation can be either shielded twisted pair, STP
(100Base-TX) or fiber-optic cable (100Base-FX). The four-wire implementation is
designed only for unshielded twist pair, UTP (100Base-T4). Table 3.2 is a summary of
the Fast Ethernet implementations.

Figure 3.11 shows simplified diagrams of each implementation.

Gigabit Ethernet
The need for an even higher data rate resulted in the design of the Gigabit Ethernet
Protocol (1000 Mbps). The IEEE committee calls the Standard 802.3z. The goals of the
Gigabit Ethernet design can be summarized as follows:

1. Upgrade the data rate to 1 Gbps.

2. Make it compatible with Standard or Fast Ethernet.

Table 3.2 Summary of Fast Ethernet implementations

Characteristics 100Base-TX 100Base-FX 100Base-T4
Media STP Fiber UTP
Number of wires 2 2 4
Maximum length 100 m 100 m 100 m

for76042_ch03.fm Page 56 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 57

3. Use the same 48-bit address.

4. Use the same frame format.

5. Keep the same minimum and maximum frame lengths.

6. To support autonegotiation as defined in Fast Ethernet.

MAC Sublayer

A main consideration in the evolution of Ethernet was to keep the MAC sublayer
untouched. However, to achieve a data rate of 1 Gbps, this was no longer possible.
Gigabit Ethernet has two distinctive approaches for medium access: half-duplex and
full-duplex. Almost all implementations of Gigabit Ethernet follow the full-duplex
approach. However, we briefly discuss the half-duplex approach to show that Gigabit
Ethernet can be compatible with the previous generations.

Full-Duplex Mode In full-duplex mode, there is a central switch connected to all
computers or other switches. In this mode, each switch has buffers for each input port
in which data are stored until they are transmitted. There is no collision in this mode.
This means that CSMA/CD is not used. Lack of collision implies that the maximum
length of the cable is determined by the signal attenuation in the cable, not by the colli-
sion detection process.

Half-Duplex Mode Gigabit Ethernet can also be used in half-duplex mode, although it
is rare. In this case, a switch can be replaced by a hub, which acts as the common cable in
which a collision might occur. The half-duplex approach uses CSMA/CD. However, as
we saw before, the maximum length of the network in this approach is totally dependent
on the minimum frame size. Three solutions have been defined: traditional, carrier
extension, and frame bursting.

Figure 3.11 Fast Ethernet Implementation

In the full-duplex mode of Gigabit Ethernet, there is no collision;
the maximum length of the cable is determined by the signal attenuation in the cable.

a. 100BASE-TX b. 100BASE-FX c. 100BASE-T4

100BASE-TX Hub 100Base-FX Hub 100BASE-T4 Hub

Four pairs of
 UTP cable

Four pairs of
 UTP cable

Two pairs of
 STP cable

Two pairs of
 STP cable

Two fiber
optic cable

Two fiber
optic cable

for76042_ch03.fm Page 57 Friday, February 13, 2009 12:57 PM

58 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

❑ Traditional. In the traditional approach, we keep the minimum length of the
frame as in traditional Ethernet (512 bits). However, because the length of a bit is
1/100 shorter in Gigabit Ethernet than in 10-Mbps Ethernet, the maximum length
of the network is 25 m. This length may be suitable if all the stations are in one
room, but it may not even be long enough to connect the computers in one single
office.

❑ Carrier Extension. To allow for a longer network, we increase the minimum frame
length. The carrier extension approach defines the minimum length of a frame as
512 bytes (4096 bits). This means that the minimum length is 8 times longer. This
method forces a station to add extension bits (padding) to any frame that is less than
4096 bits. In this way, the maximum length of the network can be increased 8 times to
a length of 200 m. This allows a length of 100 m from the hub to the station.

❑ Frame Bursting. Carrier extension is very inefficient if we have a series of short
frames to send; each frame carries redundant data. To improve efficiency, frame
bursting was proposed. Instead of adding an extension to each frame, multiple
frames are sent. However, to make these multiple frames look like one frame, pad-
ding is added between the frames (the same as that used for the carrier extension
method) so that the channel is not idle. In other words, the method deceives other
stations into thinking that a very large frame has been transmitted.

Implementation

Table 3.3 is a summary of the Gigabit Ethernet implementations.

Figure 3.12 shows the simplified diagrams for Gigabit Ethernet.

Table 3.3 Summary of Gigabit Ethernet implementations

Characteristics 1000Base-SX 1000Base-LX 1000Base-CX 1000Base-T4
Media Fiber

short-wave
Fiber

long-wave
STP Cat 5 UTP

Number of wires 2 2 2 4
Maximum length 550 m 5000 m 25 m 100 m

Figure 3.12 Gigabit Ethernet implementation

c. 1000BASE-CX

1000BASE-CX Hub

Two pairs of
 STP cable

Two pairs of
 STP cable

a. 1000BASE-SX

1000Base-SX Hub

Two fiber
optic cable

Two fiber
optic cable

Short
wave

b. 100BASE-LX

1000Base-LX Hub

Two fiber
optic cable

Two fiber
optic cable

d. 1000BASE-T4

1000BASE-T4 Hub

Four pairs of
 UTP cable

Four pairs of
 UTP cable

Long
wave

for76042_ch03.fm Page 58 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 59

Ten-Gigabit Ethernet
The IEEE committee created Ten-Gigabit Ethernet and called it Standard 802.3ae. The
goals of the Ten-Gigabit Ethernet design can be summarized as follows:

1. Upgrade the data rate to 10 Gbps.

2. Make it compatible with Standard, Fast, and Gigabit Ethernet.

3. Use the same 48-bit address.

4. Use the same frame format.

5. Keep the same minimum and maximum frame lengths.

6. Allow the interconnection of existing LANs into a metropolitan area network (MAN)
or a wide area network (WAN).

7. Make Ethernet compatible with technologies such as Frame Relay and ATM.

Implementation

Ten-Gigabit Ethernet operates only in full duplex mode, which means there is no need
for contention; CSMA/CD is not used in Ten-Gigabit Ethernet. Three implementations
are the most common: 10GBase-S, 10GBase-L, and 10GBase-E. Table 3.4 shows a
summary of the Ten-Gigabit Ethernet implementation.

3.2 WIRELESS LANS
Wireless communication is one of the fastest-growing technologies. The demand for con-
necting devices without the use of cables is increasing everywhere. Wireless LANs can be
found on college campuses, in office buildings, and in many public areas. In this section,
we concentrate on two wireless technologies for LANs: IEEE 802.11 wireless LANs,
sometimes called wireless Ethernet, and Bluetooth, a technology for small wireless LANs.

IEEE 802.11
IEEE has defined the specifications for a wireless LAN, called IEEE 802.11, which
covers the physical and data link layers.

Architecture

The standard defines two kinds of services: the basic service set (BSS) and the extended
service set (ESS).

Basic Service Set IEEE 802.11 defines the basic service set (BSS) as the building
block of a wireless LAN. A basic service set is made of stationary or mobile wireless sta-
tions and an optional central base station, known as the access point (AP). Figure 3.13
shows two sets in this standard. The BSS without an AP is a stand-alone network and

Table 3.4 Ten-Gigabit Ethernet Implementation

Characteristics 10GBase-S 10GBase-L 10GBase-E
Media multi-mode fiber single-mode fiber single-mode fiber
Number of wires 2 2 2
Maximum length 300 m 10,000 m 40,000 m

for76042_ch03.fm Page 59 Friday, February 13, 2009 12:57 PM

60 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

cannot send data to other BSSs. It is called an ad hoc architecture. In this architecture,
stations can form a network without the need of an AP; they can locate one another and
agree to be part of a BSS. A BSS with an AP is sometimes referred to as an infrastruc-
ture network.

Extended Service Set An extended service set (ESS) is made up of two or more
BSSs with APs. In this case, the BSSs are connected through a distribution system,
which is usually a wired LAN. The distribution system connects the APs in the BSSs.
IEEE 802.11 does not restrict the distribution system; it can be any IEEE LAN such as
an Ethernet. Note that the extended service set uses two types of stations: mobile and-
stationary. The mobile stations are normal stations inside a BSS. The stationary sta-
tions are AP stations that are part of a wired LAN. Figure 3.14 shows an ESS.

When BSSs are connected, the stations within reach of one another can communi-
cate without the use of an AP. However, communication between two stations in two
different BSSs usually occurs via two APs.

Station Types

IEEE 802.11 defines three types of stations based on their mobility in a wireless LAN:
no-transition, BSS-transition, and ESS-transition mobility. A station with no-transition

Figure 3.13 Basic service sets (BSSs)

Figure 3.14 Extended service sets (ESSs)

Infrastructure (BSS with an AP)

AP

Ad hoc network (BSS without an AP)

BSS: Basic service set AP: Access point

Station Station

Station Station

Station Station

Station Station

AP AP

BSS BSS

ESS

BSS

AP

Server or
Gateway

BSS: Basic service set
ESS: Extended service set

Wired LAN

AP: Access point

for76042_ch03.fm Page 60 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 61

mobility is either stationary (not moving) or moving only inside a BSS. A station with
BSS-transition mobility can move from one BSS to another, but the movement is con-
fined inside one ESS. A station with ESS-transition mobility can move from one ESS to
another.

MAC Sublayer
There are two different MAC sublayers in this protocol, however; the one that is used
most of the time is based on CSMA/CA (carrier sense multiple access with collision
avoidance). Figure 3.15 shows the flow diagram.

 Wireless LANs cannot implement CSMA/CD for three reasons:

1. For collision detection a station must be able to send data and receive collision sig-
nals at the same time. This can mean costly stations and increased bandwidth
requirements.

2. Collision may not be detected because of the hidden station problem. We will discuss
this problem later in the chapter.

3. The distance between stations can be great. Signal fading could prevent a station at
one end from hearing a collision at the other end.

Figure 3.15 CSMA/CA flow diagram

Station has
a frame to send

Carrier sense

Transmission

Legend

SuccessAbort

[true]

[true]

[true]

[true]

[false]

[false]

[false]

[false]

B = 0

Wait DIFS

Send RTS

Set a timer

Wait SIFS

Send
the frame

Set a timer

B = B + 1

Wait TB
seconds

Channel free?

ACK recieved
before time-out?

CTS recieved
before time-out?

B < limit ?

TB: Back-off time
B: Back-off variable

for76042_ch03.fm Page 61 Friday, February 13, 2009 12:57 PM

62 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Frame Exchange Time Line

Figure 3.16 shows the exchange of data and control frames in time.

1. Before sending a frame, the source station senses the medium by checking the
energy level at the carrier frequency.

a. The channel uses a persistence strategy with back-off until the channel is idle.

b. After the station is found to be idle, the station waits for a period of time called
the distributed interframe space (DIFS); then the station sends a control
frame called the request to send (RTS).

2. After receiving the RTS and waiting a period of time called the short interframe
space (SIFS), the destination station sends a control frame, called the clear to
send (CTS), to the source station. This control frame indicates that the destination
station is ready to receive data.

3. The source station sends data after waiting an amount of time equal to SIFS.

4. The destination station, after waiting an amount of time equal to SIFS, sends an
acknowledgment to show that the frame has been received. Acknowledgment is
needed in this protocol because the station does not have any means to check for
the successful arrival of its data at the destination. On the other hand, the lack of
collision in CSMA/CD is a kind of indication to the source that data have arrived.

Network Allocation Vector How do other stations defer sending their data if one
station acquires access? In other words, how is the collision avoidance aspect of this
protocol accomplished? The key is a feature called NAV.

When a station sends an RTS frame, it includes the duration of time that it needs to
occupy the channel. The stations that are affected by this transmission create a timer
called a network allocation vector (NAV) that shows how much time must pass before
these stations are allowed to check the channel for idleness. Each time a station

Figure 3.16 CSMA/CA and NAV

All other stations

• • •

DIFS

SIFS

SIFS

SIFS

NAV
(No carrier sensing)

Source Destination

TimeTime Time Time

RTS

CTS

Data

ACK

1

2

3

4

for76042_ch03.fm Page 62 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 63

accesses the system and sends an RTS frame, other stations start their NAV. In other
words, each station, before sensing the physical medium to see if it is idle, first checks
its NAV to see if it has expired. Figure 3.16 also shows the idea of NAV.

What happens if there is collision during the time when RTS or CTS control frames
are in transition, often called the handshaking period? Two or more stations may try to
send RTS frames at the same time. These control frames may collide. However, because
there is no mechanism for collision detection, the sender assumes there has been a colli-
sion if it has not received a CTS frame from the receiver. The back-off strategy is
employed, and the sender tries again.

Fragmentation

The wireless environment is very noisy; a corrupt frame has to be retransmitted. The
protocol, therefore, recommends fragmentation—the division of a large frame into
smaller ones. It is more efficient to resend a small frame than a large one.

Frame Format

The MAC layer frame consists of nine fields, as shown in Figure 3.17.

❑ Frame control (FC). The FC field is 2 bytes long and defines the type of frame
and some control information. Table 3.5 describes the subfields. We will discuss
each frame type later in this chapter.

Figure 3.17 Frame format

Table 3.5 Subfields in FC field

Field Explanation
Version Current version is 0
Type Type of information: management (00), control (01), or data (10)
Subtype Subtype of each type (see Table 3.6)
To DS Defined later
From DS Defined later
More flag When set to 1, means more fragments
Retry When set to 1, means retransmitted frame
Pwr mgt When set to 1, means station is in power management mode
More data When set to 1, means station has more data to send
WEP Wired equivalent privacy (encryption implemented)
Rsvd Reserved

FC D Address 1

2 bytes 2 bytes 2 bytes6 bytes 6 bytes 6 bytes 6 bytes 0 to 2312 bytes 4 bytes

Address 2 Address 3 SC Address 4 Frame body FCS

SubtypeType

4 bits2 bits 2 bits 1 bit 1 bit 1 bit 1 bit 1 bit 1 bit 1 bit1 bit

Protocol
version

From
DS

To
DS

More
flag

Retry
Pwr
mgt

WEP Rsvd
More
data

for76042_ch03.fm Page 63 Friday, February 13, 2009 12:57 PM

64 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

❑ D. In all frame types except one, this field defines the duration of the transmission
that is used to set the value of NAV. In one control frame, this field defines the ID
of the frame.

❑ Addresses. There are four address fields, each 6 bytes long. The meaning of each
address field depends on the value of the To DS and From DS subfields and will be
discussed later.

❑ Sequence control. This field defines the sequence number of the frame to be used
in flow control.

❑ Frame body. This field, which can be between 0 and 2312 bytes, contains infor-
mation based on the type and the subtype defined in the FC field.

❑ FCS. The FCS field is 4 bytes long and contains a CRC-32 error detection
sequence.

Frame Types

A wireless LAN defined by IEEE 802.11 has three categories of frames: management
frames, control frames, and data frames.

Management Frames Management frames are used for the initial communication
between stations and access points.

Control Frames Control frames are used for accessing the channel and acknowledg-
ing frames. Figure 3.18 shows the format.

For control frames the value of the type field is 01; the values of the subtype fields
for frames we have discussed are shown in Table 3.6.

Data Frames Data frames are used for carrying data and control information.

Addressing Mechanism
The IEEE 802.11 addressing mechanism specifies four cases, defined by the value of the
two flags in the FC field, To DS and From DS. Each flag can be either 0 or 1, resulting in
four different situations. The interpretation of the four addresses (address 1 to address 4)
in the MAC frame depends on the value of these flags, as shown in Table 3.7.

Figure 3.18 Control frames

Table 3.6 Values of subfields in control frames

Subtype Meaning
1011 Request to send (RTS)
1100 Clear to send (CTS)
1101 Acknowledgment (ACK)

RTS

FC D Address 1

2 bytes 2 bytes 6 bytes 6 bytes 4 bytes

Address 2 FCS

CTS or ACK

FC D Address 1

2 bytes 2 bytes 6 bytes 4 bytes

FCS

for76042_ch03.fm Page 64 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 65

Note that address 1 is always the address of the next device. Address 2 is always
the address of the previous device. Address 3 is the address of the final destination sta-
tion if it is not defined by address 1. Address 4 is the address of the original source
station if it is not the same as address 2.

Hidden and Exposed Station Problems

We referred to hidden and exposed station problems in the previous section. It is time
now to discuss these problems and their effects.

Hidden Station Problem Figure 3.19 shows an example of the hidden station prob-
lem. Station B has a transmission range shown by the left oval (sphere in space);
every station in this range can hear any signal transmitted by station B. Station C has
a transmission range shown by the right oval (sphere in space); every station located
in this range can hear any signal transmitted by C. Station C is outside the transmis-
sion range of B; likewise, station B is outside the transmission range of C. Station A,
however, is in the area covered by both B and C; it can hear any signal transmitted by
B or C.

Assume that station B is sending data to station A. In the middle of this transmis-
sion, station C also has data to send to station A. However, station C is out of B’s range
and transmissions from B cannot reach C. Therefore C thinks the medium is free. Sta-
tion C sends its data to A, which results in a collision at A because this station is receiv-
ing data from both B and C. In this case, we say that stations B and C are hidden from
each other with respect to A. Hidden stations can reduce the capacity of the network
because of the possibility of collision.

The solution to the hidden station problem is the use of the handshake frames (RTS
and CTS) that we discussed earlier. Figure 3.20 shows that the RTS message from B
reaches A, but not C. However, because both B and C are within the range of A, the
CTS message, which contains the duration of data transmission from B to A reaches C.

Table 3.7 Addresses

To
DS

From
DS

Address
1

Address
2

Address
3

Address
4

0 0 Destination Source BSS ID N/A
0 1 Destination Sending AP Source N/A
1 0 Receiving AP Source Destination N/A
1 1 Receiving AP Sending AP Destination Source

Figure 3.19 Hidden station problem

B and C are hidden from
each other with respect to A.

Range
of B

Range
of C

B CA

for76042_ch03.fm Page 65 Friday, February 13, 2009 12:57 PM

66 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Station C knows that some hidden station is using the channel and refrains from trans-
mitting until that duration is over.

Exposed Station Problem Now consider a situation that is the inverse of the previ-
ous one: the exposed station problem. In this problem a station refrains from using a
channel when it is, in fact, available. In Figure 3.21, station A is transmitting to station B.
Station C has some data to send to station D, which can be sent without interfering
with the transmission from A to B. However, station C is exposed to transmission from
A; it hears what A is sending and thus refrains from sending. In other words, C is too
conservative and wastes the capacity of the channel.

The handshaking messages RTS and CTS cannot help in this case, despite what we
might think. Figure 3.22 shows the situation.

Station C hears the RTS from A, but does not hear the CTS from B. Station C, after
hearing the RTS from A, can wait for a time so that the CTS from B reaches A; it then
sends an RTS to D to show that it needs to communicate with D. Both stations B and A
may hear this RTS, but station A is in the sending state, not the receiving state. Station B,
however, responds with a CTS. The problem is here. If station A has started sending its
data, station C cannot hear the CTS from station D because of the collision; it cannot
send its data to D. It remains exposed until A finishes sending its data.

The CTS frame in CSMA/CA handshake can prevent collision
from a hidden station.

Figure 3.20 Use of handshaking to prevent hidden station problem

Figure 3.21 Exposed station problem

RTS

CTS

Time Time Time

CTS

AB C

 Range
of C

 Range
of A

 Range
of B

A DCB

C is exposed to transmission
from A to B.

for76042_ch03.fm Page 66 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 67

Bluetooth
Bluetooth is a wireless LAN technology designed to connect devices of different func-
tions such as telephones, notebooks, computers (desktop and laptop), cameras, printers,
coffee makers, and so on. A Bluetooth LAN is an ad hoc network, which means that the
network is formed spontaneously; the devices, sometimes called gadgets, find each
other and make a network called a piconet. A Bluetooth LAN can even be connected to
the Internet if one of the gadgets has this capability. A Bluetooth LAN, by nature, can-
not be large. If there are many gadgets that try to connect, there is chaos.

Bluetooth technology has several applications. Peripheral devices such as a wire-
less mouse or keyboard can communicate with the computer through this technology.
Monitoring devices can communicate with sensor devices in a small health care center.
Home security devices can use this technology to connect different sensors to the main
security controller. Conference attendees can synchronize their laptop computers at a
conference.

Bluetooth was originally started as a project by the Ericsson Company. It is named
for Harald Blaatand, the king of Denmark (940–981) who united Denmark and Norway.
Blaatand translates to Bluetooth in English.

Today, Bluetooth technology is the implementation of a protocol defined by the
IEEE 802.15 standard. The standard defines a wireless personal area network (PAN)
operable in an area the size of a room or a hall.

Architecture

Bluetooth defines two types of networks: piconet and scatternet.

Piconets A Bluetooth network is called a piconet, or a small net. A piconet can have
up to eight stations, one of which is called the primary; the rest are called secondar-
ies. All the secondary stations synchronize their clocks and hopping sequence with the
primary. Note that a piconet can have only one primary station. The communication
between the primary and the secondary can be one-to-one or one-to-many. Figure 3.23
shows a piconet.

Although a piconet can have a maximum of seven secondaries, an additional eight
secondaries can be in the parked state. A secondary in a parked state is synchronized

Figure 3.22 Use of handshaking in exposed station problem

RTS RTS
C is exposed to

A’s transmission

Data
Data

Collision
here

RTSRTS

CTS

CTS

A CB D

Time Time Time Time

RTS

for76042_ch03.fm Page 67 Friday, February 13, 2009 12:57 PM

68 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

with the primary, but cannot take part in communication until it is moved from the
parked state. Because only eight stations can be active in a piconet, activating a station
from the parked state means that an active station must go to the parked state.

Scatternet Piconets can be combined to form what is called a scatternet. A second-
ary station in one piconet can be the primary in another piconet. This station can
receive messages from the primary in the first piconet (as a secondary) and, acting as a
primary, deliver them to secondaries in the second piconet. A station can be a member
of two piconets. Figure 3.24 illustrates a scatternet.

Bluetooth Devices

A Bluetooth device has a built-in short-range radio transmitter. The current data rate is
1 Mbps with a 2.4-GHz bandwidth. This means that there is a possibility of interference
between the IEEE 802.11b wireless LANs and Bluetooth LANs.

Frame Format

A frame in the baseband layer can be one of three types: one-slot, three-slot, or five-slot.
A slot, as we said before, is 625 µs. However, in a one-slot frame exchange, 259 µs is
needed for hopping and control mechanisms. This means that a one-slot frame can last
only 625 − 259, or 366 µs. With a 1-MHz bandwidth and 1 bit/Hz, the size of a one-slot
frame is 366 bits.

Figure 3.23 Piconet

Figure 3.24 Scatternet

Piconet

Secondary

Primary

Secondary Secondary Secondary

Secondary Secondary Secondary

Secondary

Secondary

PrimaryPiconet

Piconet

Primary/
Secondary

for76042_ch03.fm Page 68 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 69

A three-slot frame occupies three slots. However, since 259 µs is used for hopping,
the length of the frame is 3 × 625 − 259 = 1616 µs or 1616 bits. A device that uses a
three-slot frame remains at the same hop (at the same carrier frequency) for three slots.
Even though only one hop number is used, three hop numbers are consumed. That means
the hop number for each frame is equal to the first slot of the frame. A five-slot frame
also uses 259 bits for hopping, which means that the length of the frame is 5 × 625 −
259 = 2866 bits. Figure 3.25 shows the format of the three frame types.

The following describes each field:

❑ Access code. This 72-bit field normally contains synchronization bits and the
identifier of the primary to distinguish the frame of one piconet from another.

❑ Header. This 54-bit field is a repeated 18-bit pattern. Each pattern has the fol-
lowing subfields:

a. Address. The 3-bit address subfield can define up to seven secondaries (1 to 7).
If the address is zero, it is used for broadcast communication from the primary
to all secondaries.

b. Type. The 4-bit type subfield defines the type of data coming from the upper
layers. We discuss these types later.

c. F. This 1-bit subfield is for flow control. When set (1), it indicates that the device
is unable to receive more frames (buffer is full).

d. A. This 1-bit subfield is for acknowledgment. Bluetooth uses stop-and-wait
ARQ; 1 bit is sufficient for acknowledgment.

e. S. This 1-bit subfield holds a sequence number. Bluetooth uses stop-and-wait
ARQ; 1 bit is sufficient for sequence numbering.

f. HEC. The 8-bit header error correction subfield is a checksum to detect errors
in each 18-bit header section.

The header has three identical 18-bit sections. The receiver compares these three
sections, bit by bit. If each of the corresponding bits is the same, the bit is
accepted; if not, the majority opinion rules. This is a form of forward error correc-
tion (for the header only). This double error control is needed because the nature of
the communication, via air, is very noisy. Note that there is no retransmission in
this sublayer.

Figure 3.25 Frame format types

N = 240 for 1-slot frame
N = 1490 for 3-slot frame
N = 2740 for 5-slot frame

1

72 bits 54 bits 0 to N bits

Access code Header Data

Type

8 bits3 bits 4 bits 1 1

Address F A S HEC

This 18-bit part is repeated 3 times.

for76042_ch03.fm Page 69 Friday, February 13, 2009 12:57 PM

70 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

❑ Data. This subfield can be 0 to 2740 bits long. It contains data or control infor-
mation coming from the upper layers.

a. The sending station, after sensing that the medium is idle, sends a special small
frame called request to send (RTS). In this message, the sender defines the total
time it needs the medium.

b. The receiver acknowledges the request (broadcast to all stations) by sending a
small packet called clear to send (CTS).

c. The sender sends the data frame.

d. The receiver acknowledges the receipt of data.

3.3 POINT-TO-POINT WANS
A second type of network we encounter in the Internet is the point-to-point wide area
network. A point-to-point WAN connects two remote devices using a line available
from a public network such as a telephone network. We discuss traditional modem
technology, DSL line, cable modem, T-lines, and SONET.

56K Modems
People still use traditional modems to upload data to the Internet and download data
from the Internet, as shown in Figure 3.26.

In uploading, the analog signal must be sampled at the switching station, which
means the data rate in uploading is limited to 33.6 kbps. However, there is no sampling
in downloading. The signal is not affected by quantization noise and not subject to the
Shannon capacity limitation. The maximum data rate in the uploading direction is
33.6 kbps, but the data rate in the downloading direction is 56 kbps.

One may wonder why 56 kbps. The telephone companies sample voice 8000 times
per second with 8 bits per sample. One of the bits in each sample is used for control
purposes, which means each sample is 7 bits. The rate is therefore 8000 × 7, or 56,000 bps
or 56 kbps.

The V.90 and V.92 standard modems operate at 56 kbps to connect a host to the
Internet.

Figure 3.26 56K modem

Sampling and noise
here limits communication

Uploading,
quantization noise

Downloading,
no quantization noise

ISP
server

Modem Modem

Inverse
PCM

Telephone
network

Telephone
network

A

PCM

A

ISP
server

for76042_ch03.fm Page 70 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 71

DSL Technology
After traditional modems reached their peak data rate, telephone companies devel-
oped another technology, DSL, to provide higher-speed access to the Internet. Digital
subscriber line (DSL) technology is one of the most promising for supporting high-
speed digital communication over the existing local loops (telephone line). DSL
technology is a set of technologies, each differing in the first letter (ADSL, VDSL,
HDSL, and SDSL). The set is often referred to as xDSL, where x can be replaced by A,
V, H, or S.

ADSL

The first technology in the set is asymmetric DSL (ADSL). ADSL, like a 56K modem,
provides higher speed (bit rate) in the downstream direction (from the Internet to the
resident) than in the upstream direction (from the resident to the Internet). That is the
reason it is called asymmetric. Unlike the asymmetry in 56K modems, the designers of
ADSL specifically divided the available bandwidth of the local loop unevenly for the
residential customer. The service is not suitable for business customers who need a
large bandwidth in both directions.

Figure 3.27 shows how the bandwidth is divided:

❑ Voice. Channel 0 is reserved for voice communication.

❑ Idle. Channels 1 to 5 are not used, to allow a gap between voice and data
communication.

❑ Upstream data and control. Channels 6 to 30 (25 channels) are used for
upstream data transfer and control. One channel is for control, and 24 channels
are for data transfer. If there are 24 channels, each using 4 kHz (out of 4.312 kHz
available) with 15 bits per Hz, we have 24 × 4000 × 15, or a 1.44-Mbps band-
width, in the upstream direction.

❑ Downstream data and control. Channels 31 to 255 (225 channels) are used for
downstream data transfer and control. One channel is for control, and 224 channels
are for data. If there are 224 channels, we can achieve up to 224 × 4000 × 15, or
13.4 Mbps.

ADSL is an asymmetric communication technology designed
for residential users; it is not suitable for businesses.

Figure 3.27 Bandwidth division

Not
used

Upstream DownstreamVoice

1–5 6–30 31–2550

• • • • • •

for76042_ch03.fm Page 71 Friday, February 13, 2009 12:57 PM

72 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Because of the high signal/noise ratio, the actual bit rate is much lower than the above-
mentioned rates. The bit rates are as follows:

Figure 3.28 shows an ADSL modem installed at a customer’s site. The local
loop connects to the filter which separates voice and data communication. The
ADSL modem modulates the data and creates downstream and upstream channels.

At the telephone company site, the situation is different. Instead of an ADSL
modem, a device called a digital subscriber line access multiplexer (DSLAM) is
installed that functions similarly to an ADSL modem. In addition, it packetizes the data
to be sent to the Internet. Figure 3.28 shows the configuration.

Other DSL Technologies

ADSL provides asymmetric communication. The downstream bit rate is much higher
than the upstream bit rate. Although this feature meets the needs of most residential
subscribers, it is not suitable for businesses that send and receive data in large volumes
in both directions. The symmetric digital subscriber line (SDSL) is designed for
these types of businesses. It divides the available bandwidth equally between the down-
stream and upstream directions.

The high bit rate digital subscriber line (HDSL) was designed as an alternative
to the T-1 line (1.544 Mbps). The T-1 line (discussed later) uses alternate mark inver-
sion (AMI) encoding, which is very susceptible to attenuation at high frequencies. This
limits the length of a T-1 line to 1 km. For longer distances, a repeater is necessary,
which means increased costs.

The very high bit rate digital subscriber line (VDSL), an alternative approach
that is similar to ADSL, uses coaxial, fiber-optic, or twisted-pair cable for short dis-
tances (300 to 1800 m). The modulating technique is discrete multitone technique
(DMT) with a bit rate of 50 to 55 Mbps downstream and 1.5 to 2.5 Mbps upstream.

Cable Modem
Cable companies are now competing with telephone companies for the residential
customer who wants high-speed access to the Internet. DSL technology provides
high-data-rate connections for residential subscribers over the local loop. However,
DSL uses the existing unshielded twisted-pair cable, which is very susceptible to

Upstream: 64 kbps to 1 Mbps Downstream: 500 kbps to 8 Mbps

Figure 3.28 ADSL and DSLAM

DSLAM

Voice

Telephone company office

To telephone
network

To the
Internet

Filter

ADSL modem

Voice

Data

Filter

Customer residence

Data

for76042_ch03.fm Page 72 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 73

interference. This imposes an upper limit on the data rate. Another solution is the use
of the cable TV network.

Traditional Cable Networks

Cable TV started to distribute broadcast video signals to locations with poor or no
reception. It was called community antenna TV (CATV) because an antenna at the
top of a high hill or building received the signals from the TV stations and distributed
them, via coaxial cables, to the community.

The cable TV office, called the head end, receives video signals from broadcasting
stations and feeds the signals into coaxial cables. The traditional cable TV system used
coaxial cable end to end. Because of attenuation of the signals and the use of a large
number of amplifiers, communication in the traditional network was unidirectional
(one-way). Video signals were transmitted downstream, from the head end to the sub-
scriber premises.

HFC Network

The second generation of cable networks is called a hybrid fiber-coaxial (HFC) net-
work. The network uses a combination of fiber-optic and coaxial cable. The transmission
medium from the cable TV office to a box, called the fiber node, is optical fiber; from
the fiber node through the neighborhood and into the house, the medium is still coaxial
cable. One reason for moving from traditional to hybrid infrastructure is to make the
cable network bidirectional (two-way).

Bandwidth

Even in an HFC system, the last part of the network, from the fiber node to the sub-
scriber premises, is still a coaxial cable. This coaxial cable has a bandwidth that ranges
from 5 to 750 MHz (approximately). The cable company has divided this bandwidth
into three bands: video, downstream data, and upstream data, as shown in Figure 3.29.

❑ Video Band. The downstream-only video band occupies frequencies from 54 to
550 MHz. Since each TV channel occupies 6 MHz, this can accommodate more
than 80 channels.

❑ Downstream Data Band. The downstream data (from the Internet to the subscriber
premises) occupies the upper band, from 550 to 750 MHz. This band is also divided
into 6-MHz channels. The downstream data can be received at 30 Mbps. The stan-
dard specifies only 27 Mbps. However, since the cable modem is connected to the
computer through a 10BASE-T cable, this limits the data rate to 10 Mbps.

Figure 3.29 Cable bandwidth

Data
downstream

Video
band

Data
upstream

5Frequency, MHz 42 54 550 750

for76042_ch03.fm Page 73 Friday, February 13, 2009 12:57 PM

74 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

❑ Upstream Data Band. The upstream data (from the subscriber premises to the
Internet) occupies the lower band, from 5 to 42 MHz. This band is also divided into
6-MHz channels. The upstream data band uses lower frequencies that are more
susceptible to noise and interference. Theoretically, downstream data can be sent at
12 Mbps (2 bits/Hz × 6 MHz). However, the data rate is usually less than 12 Mbps.

Sharing

Both upstream and downstream bands are shared by the subscribers. The upstream data
bandwidth is only 37 MHz. This means that there are only six 6-MHz channels available
in the upstream direction. A subscriber needs to use one channel to send data in the
upstream direction. The question is, How can six channels be shared in an area with
1000, 2000, or even 100,000 subscribers? The solution is time-sharing. The band is
divided into channels; these channels must be shared between subscribers in the same
neighborhood. The cable provider allocates one channel, statically or dynamically, for a
group of subscribers. If one subscriber wants to send data, she or he contends for the
channel with others who want access; the subscriber must wait until the channel is
available. The situation is similar to CSMA discussed for Ethernet LANs.

We have a similar situation in the downstream direction. The downstream band has
33 channels of 6 MHz. A cable provider probably has more than 33 subscribers; there-
fore, each channel must be shared between a group of subscribers. However, the situa-
tion is different for the downstream direction; here we have a multicasting situation. If
there are data for any of the subscribers in the group, the data are sent to that channel.
Each subscriber is sent the data. But since each subscriber also has an address regis-
tered with the provider, the cable modem for the group matches the address carried
with the data to the address assigned by the provider. If the address matches, the data
are kept; otherwise, they are discarded.

Devices

To use a cable network for data transmission, we need two key devices: a CM and a
CMTS. The cable modem (CM) is installed on the subscriber premises. It is similar to
an ADSL modem. Figure 3.30 shows its location. The cable modem transmission sys-
tem (CMTS) is installed inside the distribution hub by the cable company. It receives
data from the Internet and passes them to the combiner, which sends them to the sub-
scriber. The CMTS also receives data from the subscriber and passes them to the Inter-
net. Figure 3.30 shows the location of the CMTS.

Figure 3.30 Cable modem configurations

CMTS

Video

DataTo and from
the Internet

CombinerFrom
head end

Distribution hub

Fiber

Cable modem

Video

Data

Customer residence
Cable

Tap Filter

for76042_ch03.fm Page 74 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 75

T Lines
T lines are standard digital telephone carriers originally designed to multiplex voice
channels (after being digitized). Today, however, T lines can be used to carry data from
a residence or an organization to the Internet. They can also be used to provide a physi-
cal link between nodes in a switched wide area network. T lines are commercially
available in two data rates: T-1 and T-3 (see Table 3.8).

T-1 Line

The data rate of a T-1 line is 1.544 Mbps. Twenty-four voice channels are sampled,
with each sample digitized to 8 bits. An extra bit is added to provide synchronization.
This makes the frame 193 bits in length. By sending 8000 frames per second, we get a
data rate of 1.544 Mbps. When we use a T-1 line to connect to the Internet, we can use
all or part of the capacity of the line to send digital data.

T-3 Line

A T-3 line has a data rate of 44.736 Mbps. It is equivalent to 28 T-1 lines. Many sub-
scribers may not need the entire capacity of a T line. To accommodate these customers,
the telephone companies have developed fractional T line services, which allow several
subscribers to share one line by multiplexing their transmissions.

SONET
The high bandwidths of fiber-optic cable are suitable for today’s highest data rate tech-
nologies (such as video conferencing) and for carrying large numbers of lower-rate
technologies at the same time. ANSI created a set of standards called Synchronous
Optical Network (SONET) to handle the use of fiber-optic cables. It defines a high-
speed data carrier.

SONET first defines a set of electrical signals called synchronous transport
signals (STSs). It then converts these signals to optical signals called optical carriers
(OCs). The optical signals are transmitted at 8000 frames per second.

Table 3.9 shows the data rates for STSs and OCs. Note that the lowest level in this
hierarchy has a data rate of 51.840 Mbps, which is greater than that of a T-3 line
(44.736 Mbps).

Table 3.8 T line rates

Line Rate (Mbps)
T-1 1.544
T-3 44.736

Table 3.9 SONET rates

STS OC Rate (Mbps) STS OC Rate (Mbps)
STS-1 OC-1 51.840 STS-24 OC-24 1244.160
STS-3 OC-3 155.520 STS-36 OC-36 1866.230
STS-9 OC-9 466.560 STS-48 OC-48 2488.320
STS-12 OC-12 622.080 STS-96 OC-96 4976.640
STS-18 OC-18 933.120 STS-192 OC-192 9953.280

for76042_ch03.fm Page 75 Friday, February 13, 2009 12:57 PM

76 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

PPP
The telephone line or cable companies provide a physical link, but to control and
manage the transfer of data, there is a need for a special protocol. The Point-to-Point
Protocol (PPP) was designed to respond to this need.

PPP Layers

PPP has only physical and data link layers. No specific protocol is defined for the physi-
cal layer by PPP. Instead, it is left to the implementer to use whatever is available. PPP
supports any of the protocols recognized by ANSI. At the data link layer, PPP defines the
format of a frame and the protocol that are used for controlling the link and transporting
user data. The format of a PPP frame is shown in Figure 3.31.

The descriptions of the fields are as follows:

1. Flag field. The flag field identifies the boundaries of a PPP frame. Its value is
01111110.

2. Address field. Because PPP is used for a point-to-point connection, it uses the
broadcast address used in most LANs, 11111111, to avoid a data link address in
the protocol.

3. Control field. The control field is assigned the value 11000000 to show that, as in
most LANs, the frame has no sequence number; each frame is independent.

4. Protocol field. The protocol field defines the type of data being carried in the data
field: user data or other information.

5. Data field. This field carries either user data or other information.

6. FCS. The frame check sequence field is simply a 2-byte or 4-byte CRC used for
error detection.

Link Control Protocol (LCP)

The Link Control Protocol (LCP) is responsible for establishment, maintenance, and
termination of the link. When the data field of a frame is carrying data related to this
protocol, it means that PPP is handling the link; it does not carry data.

Network Control Protocol (NCP)

The Network Control Protocol (NCP) has been defined to give flexibility to PPP. PPP
can carry data from different network protocols, including IP. After establishment of
the link, PPP can carry IP packets in its data field.

Figure 3.31 PPP frame

1 byte 1 byte 1 byte 1 or 2 bytes Variable 2 or 4 bytes 1 byte

FCSFlag FlagAddress Control Protocol Data and padding

11111111 11000000

for76042_ch03.fm Page 76 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 77

PPPoE

PPP was designed to connect a single user to the Internet via a conventional modem
and a telephone line. Today, DSL, cable modem, and wireless technology allow a
group of users, on an Ethernet LAN, to access the Internet through a single physical
line. In other words, the hosts connected to the LAN can share one single physical
line to access the Internet. PPP over Ethernet (PPPoE) is a new protocol that uses a
discovery technique to find the Ethernet address of the host to be connected to the
Internet. After address discovery, a regular PPP session can be used to provide the
connection.

3.4 SWITCHED WANS
The backbone networks in the Internet can be switched WANs. A switched WAN is a
wide area network that covers a large area (a state or a country) and provides access at
several points to the users. Inside the network, there is a mesh of point-to-point net-
works that connects switches. The switches, multiple port connectors, allow the con-
nection of several inputs and outputs.

Switched WAN technology differs from LAN technology in many ways. First,
instead of a star topology, switches are used to create multiple paths. Second, LAN
technology is considered a connectionless technology; there is no relationship
between packets sent by a sender to a receiver. Switched WAN technology, on the
other hand, is a connection-oriented technology. Before a sender can send a packet, a
connection must be established between the sender and the receiver. After the con-
nection is established, it is assigned an identifier (sometimes called a label) used dur-
ing the transmission. The connection is formally terminated when the transmission is
over. The connection identifier is used instead of the source and destination addresses
in LAN technology.

X.25
The X.25 protocol, introduced in the 1970s, was the first switched WAN to become
popular both in Europe and the United States. It was mostly used as a public network to
connect individual computers or LANs. It provides an end-to-end service.

Although X.25 was used as the WAN to carry IP packets from one part of the
world to another, there was always a conflict between IP and X.25. IP is a third-
(network) layer protocol. An IP packet is supposed to be carried by a frame at the
second (data link) layer. X.25, which was designed before the Internet, is a three-
layer protocol; it has its own network layer. IP packets had to be encapsulated in an
X.25 network-layer packet to be carried from one side of the network to another. This
is analogous to a person who has a car but has to load it in a truck to go from one
point to another.

Another problem with X.25 is that it was designed at a time when transmission
media were not very reliable (no use of optical fibers). For this reason, X.25 performs
extensive error control. This makes transmission very slow and is not popular given the
ever increasing demand for speed.

for76042_ch03.fm Page 77 Friday, February 13, 2009 12:57 PM

78 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

Frame Relay
The Frame Relay protocol, a switched technology that provides low-level (physical
and data link layers) service, was designed to replace X.25. Frame Relay has some
advantages over X.25:

❑ High Data Rate. Although Frame Relay was originally designed to provide a
1.544-Mbps data rate (equivalent to a T-1 line), today most implementations can
handle up to 44.736 Mbps (equivalent to a T-3 line).

❑ Bursty Data. Some services offered by wide area network providers assume that
the user has a fixed-rate need. For example, a T-1 line is designed for a user who
wants to use the line at a consistent 1.544 Mbps. This type of service is not suitable
for the many users today who need to send bursty data (non-fixed-rate data). For
example, a user may want to send data at 6 Mbps for 2 seconds, 0 Mbps (nothing)
for 7 seconds, and 3.44 Mbps for 1 second for a total of 15.44 Mb during a period of
10 seconds. Although the average data rate is still 1.544 Mbps, the T-1 line cannot
fulfill this type of demand because it is designed for fixed-rate data, not bursty data.
Bursty data requires what is called bandwidth on demand. The user needs differ-
ent bandwidth allocations at different times. Frame Relay accepts bursty data. A
user is granted an average data rate that can be exceeded when needed.

❑ Less Overhead Due to Improved Transmission Media. The quality of transmis-
sion media has improved tremendously since the last decade. They are more reliable
and less error prone. There is no need to have a WAN that spends time and resources
checking and double-checking potential errors. X.25 provides extensive error check-
ing and flow control. Frame Relay does not provide error checking or require
acknowledgment in the data link layer. Instead, all error checking is left to the proto-
cols at the network and transport layers that use the services of Frame Relay.

ATM
Asynchronous Transfer Mode (ATM) is the cell relay protocol designed by the ATM
Forum and adopted by the ITU-T.

Design Goals

Among the challenges faced by the designers of ATM, six stand out. First and foremost is
the need for a transmission system to optimize the use of high-data-rate transmission media,
in particular optical fiber. Second is the need for a system that can interface with existing
systems, such as the various packet networks, and provide wide area interconnectivity
between them without lowering their effectiveness or requiring their replacement. Third is
the need for a design that can be implemented inexpensively so that cost would not be a
barrier to adoption. If ATM is to become the backbone of international communications, as
intended, it must be available at low cost to every user who wants it. Fourth, the new sys-
tem must be able to work with and support the existing telecommunications hierarchies
(local loops, local providers, long-distance carriers, and so on). Fifth, the new system must
be connection-oriented to ensure accurate and predictable delivery. And last but not least,
one objective is to move as many of the functions to hardware as possible (for speed) and
eliminate as many software functions as possible (again for speed).

for76042_ch03.fm Page 78 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 79

Cell Networks

ATM is a cell network. A cell is a small data unit of fixed size that is the basic unit of
data exchange in a cell network. In this type of network, all data are loaded into identical
cells that can be transmitted with complete predictability and uniformity. Cells are mul-
tiplexed with other cells and routed through a cell network. Because each cell is the
same size and all are small, any problems associated with multiplexing different-sized
packets are avoided.

Asynchronous TDM

ATM uses asynchronous time-division multiplexing—that is why it is called
Asynchronous Transfer Mode—to multiplex cells coming from different channels. It
uses fixed-size slots the size of a cell. ATM multiplexers fill a slot with a cell from
any input channel that has a cell; the slot is empty if none of the channels has a cell
to send.

Figure 3.32 shows how cells from three inputs are multiplexed. At the first tick of
the clock, channel 2 has no cell (empty input slot), so the multiplexer fills the slot with
a cell from the third channel. When all the cells from all the channels are multiplexed,
the output slots are empty.

ATM Architecture

ATM is a switched network. The user access devices, called the end points, are
connected to the switches inside the network. The switches are connected to each other
using high-speed communication channels. Figure 3.33 shows an example of an ATM
network.

Virtual Connection Connection between two end points is accomplished through
transmission paths (TPs), virtual paths (VPs), and virtual circuits (VCs). A transmis-
sion path (TP) is the physical connection (wire, cable, satellite, and so on) between
an end point and a switch or between two switches. Think of two switches as two
cities. A transmission path is the set of all highways that directly connects the two
cities.

A cell network uses the cell as the basic unit of data exchange.
A cell is defined as a small, fixed-size block of information.

Figure 3.32 ATM multiplexing

MUX2

3

1

A1

A1

C1

C1

A2

A2B2 B2B1 B1

C3

C3

C2

C2

A3

A3

for76042_ch03.fm Page 79 Friday, February 13, 2009 12:57 PM

80 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

A transmission path is divided into several virtual paths. A virtual path (VP) pro-
vides a connection or a set of connections between two switches. Think of a virtual
path as a highway that connects two cities. Each highway is a virtual path; the set of all
highways is the transmission path.

Cell networks are based on virtual circuits (VCs). All cells belonging to a single
message follow the same virtual circuit and remain in their original order until they
reach their destination. Think of a virtual circuit as the lanes of a highway (virtual path)
as shown in Figure 3.34.

The figure also shows the relationship between a transmission path (a physical
connection), virtual paths (a combination of virtual circuits that are bundled together
because parts of their paths are the same), and virtual circuits that logically connect two
points together.

In a virtual circuit network, to route data from one end point to another, the virtual
connections need to be identified. For this purpose, the designers of ATM created a
hierarchical identifier with two levels: a virtual path identifier (VPI) and a virtual
circuit identifier (VCI). The VPI defines the specific VP and the VCI defines a particu-
lar VC inside the VP. The VPI is the same for all virtual connections that are bundled
(logically) into one VP.

Figure 3.33 Architecture of an ATM network

Figure 3.34 Virtual circuits

A virtual connection is defined by a pair of numbers: the VPI and the VCI.

III

IV

III

Switch Switch

Switch

Switch
End points

End points

End points

VCI = 21
VCI = 32
VCI = 45

VCI = 21
VCI = 32
VCI = 45

VPI = 14

VPI = 18

VPI = 14

VPI = 18

This virtual connection is uniquely
defined using the (VPI, VCI) pair:

(14 , 21)

for76042_ch03.fm Page 80 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 81

ATM Layers

The ATM standard defines three layers. They are, from top to bottom, the application
adaptation layer, the ATM layer, and the physical layer as shown in Figure 3.35.

The physical and ATM layer are used in both switches inside the network and end
points (such as routers) that use the services of the ATM. The application adaptation
layer (AAL) is used only by the end points. Figure 3.36 shows the use of these layers
inside and outside an ATM network.

AAL Layer

The application adaptation layer (AAL) allows existing networks (such as packet
networks) to connect to ATM facilities. AAL protocols accept transmissions from
upper-layer services (e.g., packet data) and map them into fixed-sized ATM cells. These
transmissions can be of any type (voice, data, audio, video) and can be of variable or
fixed rates. At the receiver, this process is reversed—segments are reassembled into
their original formats and passed to the receiving service. Although four AAL layers
have been defined the one which is of interest to us is AAL5, which is used to carry IP
packets in the Internet.

AAL5, which is sometimes called the simple and efficient adaptation layer
(SEAL), assumes that all cells belonging to a single message travel sequentially and
that control functions are included in the upper layers of the sending application. AAL5

Figure 3.35 ATM layers

Figure 3.36 Use of the layers

Physical layer

ATM layer

AAL1 AAL2 AAL3/4 AAL5

AAL

ATM

Physical

AAL

ATM

Physical

Upper layer
(such as IP)

Switch I Switch II Switch III

Upper layer
(such as IP)

End point
(such as a router)

End point
(such as a router)

ATM

I II III

for76042_ch03.fm Page 81 Friday, February 13, 2009 12:57 PM

82 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

is designed for connectionless packet protocols that use a datagram approach to routing
(such as the IP protocol in TCP/IP).

AAL5 accepts an IP packet of no more than 65,535 bytes and adds an 8-byte trailer
as well as any padding required to ensure that the position of the trailer falls where the
receiving equipment expects it (at the last 8 bytes of the last cell). See Figure 3.37.
Once the padding and trailer are in place, AAL5 passes the message in 48-byte segments
to the ATM layer.

ATM Layer

The ATM layer provides routing, traffic management, switching, and multiplexing
services. It processes outgoing traffic by accepting 48-byte segments from the AAL
sublayer. The addition of a 5-byte header transforms the segment into a 53-byte cell
(see Figure 3.38).

A cell is 53 bytes in length with 5 bytes allocated to header and 48 bytes carrying
payload (user data may be less than 48 bytes). Most of the header is occupied by the
VPI and VCI. Figure 3.39 shows the cell structure.

The combination of VPI and VCI can be thought of as a label that defines a partic-
ular virtual connection.

The IP protocol uses the AAL5 sublayer.

Figure 3.37 AAL5

Figure 3.38 ATM layer

User data up to 65,535 bytes

Pad + trailer

A

A

L

5 48 bytes 48 bytes 48 bytes

Header
5 bytes

48-byte segment

53 bytes

From AAL layer

A

T

M

for76042_ch03.fm Page 82 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 83

Physical Layer

The physical layer defines the transmission medium, bit transmission, encoding, and
electrical to optical transformation. It provides convergence with physical transport
protocols, such as SONET and T-3, as well as the mechanisms for transforming the
flow of cells into a flow of bits.

3.5 CONNECTING DEVICES
LANs or WANs do not normally operate in isolation. They are connected to one
another or to the Internet. To connect LANs and WANs together we use connecting
devices. Connecting devices can operate in different layers of the Internet model. We
discuss three kinds of connecting devices: repeaters (or hubs), bridges (or two-layer
switches), and routers (or three-layer switches). Repeaters and hubs operate in the first
layer of the Internet model. Bridges and two-layer switches operate in the first two lay-
ers. Routers and three-layer switches operate in the first three layers. Figure 3.40 shows
the layers in which each device operates.

Repeaters
A repeater is a device that operates only in the physical layer. Signals that carry infor-
mation within a network can travel a fixed distance before attenuation endangers the
integrity of the data. A repeater receives a signal and, before it becomes too weak or
corrupted, regenerates and retimes the original bit pattern. The repeater then sends the
refreshed signal. In the past, when Ethernet LANs were using bus topology, a repeater
was used to connect two segments of a LAN to overcome the length restriction of the

Figure 3.39 An ATM cell

Figure 3.40 Connecting devices

5 bytes
Label

48 bytes

53 bytes

VPI VCI

Header

Payload

Router or
three-layer switch

Bridge
or two-layer switch

Repeater
or hub

Network

Data link

Physical

Network

Data link

Physical

for76042_ch03.fm Page 83 Friday, February 13, 2009 12:57 PM

84

PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

coaxial cable. Today, however, Ethernet LANs use star topology. In a star topology, a
repeater is a multiport device, often called a

hub,

 that can be used to serve as the con-
necting point and at the same time function as a repeater. Figure 3.41 shows that
when a packet from station A to B arrives at the hub, the signal representing the
frame is regenerated to remove any possible corrupting noise, but the hub forwards
the packet from all outgoing port to all stations in the LAN. In other words, the frame
is broadcast. All stations in the LAN receive the frame, but only station B keeps it.
The rest of the stations discard it. Figure 3.41 shows the role of a repeater or a hub in
a switched LAN.

The figure definitely shows that a hub does not have a filtering capability; it does
not have the intelligence to find from which port the frame should be sent out.

A hub or a repeater is a physical-layer device. They do not have any data-link
address and they do not check the data-link address of the received frame. They just
regenerate the corrupted bits and send them out from every port.

Bridges

A

 bridge

 operates in both the physical and the data link layers. As a physical-layer
device, it regenerates the signal it receives. As a data link layer device, the bridge can
check the MAC addresses (source and destination) contained in the frame.

Filtering

One may ask what is the difference in functionality between a bridge and a repeater. A
bridge has

filtering

 capability. It can check the destination address of a frame and can
decide from which outgoing port the frame should be send out.

Let us give an example. In Figure 3.42, we have a LAN with four stations that are
connected to a bridge. If a frame destined for station 71:2B:13:45:61:42 arrives at port 1,
the bridge consults its table to find the departing port. According to its table, frames for
71:2B:13:45:61:42 should be sent out only through port 2; therefore, there is no need
for forwarding the frame through other ports.

Figure 3.41

Repeater or hub

A repeater forwards every bit; it has no filtering capability.

A bridge has a table used in filtering decisions.

DiscardedDiscarded

A B C D

Sent

Maintained Discarded

Hub

for76042_ch03.fm Page 84 Friday, February 13, 2009 1:30 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 85

Transparent Bridges

A transparent bridge is a bridge in which the stations are completely unaware of the
bridge’s existence. If a bridge is added or deleted from the system, reconfiguration of
the stations is unnecessary. According to the IEEE 802.1d specification, a system
equipped with transparent bridges must meet three criteria:

1. Frames must be forwarded from one station to another.

2. The forwarding table is automatically made by learning frame movements in the
network.

3. Loops in the system must be prevented.

Forwarding A transparent bridge must correctly forward the frames, as discussed in
the previous section.

Learning The earliest bridges had forwarding tables that were static. The system
administrator would manually enter each table entry during bridge setup. Although the
process was simple, it was not practical. If a station was added or deleted, the table had to
be modified manually. The same was true if a station’s MAC address changed, which is
not a rare event. For example, putting in a new network card means a new MAC address.

A better solution to the static table is a dynamic table that maps addresses to ports
automatically. To make a table dynamic, we need a bridge that gradually learns from
the frame movements. To do this, the bridge inspects both the destination and the
source addresses. The destination address is used for the forwarding decision (table
lookup); the source address is used for adding entries to the table and for updating pur-
poses. Let us elaborate on this process using Figure 3.43.

1. When station A sends a frame to station D, the bridge does not have an entry for
either D or A. The frame goes out from all three ports; the frame floods the net-
work. However, by looking at the source address, the bridge learns that station A
must be connected to port 1. This means that frames destined for A, in the future,
must be sent out through port 1. The bridge adds this entry to its table. The table
has its first entry now.

2. When station D sends a frame to station B, the bridge has no entry for B, so it
floods the network again. However, it adds one more entry to the table.

3. The learning process continues until the table has information about every port.

Figure 3.42 Bridge

A bridge does not change the physical (MAC) addresses in a frame.

71:2B:13:45:61:41 71:2B:13:45:61:42 64:2B:13:45:61:12 64:2B:13:45:61:13

1
3

4
2 71:2B:13:45:61:41 1

4
3
271:2B:13:45:61:42

64:2B:13:45:61:12
64:2B:13:45:61:13

Address Port

Bridge tableBridge

for76042_ch03.fm Page 85 Friday, February 13, 2009 12:57 PM

86 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

However, note that the learning process may take a long time. For example, if a station
does not send out a frame (a rare situation), the station will never have an entry in the table.

Two-Layer Switch

When we use the term switch, we must be careful because a switch can mean two dif-
ferent things. We must clarify the term by adding the level at which the device oper-
ates. We can have a two-layer switch or a three-layer switch. A two-layer switch
performs at the physical and data link layer; it is a sophisticated bridge with faster for-
warding capability.

Routers
A router is a three-layer device; it operates in the physical, data link, and network lay-
ers. As a physical layer device, it regenerates the signal it receives. As a data link layer
device, the router checks the physical addresses (source and destination) contained in
the packet. As a network layer device, a router checks the network layer addresses
(addresses in the IP layer). Note that bridges change collision domains, but routers limit
broadcast domains.

A router can connect LANs together; a router can connect WANs together; and a
router can connect LANs and WANs together. In other words, a router is an internet-
working device; it connects independent networks together to form an internetwork.
According to this definition, two networks (LANs or WANs) connected by a router
become an internetwork or an internet.

Figure 3.43 Learning bridge

A router is a three-layer (physical, data link, and network) device.

A B C D

71:2B:13:45:61:41 71:2B:13:45:61:42 64:2B:13:45:61:12 64:2B:13:45:61:13

1
3

4
2

Bridge

Gradual building of Table

a. Original

Address Port

c. After D sends a frame to B

71:2B:13:45:61:41 1
464:2B:13:45:61:13

Address Port

d. After B sends a frame to A

71:2B:13:45:61:41 1
4

271:2B:13:45:61:42

64:2B:13:45:61:13

Address Port

b. After A sends a frame to D

171:2B:13:45:61:41

Address Port

e. After C sends a frame to D

71:2B:13:45:61:41 1
4

3
271:2B:13:45:61:42

64:2B:13:45:61:12

64:2B:13:45:61:13

Address Port

for76042_ch03.fm Page 86 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 87

There are three major differences between a router and a repeater or a bridge.

1. A router has a physical and logical (IP) address for each of its interfaces.

2. A router acts only on those packets in which the physical destination address
matches the address of the interface at which the packet arrives.

3. A router changes the physical address of the packet (both source and destination)
when it forwards the packet.

Let us give an example. In Figure 3.44, assume an organization has two separate build-
ings with a Gigabit Ethernet LANs installed in each building. The organization uses
bridges in each LAN. The two LANs can be connected together to form a larger LAN
using Ten-Gigabit Ethernet technology that speeds up the connection to the Ethernet
and the connection to the organization server. A router then can connect the whole sys-
tem to the Internet.

A router as we saw in Chapter 2, will change the MAC address it receives because
the MAC addresses have only local jurisdictions.

We will learn more about routers and routing in future chapters after we have dis-
cussed IP addressing.

Three-Layer Switch

A three-layer switch is a router; a router with an improved design to allow better per-
formance. A three-layer switch can receive, process, and dispatch a packet much faster
than a traditional router even though the functionality is the same. In this book, to avoid
confusion, we use the term router for a three-layer switch.

A repeater or a bridge connects segments of a LAN.
A router connects independent LANs or WANs to create an internetwork (internet).

Figure 3.44 Routing example

A router changes the physical addresses in a packet.

Gigabit LAN

Ten-Gigabit LAN

To the rest of Internet

Gigabit LAN

Router

Bridge

Bridge Bridge

for76042_ch03.fm Page 87 Friday, February 13, 2009 12:57 PM

88 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

3.6 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books: [For 07], [For 03], [Tan 03], and [Gar &Wid 04]. The items enclosed in brackets
refer to the reference list at the end of the book.

3.7 KEY TERMS
AAL5 head end
access point (AP) hexadecimal notation
application adaptation layer (AAL) high bit rate digital subscriber line (HDSL)
asymmetric digital subscriber line (ADSL) hub
asynchronous time-division multiplexing hybrid fiber-coaxial (HFC) network
Asynchronous Transfer Mode (ATM) IEEE 802.11
autonegotiation jamming signal
bandwidth on demand Link Control Protocol (LCP)
basic service set (BSS) logical link control (LLC)
Bluetooth media access control (MAC)
bridge network allocation vector (NAV)
BSS-transition mobility Network Control Protocol (NCP)
cable modem (CM) network interface card (NIC)
cable modem transmission system (CMTS) no-transition mobility
cable TV optical carrier (OC)
carrier extension piconet
carrier sense multiple access (CSMA) point coordination function (PCF)
carrier sense multiple access with collision
 avoidance (CSMA/CA)

Point-to-Point Protocol (PPP)
PPP over Ethernet (PPPoE)
primary
Project 802
repeater
router
scatternet
secondaries
short interframe space (SIFS)
simple and efficient adaptation layer (SEAL)
Standard Ethernet
symmetric digital subscriber line (SDSL)
Synchronous Optical Network (SONET)
synchronous transport signal (STS)
T lines
T-1 line
T-3 line
Ten-Gigabit Ethernet
three-layer switch
transmission path (TP)
transparent bridge
two-layer switch
uploading

carrier sense multiple access with collision
 detection (CSMA/CD)
cell
community antenna TV (CATV)
connecting device
digital subscriber line (DSL)
digital subscriber line access multiplexer

(DSLAM)
distributed interframe space (DIFS)
downloading
downstream data band
ESS-transition mobility
Ethernet
extended service set (ESS)
Fast Ethernet
fiber node
filtering
frame bursting
Frame Relay
Gigabit Ethernet
handshaking period

for76042_ch03.fm Page 88 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES

89

3.8 SUMMARY

❑

A local area network (LAN) is a computer network that is designed for a limited
geographic area. The LAN market has seen several technologies such as Ethernet,
token ring, token bus, FDDI, and ATM LAN. Some of these technologies survived
for a while, but Ethernet is by far the dominant technology. Ethernet has gone
through a long evolution. The most dominant versions of Ethernet today are Giga-
bit and Ten-Gigabit Ethernet.

❑

One of the dominant standards for wireless LAN is the one defined under IEEE
802.11 standard and sometimes called wireless Ethernet. Another popular technol-
ogy is Bluetooth, which is a wireless LAN technology designed to connect devices
of different functions such as telephones, notebooks, computers (desktop and lap-
top), cameras, printers, coffee makers, and so on.

❑

A point-to-point WAN technology provides a direct connection to the Internet
using regular telephone lines and traditional modems, DSL lines, cable modems,
T-lines, or SONET networks. The Point-to-Point Protocol (PPP) was designed for
users who need a reliable point-to-point connection to the Internet. PPP operates at
the physical and data link layers of the OSI model.

❑

A switched WAN technology provides a backbone connection in the Internet.
Asynchronous Transfer Mode (ATM) is the cell relay protocol designed to support
the transmission of data, voice, and video through high data-rate transmission
media such as fiber-optic cable.

❑

Connecting devices can connect segments of a network together; they can also connect
networks together to create an internet. There are three types of connecting devices:
repeaters (hubs), bridges (two-layer switches), and routers (three-layer switches).
Repeaters regenerate a signal at the physical layer. A hub is a multiport repeater.
Bridges have access to station addresses and can forward or filter a packet in a net-
work. They operate at the physical and data link layers. A two-layer switch is a sophis-
ticated bridge. Routers determine the path a packet should take. They operate at the
physical, data link, and network layers. A three-layer switch is a sophisticated router.

3.9 PRACTICE SET

Exercises

1.

Imagine the length of a 10Base5 cable is 2500 meters. If the speed of propagation
in a thick coaxial cable is 200,000,000 meters/second, how long does it take for a

upstream data band virtual circuit identifier (VCI)
virtual path (VP)
virtual path identifier (VPI)
wireless LAN
X.25

V.90
V.92
very high bit rate digital subscriber line (VDSL)
video band
virtual circuit (VC)

for76042_ch03.fm Page 89 Friday, February 13, 2009 4:34 PM

90 PART 1 INTRODUCTION AND UNDERLYING TECHNOLOGIES

bit to travel from the beginning to the end of the network? Ignore any propagation
delay in the equipment.

2. Using the data in Exercise 2, find the maximum time it takes to sense a colli-
sion. The worst case occurs when data are sent from one end of the cable and
the collision happens at the other end. Remember that the signal needs to make
a round trip.

3. The data rate of 10Base5 is 10 Mbps. How long does it take to create the smallest
frame? Show your calculation.

4. Using the data in Exercises 3 and 4, find the minimum size of an Ethernet frame
for collision detection to work properly.

5. An Ethernet MAC sublayer receives 42 bytes of data from the LLC sublayer. How
many bytes of padding must be added to the data?

6. An Ethernet MAC sublayer receives 1510 bytes of data from the LLC layer. Can
the data be encapsulated in one frame? If not, how many frames need to be sent?
What is the size of the data in each frame?

7. Compare and contrast CSMA/CD with CSMA/CA.

8. Use Table 3.10 to compare and contrast the fields in IEEE 802.3 and 802.11.

Research Activities
9. Traditional Ethernet uses a version of the CSMA/CD access method. It is called

CSMA/CD with 1-persistent. Find some information about this method.

10. DSL uses a modulation technique called DMT. Find some information about this
modulation technique and how it can be used in DSL.

11. PPP goes through different phases, which can be shown in a transition state dia-
gram. Find the transition diagram for a PPP connection.

12. Find the format of an LCP packet (encapsulated in a PPP frame). Include all fields,
their codes, and their purposes.

Table 3.10 Exercise 8

Fields IEEE 802.3 Field Size IEEE 802.11 Field Size
Destination address
Source address
Address 1
Address 2
Address 3
Address 4
FC
D/ID
SC
PDU length
Data and padding
Frame body
FCS (CRC)

for76042_ch03.fm Page 90 Friday, February 13, 2009 12:57 PM

CHAPTER 3 UNDERLYING TECHNOLOGIES 91

13. Find the format of an NCP packet (encapsulated in a PPP frame). Include all fields,
their codes, and their purposes.

14. Find the format of an ICP packet (encapsulated in a PPP frame). Include all fields,
their codes, and their purposes.

15. PPP uses two authentication protocols, PAP and CHAP. Find some information
about these two protocols and how they are used in PPP.

16. Find how an IP packet can be encapsulated in ATM cells using AAL5 layer.

17. To prevent loops in a network using transparent bridges, one uses the spanning tree
algorithm. Find some information about this algorithm and how it can prevent
loops.

for76042_ch03.fm Page 91 Friday, February 13, 2009 12:57 PM

for76042_ch03.fm Page 92 Friday, February 13, 2009 12:57 PM

93

P A R T

2

Network Layer

Chapter 4 Introduction to Network Layer 94

Chapter 5 IPv4 Addresses 114

Chapter 6 Delivery and Forwarding of IP Packets 160

Chapter 7 Internet Protocol Version 4 (IPv4) 186

Chapter 8 Address Resolution Protocol (ARP) 220

Chapter 9 Internet Control Message Protocol Version 4 (ICMPv4) 244

 Chapter 10 Mobile IP 268

 Chapter 11 Unicast Routing Protocols (RIP, OSPF, and BGP) 282

 Chapter 12 Multicasting and Multicast Routing Protocols 334

for76042_ch04.fm Page 93 Friday, February 13, 2009 1:20 PM

C H A P T E R

4

94

4

Introduction to
Network Layer

o solve the problem of delivery through several links, the network
layer (or the internetwork layer, as it is sometimes called) was

designed. The network layer is responsible for host-to-host delivery and
for routing the packets through the routers. In this chapter, we give an
introduction to the network layer to prepare readers for a more thorough
coverage in Chapters 5 through 12. In this chapter we give the rationale
for the need of the network layers and the issues involved. However, we
need the next eight chapters to fully understand how these issues are
answered. We may even need to cover the whole book before we get satis-
factory answers for them.

OBJECTIVES

This chapter has several objectives:

❑

To introduce switching and in particular packet switching as the
mechanism of data delivery in the network layer.

❑

To discuss two distinct types of services a packet-switch network can
provide: connectionless service and connection-oriented service.

❑

To discuss how routers forward packets in a connectionless packet-
switch network using the destination address of the packet and a
routing table.

❑

To discuss how routers forward packets in a connection-oriented
packet-switch network using the label on the packet and a routing
table.

❑

To discuss services already provided in the network layer such as
logical addressing and delivery at the source, at each router, and at
the destination.

❑

To discuss issues or services that are not directly provided in the
network layer protocol, but are sometimes provided by some
auxiliary protocols or some protocols added later to the Internet.

T

for76042_ch04.fm Page 94 Friday, February 13, 2009 1:20 PM

95

4.1 INTRODUCTION

At the conceptual level, we can think of the global Internet as a black box network that
connects millions (if not billions) of computers in the world together. At this level, we
are only concerned that a message from the application layer in one computer reaches
the application layer in another computer. In this conceptual level, we can think of
communication between A and B as shown in Figure 4.1.

The Internet, however, is not one single network; it is made of many networks (or
links) connected together through the connecting devices. In other words, the Internet
is an internetwork, a combination of LANs and WANs. To better understand the role of
the network layer (or the internetwork layer), we need to move from our conceptual
level and think about all of these LANs and WANs that make the Internet. Since it is
impossible to show all of these LANs and WANs, we show only an imaginary small
internet with a few networks and a few connecting devices, as shown in Figure 4.2.

Figure 4.1

Internet as a black box

Figure 4.2

Internet as a combination of LAN and WANs connected together

A B

Physical

Data link

Network

Transport

Application

Physical

Data link

Network

Transport

Application

Message Message

Internet

A

B

Network

Network

An internet as a combination of
links and connecting devices

Link Link

Link Link

LinkLink

Legend LAN or WANLink

Connecting device

Host (computer)

Link

Link Link

Link

for76042_ch04.fm Page 95 Friday, February 13, 2009 1:20 PM

96

PART 2 NETWORK LAYER

In this model, a connecting device such as a router acts as a switch. When a packet
arrives from one of its ports (interface), the packet is forwarded through another port to
the next switch (or final destination). In other words, a process called

switching

 occurs
at the connecting device.

4.2 SWITCHING

From the previous discussion, it is clear that the passage of a message from a source to
a destination involves many decisions. When a message reaches a connecting device, a
decision needs to be made to select one of the output ports through which the packet
needs to be send out. In other words, the connecting device acts as a switch that con-
nects one port to another port.

Circuit Switching

One solution to the switching is referred to as

circuit switching

,

in which a physical
circuit (or channel) is established between the source and destination of the message
before the delivery of the message. After the circuit is established, the entire mes-
sage, is transformed from the source to the destination. The source can then inform
the network that the transmission is complete, which allows the network to open all
switches and use the links and connecting devices for another connection. The circuit
switching was never implemented at the network layer; it is mostly used at the physical
layer.

Example 4.1

A good example of a circuit-switched network is the early telephone systems in which the path
was established between a caller and a callee when the telephone number of the callee was dialed
by the caller. When the callee responded to the call, the circuit was established. The voice mes-
sage could now flow between the two parties, in both directions, while all of the connecting
devices maintained the circuit. When the caller or callee hung up, the circuit was disconnected.
The telephone network is not totally a circuit-switched network today.

Packet Switching

The second solution to switching is called

packet switching

. The network layer in the
Internet today is a packet-switched network. In this type of network, a message from
the upper layer is divided into manageable packets and each packet is sent through the
network. The source of the message sends the packets one by one; the destination of the
message receives the packets one by one. The destination waits for all packets belong-
ing to the same message to arrive before delivering the message to the upper layer. The
connecting devices in a packet-switching network still need to decide how to route the
packets to the final destination. Today, a packet-switched network can use two different

In circuit switching, the whole message is sent from the source to
the destination without being divided into packets.

for76042_ch04.fm Page 96 Friday, February 13, 2009 1:20 PM

CHAPTER 4 INTRODUCTION TO NETWORK LAYER

97

approaches to route the packets: the datagram approach and the virtual circuit
approach. We discuss both approaches in the next section.

4.3 PACKET SWITCHING AT NETWORK LAYER

The network layer is designed as a packet-switched network. This means that the
packet at the source is divided into manageable packets, normally called

datagrams

.
Individual datagrams are then transferred from the source to the destination. The
received datagrams are assembled at the destination before recreating the original mes-
sage. The packet-switched network layer of the Internet was originally designed as a

connectionless service,

but recently there is a tendency to change this

 to a connection-
oriented service

. We first discuss the dominant trend and then briefly discuss the
new one.

Connectionless Service

When the Internet started, the network layer was designed to provide a

connectionless
service

,

in which the network layer protocol treats each packet independently, with
each packet having no relationship to any other packet. The packets in a message may
or may not travel the same path to their destination. When the Internet started, it was
decided to make the network layer a connectionless service to make it simple. The idea
was that the network layer is only responsible for delivery of packets from the source to
the destination. Figure 4.3 shows the idea.

When the network layer provides a connectionless service, each packet traveling in
the Internet is an independent entity; there is no relationship between packets belonging
to the same message. The switches in this type of network are called

routers

. A packet

In packet switching, the message is first divided into manageable packets at the source
before being transmitted. The packets are assembled at the destination.

Figure 4.3

A connectionless packet-switched network

3 3

2

2

1

1
3

4

4

Sender Network

Network

ReceiverOut of orderR3

R4

R5

R1 R2

A connectionless
packet-swtiched network

4 3 2 1

43 21

for76042_ch04.fm Page 97 Friday, February 13, 2009 1:20 PM

98

PART 2 NETWORK LAYER

belonging to a message may be followed by a packet belonging to the same message or
a different message. A packet may be followed by a packet coming from the same or
from a different source.

 Each packet is routed based on the information contained in its header: source and
destination address. The destination address defines where it should go; the source
address defines where it comes from. The router in this case routes the packet based
only on the destination address. The source address may be used to send an error mes-
sage to the source if the packet is discarded. Figure 4.4 shows the forwarding process in
a router in this case. We have used symbolic addresses such as A and B.

Delay In Connectionless Network

If we ignore the fact that the packet may be lost and resent and also the fact that the des-
tination may be needed to wait to receive all packets, we can model the delay as shown
in Figure 4.5.

Figure 4.4

Forwarding process in a router when used in a connectionless network

In a connectionless packet-switched network, the forwarding decision
is based on the destination address of the packet.

Figure 4.5

Delay in a connectionless network

1 2

43

Output
interface

Destination
address

Send the packet
out of interface 2

Routing table

Destination
address

Legend

1
2

3

SA DA Data SA DA Data

A
B

H

SA: Source address
DA: Destination address

T
ot

al
 d

el
ay

Transmission
time

Waiting
time

Waiting
time

Time Time Time Time

Souce
Destination

1

2

3

for76042_ch04.fm Page 98 Friday, February 13, 2009 1:20 PM

CHAPTER 4 INTRODUCTION TO NETWORK LAYER

99

Connection-Oriented Service

In a

connection-oriented service,

 there is a relation between all packets belonging to a
message. Before all datagrams in a message can be sent, a virtual connection should be
set up to define the path for the datagrams. After connection setup, the datagrams can fol-
low the same path. In this type of service, not only must the packet contain the source and
destination addresses, it must also contain a

flow label,

a

 virtual circuit identifier

that
defines the virtual path the packet should follow. We will shortly show how this flow label
is determined, but for the moment, we assume that the packet carries this

label

. Although
it looks as though the use of the label may make the source and destination addresses use-
less, the parts of the Internet that use connectionless service at the network layer still keep
these addresses for several reasons. One reason is that part of the packet path may still be
using the connectionless service. Another reason is that the protocol at the network layer
is designed with these addresses and it may take a while before they can be changed. Fig-
ure 4.6 shows the concept of connection-oriented service.

Each packet is forwarded based on the label in the packet. To follow the idea of
connection-oriented design to be used in the Internet, we assume that the packet has a
label when it reaches the router. Figure 4.7 shows the idea.

In this case, the forwarding decision is based on the value of the label, or virtual
circuit identifier as it is sometimes called.

To create a connection-oriented service, a three-phase process is used:

setup

,

data
transfer

, and

teardown

.

In the setup phase, the source and destination addresses of the
sender and receiver is used to make table entries for the connection-oriented service. In
the teardown phase, the source and destination inform the router to delete the corre-
sponding entries. Data transfer occurs between these two phases.

Figure 4.6

A connection-oriented packet switched network

In a connection-oriented packet switched network, the forwarding decision
is based on the label of the packet.

Sender

Network

Network

Receiver
R4

R5

R1 R2

R3

A connection-oriented
packet-switched network

Packets

Virtual circuit

Legend

4 3 2 1

4

3

2

1

4 3 2 1 4 3 2 1

4 3 2 1

for76042_ch04.fm Page 99 Friday, February 13, 2009 1:20 PM

100

PART 2 NETWORK LAYER

Setup Phase

In the

setup phase

, a router creates an entry for a virtual circuit. For example, suppose
source A needs to create a virtual circuit to destination B. Two auxiliary packets need to
be exchanged between the sender and the receiver: the request packet and the acknowl-
edgment packet.

Request packet

A request packet is sent from the source to the destination. This auxil-
iary packet carries the source and destination addresses. Figure 4.8 shows the process.

1.

Source A sends a request packet to router R1.

2.

Router R1 receives the request packet. It knows that a packet going from A to B
goes out through port 3. How the router has obtained this information is a point

Figure 4.7

Forwarding process in a router when used in a connection-oriented network

Figure 4.8

Sending request packet in a virtual-circuit network

1 2

3 4

Routing Table

Incoming
label

Outgoing
label

SA DA Data SA DA Data

Port Port
2

L1

L1

L2

L21

Label Label

OutgoingIncoming
Legend
SA: Source address
DA: Destination address
L1, L2: Labels

1

1

1

4

4

2

2 2

3

3

3

Label

Port Port
3661

Label Label Label

OutgoingIncoming

A

B

Port Port
3141

Label

OutgoingIncoming

A to B

A to B A to B

Network

Network

R3

R5

Port Port
4221

Label

OutgoingIncoming

R4

R1 R2

A to B A to B

A to B

A to B

Request packet

Virtual circuit

Legend

A to B

1

2

3 4

for76042_ch04.fm Page 100 Friday, February 13, 2009 1:20 PM

CHAPTER 4 INTRODUCTION TO NETWORK LAYER

101

covered in future chapters. For the moment, assume that it knows the output port.
The router creates an entry in its table for this virtual circuit, but it is only able to
fill three of the four columns. The router assigns the incoming port (1) and chooses
an available incoming label (14) and the outgoing port (3). It does not yet know the
outgoing label, which will be found during the acknowledgment step. The router
then forwards the packet through port 3 to router R3.

3.

Router R3 receives the setup request packet. The same events happen here as at
router R1; three columns of the table are completed: in this case, incoming port
(1), incoming label (66), and outgoing port (2).

4.

Router R4 receives the setup request packet. Again, three columns are completed:
incoming port (2), incoming label (22), and outgoing port (3).

5.

Destination B receives the setup packet, and if it is ready to receive packets from A, it
assigns a label to the incoming packets that come from A, in this case 77. This
label lets the destination know that the packets come from A, and not other
sources.

Acknowledgment Packet

A special packet, called the acknowledgment packet,
completes the entries in the switching tables. Figure 4.9 shows the process.

1.

The destination sends an acknowledgment to router R4. The acknowledgment car-
ries the global source and destination addresses so the router knows which entry in
the table is to be completed. The packet also carries label 77, chosen by the desti-
nation as the incoming label for packets from A. Router R4 uses this label to com-
plete the outgoing label column for this entry. Note that 77 is the incoming label for
destination B, but the outgoing label for router R4.

Figure 4.9

Setup acknowledgment in a virtual-circuit network

22

Port Port
3

1

1

1

4

4

2

2 2

3

3

3

14 661

Label Label

Label Label

OutgoingIncoming

Port Port
3661

Label

OutgoingIncoming

A

B

A to B

A to B A to B

Network

Network

R3

R5

Port Port
4221

Label

OutgoingIncoming

R4

R1 R2

7722

66

77

14

Acknowledge packet

Virtual circuit

Legend

12

3

4

for76042_ch04.fm Page 101 Friday, February 13, 2009 1:20 PM

102

PART 2 NETWORK LAYER

2.

Router R4 sends an acknowledgment to router R3 that contains its incoming label
in the table, chosen in the setup phase. Router R3 uses this as the outgoing label in
the table.

3.

Router R3 sends an acknowledgment to router R1 that contains its incoming label
in the table, chosen in the setup phase. Router R1 uses this as the outgoing label in
the table.

4.

Finally router R1 sends an acknowledgment to source A that contains its incoming
label in the table, chosen in the setup phase.

5.

The source uses this as the outgoing label for the data packets to be sent to destination B.

Data Transfer Phase

The second phase is called the

data transfer phase

. After all routers have created their
routing table for a specific virtual circuit, then the network-layer packets belonging to
one message can be sent one after another. In Figure 4.10, we show the flow of one single
packet, but the process is the same for 1, 2, or 100 packets. The source computer uses the
label 14, which it has received from router R1 in the setup phase. Router R1 forwards the
packet to router R3, but changes the label to 66. Router R3 forwards the packet to router
R4, but changes the label to 22. Finally, router R4 delivers the packet to its final destina-
tion with the label 77. All the packets in the message follow the same sequence of labels
to reach their destination. The packet arrives in order at the destination.

Teardown Phase

In the

teardown phase,

 source A, after sending all packets to B, sends a special packet
called a

teardown packet

. Destination B responds with a

confirmation

 packet. All rout-
ers delete the corresponding entry from their tables.

Figure 4.10

Flow of one packet in an established virtual circuit.

1

1

1

4

4

2

2 2

3

3

3

A
Network

Network

R3

R5

R4

R1 R2

Port Port
314 661

Label Label

OutgoingIncoming

22

LabelPort Port
3661

Label

OutgoingIncoming

A to B

A to B A to B

LabelPort Port
4221

Label

OutgoingIncoming

77

DataBA14

DataBA

DataBA66

DataBA22 DataBA77

 Datagram

Virtual circuit

Legend

for76042_ch04.fm Page 102 Friday, February 13, 2009 1:20 PM

CHAPTER 4 INTRODUCTION TO NETWORK LAYER

103

Delay In Connection-Oriented Network

If we ignore the fact that the packet may be lost and resent, we can model the delay as
shown in Figure 4.11.

4.4 NETWORK LAYER SERVICES

In this section, we briefly discuss services provided by the network layer. Our discus-
sion is mostly based on the connectionless service, the dominant service in today’s
Internet.

An Example

To better understand the issues to be discussed, we give an example. In Figure 4.12,
we assume Alice, who is working in a publishing company, Wonderful Publishing,
needs to send a message to Bob, the manager of a flower shop, Just Flowers, to
inform him that the advertising brochure for the shop has been printed and is ready to
be shipped. Alice sends the message using an e-mail. Let us follow the imaginary
path Alice’s message takes to reach Bob. The Wonderful Publishing company uses a
LAN, which is connected via a cable WAN to a regional ISP called BestNet; the Just
Flowers company also uses a LAN, which is connected via a DSL WAN to another
regional ISP called ServeNet. The two regional ISPs are connected through high-
speed SONET WANs to a national ISP. The message that Alice sends to Bob may be
split into several network-layer packets. As we will see shortly, packets may or may
not follow the same path. For the sake of discussion, we follow the path of one single
packet from Alice’s computer to Bob’s computer. We also assume that the packet
passes through routers R1, R3, R5, R6, and R8 before reaching its destination. The
two computers are involved in five layers; the routers are involved in three layers of
the TCP/IP protocol suite.

Figure 4.11

Delay in a connection-oriented network

T
ot

al
 d

el
ay

T
ot

al
 d

el
ay

S
et

up

Time Time Time Time

Transmission
time

T
ea

rd
ow

n

Source Destination

1

2

3

4

5

6

7

for76042_ch04.fm Page 103 Friday, February 13, 2009 1:20 PM

104

PART 2 NETWORK LAYER

Logical Addressing

Since the network layer provides end-to-end communication, the two computers that
need to communicate with each other each need a universal identification system,
referred to as network-layer address or logical address. This type of identification is
provided in the network layer through a uniform and global addressing mechanism.
The Internet uses an address space. Each entity that needs to use the Internet needs to
be assigned a unique address from this pool. In Chapter 5 we discuss this addressing
space in version 4 of the Internet; In Chapter 26, we discuss the new addressing system
in version 6 (version 5 was never implemented). In Figure 4.12, Alice and Bob need
two network-layer addresses to be able to communicate.

Figure 4.12

An imaginary part of the Internet

Legend

Alice

Alice Wonderful
Publishing

Just
Flowers

Point-to-point WAN

Cable modem
DSL modemNetwork layer

Upper layer

Data link layer
Physical layer

R1

R1

R2

R3

R3

R4

T3

SONET

SONET

SONET

To other ISPs

To other ISPs

SONET

T3

T3

T3

R5

R5

R6

R6
R7

R8

R8

Bob

Bob

National ISP

Cable

DSL

ATM

Regional ISP

BestNet

ServeNet

Regional ISP

I II

III

for76042_ch04.fm Page 104 Friday, February 13, 2009 1:20 PM

CHAPTER 4 INTRODUCTION TO NETWORK LAYER

105

Services Provided at the Source Computer

The network layer at the source computer provides four services: packetizing, finding
the logical address of the next hop, finding the physical (MAC) address of the next hop,
and fragmenting the datagram if necessary. Figure 4.13 shows these services.

The network layer receives several pieces of information from the upper layer:
data, length of data, logical destination address, protocol ID (the identifier of the pro-
tocol using the network layer), and service type (discussed later). The network layer
processes these pieces of information to create a set of fragmented datagrams and the
next-hop MAC address and delivered them to the data link layer. We briefly discuss
each service here, but the future chapters in this part of the book explain more.

Packetizing

The first duty of the network layer is to encapsulate the data coming from the upper
layer in a datagram. This is done by adding a header to the data that contains the logical
source and destination address of the packet, information about fragmentation, the pro-
tocol ID of the protocol that has requested the service, the data length, and possibly
some options. The network layer also includes a checksum that is calculated only over
the datagram header. We discuss the format of the datagram and the checksum calculation
in Chapter 7. Note that the upper layer protocol only provides the logical destination

Figure 4.13

Services provided at the source computer

Routing Table

MTU Table

DA DA NA

Link MTU

ARP

Datagram

Datagram + NA

Datagram + MAC
Legend

Service typeST
Protocol IDPI

Destination logical address
Upper layer data

Source
computer

DA

NA

Data

Source logical addressSA

Next-hop logical address
MAC
MTU
H
Len

Next-hop MAC address
Maximum Transfer Unit
Datagram header
Length of data

NA

NA

Link

MAC

MTU

Network Layer

Upper layer

Data link layer

Fragment

Fragment

Fragment

MAC

MAC

MAC

DataH

DataH

DataH

Packetize

Find next-hop logical address

Find next-hop MAC address

Fragment

Data PI STDALen

Data link

Network

Transport
or others

Processes

for76042_ch04.fm Page 105 Friday, February 13, 2009 1:20 PM

106

PART 2 NETWORK LAYER

address; the logical source address comes from the network layer itself (any host needs
to know its own logical address).

Finding Logical Address of Next Hop

The prepared datagram contains the source and destination addresses of the packet. The
datagram, as we saw before, may have to pass through many networks to reach its final
destination. If the destination computer is not connected to the same network as the
source, the datagram should be delivered to the next router. The source and destination
address in the datagram does not tell anything about the logical address of the next hop.
The network layer at the source computer needs to consult a routing table to find the
logical address of the next hop.

Finding MAC Address of Next Hop

The network layer does not actually deliver the datagram to the next hop; it is the duty
of the data link layer to do the delivery. The data link layer needs the MAC address of
the next hop to do the delivery. To find the MAC address of the next hop, the network
layer could use another table to map the next-hop logical address to the MAC address.
However, for the reason we discuss in Chapter 8, this task has been assigned to another
auxiliary protocol called Address Resolution Protocol (ARP) that finds the MAC
address of the next hop given the logical address.

Fragmentation

The datagram at this step may not be ready to be passed to the data link layer. As we
saw in Chapter 3, most LANs and WANs have a limit on the size of the data to be car-
ried in a frame (MTU). The datagram prepared at the network layer, may be larger than
that limit. The datagram needs to be fragmented to smaller units before being passed to
the data link layer. Fragmentation needs to preserve the information at the header of the
datagram. In other words, although the data can be fragmented, the header needs to
be repeated. In addition, some more information needs to be added to the header to
define the position of the fragment in the whole datagram. We discuss fragmentation in
more detail in Chapter 7.

Services Provided at Each Router

As we have mentioned before, a router is involved with two interfaces with respect to a
single datagram: the incoming interface and the outgoing interface. The network layer
at the router, therefore, needs to interact with two data link layers: the data link of the
incoming interface and the data link layer of the outgoing interface. The network layer
is responsible to receive a datagram from the data link layer of the incoming interface,
fragment it if necessary, and deliver the fragments to the data link of the outgoing inter-
face. The router normally does not involve upper layers (with some exceptions dis-
cussed in future chapters). Figure 4.14 shows the services provides by a router at the
network layer.

The three processes (finding next-hop logical address, finding next-hop MAC
address, and fragmentation) here are the same as the last three processes mentioned for

for76042_ch04.fm Page 106 Friday, February 13, 2009 1:20 PM

CHAPTER 4 INTRODUCTION TO NETWORK LAYER

107

a source. Before applying these processes, however, the router needs to check the valid-
ity of the datagram using the checksum (see Chapter 7). Validation here means that the
datagram header is not corrupted and the datagram is delivered to the correct router.

Services Provided at the Destination Computer
The network layer at the destination computer is simpler. No forwarding is needed.
However, the destination computer needs to assemble the fragments before delivering
the data to the destination. After validating each datagram, the data is extracted from
each fragment and stored. When all fragments have arrived, the data are reassembled
and delivered to the upper layer. The network layer also sets a reassembly timer. If the
timer is expired, all data fragments are destroyed and an error message is sent that all
the fragmented datagram need to be resent. Figure 4.15 shows the process. Note that the
process of fragmentation is transparent to the upper layer because the network layer
does not deliver any piece of data to the upper layer until all pieces have arrived and
assembled. Since a datagram may have been fragmented in the source computer as well
as in any router (multilevel) fragmentation, the reassembly procedure is very delicate
and complicated. We discuss the procedure in more detail in Chapter 7.

Figure 4.14 Processing at each router

Routing table

MTU table

DA DA NA

Link MTU

ARP

Datagram

Datagram + NA

Datagram + MAC

Legend

Destination logical address
Upper layer data

DA
NA

Data

Next-hop logical address
MAC
MTU
H

Next-hop MAC address
Maximum Transfer Unit
Datagram header

NA

NA

Link

MAC

MTU

Network layer

Data link layer
of incoming interface

Data link layer of outgoing interface

Fragment

Fragment

Fragment

MAC

MAC

MAC

DataH DataH

DataH

DataH

Find next-hop logical address

Find next-hop MAC address

Fragment

Incoming Outgoing

Data
link

Data
link

Network

Discard
datagram

Valid datagram?
[true]

[false]

Processes

for76042_ch04.fm Page 107 Friday, February 13, 2009 1:20 PM

108

PART 2 NETWORK LAYER

4.5 OTHER NETWORK LAYER ISSUES

In this section we introduce some issues related to the network layer. These issues actu-
ally represent services that are normally discussed for the network layer, but they are
either partially implemented at the network layer or not implemented at all. Some ser-
vices are provided by some auxiliary protocols or by protocols added to the Internet
later. Most of these issues resurface in future chapters.

Error Control

Error control

 means including a mechanism for detecting corrupted, lost, or duplicate
datagrams. Error control also includes a mechanism for correcting errors after they
have been detected. The network layer in the Internet does not provide a real error con-
trol mechanism. At the surface level, it looks as though there is no need for error con-
trol at the network layer because each datagram passes through several networks before
reaching its final destination. The data link layer that controls the behavior of these net-
works (LANs or WANs) use error control. In other words, if a hop-to-hop error control
is already implemented at the data link layer, why do we need error control at the net-
work layer? Although hop-to-hop error control may protect a datagram to some extent,
it does not provide full protection. Figure 4.16 shows that there are some areas in the
path of the datagram that some errors may occur, but never checked; the error control at
the data link layer can miss any error that occurs when the datagram is being processed
by the router.

The designers of the network layer wanted to make this layer operate simply and
fast. They thought if there is a need for more rigorous error checking, it can be done at

Figure 4.15

Processing at the destination computer

Legend

Wait

Data of upper layerData
H Datagram header

Network layer
Upper layer

Data link layer

Discard
datagram

Discard all
fragments

DataH

Store data of
each fragment

Depacketize

Reassemble

Data

Data link

Network

Destination
computer

Transport
or others

Services

Valid datagram?

All fragments
arrived?

Reassembly
timer expired?

[true]

[true]

[true]

[false]

[false]

[false]

for76042_ch04.fm Page 108 Monday, February 23, 2009 8:11 PM

CHAPTER 4 INTRODUCTION TO NETWORK LAYER 109

the upper layer protocol that uses the service of the network layer. Another rationale for
omitting the error checking at this layer can be related to fragmentation. Since the data
is possibly fragmented at some routers and part of the network layer may be changed
because of fragmentation, if we use error control, it must be checked at each router.
This makes error checking at this layer very inefficient.

The designers of the network layer, however, have added a checksum field (see
Chapter 7) to the datagram to control any corruption in the header, but not the whole
datagram. This checksum may prevent any changes or corruptions in the header of the
datagram between two hops and from end to end. For example, it prevents the delivery
of the datagram to a wrong destination if the destination address has been corrupted.
However, since the header may be changed in each router, the checksum needs to be
calculated at the source and recalculated at each router.

 We need to mention that although the network layer at the Internet does not
directly provide error control, the Internet uses another protocol, ICMP, that provides
some kind of error control if the datagram is discarded or has some unknown informa-
tion in the header. We discuss ICMP in detail in Chapter 9.

Flow Control
Flow control regulates the amount of data a source can send without overwhelming the
receiver. If the upper layer at the source computer produces data faster than the upper
layer at the destination computer can consume it, the receiver will be overwhelmed
with data. To control the flow of data, the receiver needs to send some feedback to the
sender to inform the latter it is overwhelmed with data.

The network layer in the Internet, however, does not directly provide any flow con-
trol. The datagrams are sent by the sender when they are ready without any attention to
the readiness of the receiver.

Probably a few reasons for the lack of flow control in the design of the network
layer can be mentioned. First, since there is no error control in this layer, the job of the

Figure 4.16 Error checking at the data link layer

No flow control is provided for the current version of Internet network layer.

Source DestinationRouter

Error checking Error checking Error checking

No error
checking

No error
checking

Router

for76042_ch04.fm Page 109 Friday, February 13, 2009 1:20 PM

110 PART 2 NETWORK LAYER

network layer at the receiver is so simple that it may rarely be overwhelmed. Second,
the upper layers that use the service of the network layer can implement buffers to
receive data from the network layer as soon as they are ready and does not have to con-
sume the data as fast as received. Second, the flow control is provided for most of the
upper layer protocols that use the services of the network layer, so another level of flow
control makes the network layer more complicated and the whole system less proficient.

Congestion Control
Another issue in a network layer protocol is congestion control. Congestion in the net-
work layer is a situation in which too many datagrams are present in an area of the
Internet. Congestion may occur if the number of datagrams sent by source computers
are beyond the capacity of the network or routers. In this situation, some routers may
drop some of the datagrams. However, as more datagrams are dropped, the situation
may become worse because, due to the error control mechanism at the upper layers, the
sender may send duplicates of the lost packets. If the congestion continues, sometimes
a situation may reach a point that collapses the system and no datagram is delivered.

Congestion Control in a Connectionless Network

There are several ways to control congestion in a connectionless network. One solution
is referred to as signaling. In backward signaling a bit can set in the datagram moving
in the direction opposite to the congested direction to inform the sender that congestion
has occurred and the sender needs to slow down the sending of packets. In this case, the
bit can be set in the response to a packet or in a packet that acknowledges the packet. If
no feedback (acknowledgment) is used at the network layer, but the upper layer uses
feedback, forward signaling can be used in which a bit is set in the packet traveling in
the direction of the congestion to warn the receiver of the packet about congestion. The
receiver then may inform the upper layer protocol, which in turn may inform the
source. No forward or backward signaling is used in the Internet network layer.

Congestion in a connectionless network can also be implemented using a choke
packet, a special packet that can be sent from a router to the sender when it encounters
congestion. This mechanism, in fact, is implemented in the Internet network layer. The
network layer uses an auxiliary protocol, ICMP, which we discuss in Chapter 9. When a
router is congested, it can send an ICMP packet to the source to slow down.

Another way to ameliorate the congestion is to rank the packets by their impor-
tance in the whole message. A field can be used in the header of a packet to define the
rank of a datagram as more important or less important, for example. If a router is con-
gested and needs to drop some packets, the packets marked as less important can be
dropped. For example, if a message represents an image, it may be divided into many
packets. Some packets, the one in the corner, may be less important than the ones repre-
senting the middle part of the image. If the router is congested, it can drop these less
important packets without tremendously changing the quality of the image. We talk
about these issues in Chapter 25 when we discuss multimedia communication.

Congestion Control in a Connection-Oriented Network

It is sometimes easier to control congestion in a connection-oriented network than in a
connectionless network. One method simply creates an extra virtual circuit when there

for76042_ch04.fm Page 110 Friday, February 13, 2009 1:20 PM

CHAPTER 4 INTRODUCTION TO NETWORK LAYER 111

is a congestion in an area. This, however, may create more problems for some routers.
A better solution is advanced negotiation during the setup phase. The sender and the
receiver may agree to a level of traffic when they setup the virtual circuit. The traffic
level can be dictated by the routers that allow the establishment of the virtual circuits.
In other words, a router can look at the exiting traffic and compare it with its maximum
capacity, which allows a new virtual circuit to be created.

Quality of Service
As the Internet has allowed new applications such as multimedia communication (in
particular real-time communication of audio and video), the quality of service (QoS)
of the communication has become more and more important. The Internet has thrived
to provide better quality of service to support these applications. However, to keep the
network layer untouched, these provisions are mostly implemented in the upper layer.
Since QoS manifests itself more when we use multimedia communication, we discuss
this issue in Chapter 25 when we discuss multimedia.

Routing
A very important issue in the network layer is routing; how a router creates its routing
table to help in forwarding a datagram in a connectionless service or helps in creating a
virtual circuit, during setup phase, in a connection-oriented service. This can be done by
routing protocols, that help hosts and routers make their routing table, maintain them,
and update them. These are separate protocols that sometimes use the service of the net-
work layer and sometimes the service of some transport layer protocols to help the
network layer do its job. They can be grouped into two separate categories: unicast and
multicast. We devote Chapter 11 to unicast routing and Chapter 12 to multicast routing.
We need to assume that the routers already have created their routing protocols until we
discuss these protocols in Chapters 11 and 12.

Security
Another issue related to the communication at the network layer is security. Security
was not a concern when the Internet was originally designed because it was used by a
small number of users at the universities to do research activities; other people had no
access to the Internet. The network layer was designed with no security provision.
Today, however, security is a big concern. To provide security for a connectionless net-
work layer, we need to have another virtual level that changes the connectionless ser-
vice to a connection-oriented service. This virtual layer, called IPSec, is discussed in
Chapter 30 after we discuss the general principles of cryptography and security in
Chapter 29.

4.6 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books: [Ste 94], [Tan 03], [Com 06], [Gar & Vid 04], and [Kur & Ros 08]. The items
enclosed in brackets refer to the reference list at the end of the book.

for76042_ch04.fm Page 111 Friday, February 13, 2009 1:20 PM

112 PART 2 NETWORK LAYER

4.7 KEY TERMS

4.8 SUMMARY
❑ At the conceptual level, we can think of the global Internet as a black box network.

The Internet, however, is not one single network; it is made of many networks (or
links) connected together through the connecting devices.

❑ In this Internet, a connecting device such as a router acts as a switch. Two types of
switching are traditionally used in networking: circuit switching and packet switching.

❑ The network layer is designed as a packet-switched network. Packet-switched net-
work can provide either a connectionless service or a connection-oriented service.
When the network layer provides a connectionless service, each packet traveling in
the Internet is an independent entity; there is no relationship between packets
belonging to the same message. In a connection-oriented service, there is a virtual
connection between all packets belonging to a message.

❑ In a connectionless service, the packets are forwarded to the next hop using the
destination address in the packet. In a connection-oriented service, the packets are
forwarded to the next hop using a label in the packet.

❑ In a connection-oriented network, communication occurs in three phases: setup,
data transfer, and teardown. After connection setup, a virtual circuit is established
between the sender and the receiver in which all packets belonging to the same
message are sent through that circuit.

❑ We discussed existing services at the network layer in the Internet including
addressing, services provided at the source computer, services provided at the des-
tination computer, and services provided at each router.

❑ We also discussed some issues related to the network layer, services that are nor-
mally discussed for the network layer, but they are either partially implemented at
the network layer or not implemented at all. Some of these services, such as rout-
ing and security are provided by other protocols in the Internet.

4.9 PRACTICE SET

Exercises
1. Give some advantages and disadvantages of the connectionless service.

2. Give some advantages and disadvantages of the connection-oriented service.

choke packet flow control
circuit switching packet switching
congestion control quality of service (QoS)
connectionless service routing
connection-oriented service setup phase
data transfer phase switching
error control teardown phase

for76042_ch04.fm Page 112 Friday, February 13, 2009 1:20 PM

CHAPTER 4 INTRODUCTION TO NETWORK LAYER 113

3. If a label in a connection-oriented service is n bits, how many virtual circuits can
be established at the same time?

4. Assume a destination computer receives messages from several computers. How
can it be sure that the fragments from one source is not mixed with the fragments
from another source.

5. Assume a destination computer receives several packets from a source. How can it
be sure that the fragments belonging to a datagram are not mixed from the frag-
ments belonging to another datagram.

6. Why do you think that the packets in Figure 4.7 need both addresses and labels?

7. Compare and contrast the delays in connectionless and connection-oriented ser-
vices. Which service creates less delay if the message is large? Which service cre-
ates less delay if the message is small?

8. In Figure 4.13, why should the fragmentation be the last service?

9. Discuss why we need fragmentation at each router.

10. Discuss why we need to do reassembly at the final destination, not at each router.

11. In Figure 4.15, why do we need to set a timer and destroy all fragments if the timer
expires? What criteria do you use in selecting the expiration duration of such a timer?

for76042_ch04.fm Page 113 Friday, February 13, 2009 1:20 PM

C H A P T E R

5

114

5

IPv4 Addresses

t the network layer, we need to uniquely identify each device on the
Internet to allow global communication between all devices. In this

chapter, we discuss the addressing mechanism related to the prevalent
IPv4 protocol called IPv4 addressing. It is believed that IPv6 protocol will
eventually supersede the current protocol, and we need to become aware
of IPv6 addressing as well. We discuss IPv6 protocol and its addressing
mechanism in Chapters 26 to 28.

OBJECTIVES

This chapter has several objectives:

❑

To introduce the concept of an address space in general and the
address space of IPv4 in particular.

❑

To discuss the classful architecture, classes in this model, and the
blocks of addresses available in each class.

❑

To discuss the idea of hierarchical addressing and how it has been
implemented in classful addressing.

❑

To explain subnetting and supernetting for classful architecture and
show how they were used to overcome the deficiency of classful
addressing.

❑

To discuss the new architecture, classless addressing, that has been
devised to solve the problems in classful addressing such as address
depletion.

❑

To show how some ideas borrowed from classful addressing such as
subnetting can be easily implemented in classless addressing.

❑

To discuss some special blocks and some special addresses in each
block.

❑

To discuss NAT technology and show how it can be used to alleviate
the shortage in number of addresses in IPv4.

A

for76042_ch05.fm Page 114 Thursday, February 12, 2009 5:15 PM

115

5.1 INTRODUCTION

The identifier used in the IP layer of the TCP/IP protocol suite to identify each device
connected to the Internet is called the Internet address or

IP address.

 An IPv4 address
is a 32-bit address that

uniquely

 and

universally

 defines the connection of a host or a
router to the Internet; an IP address is the address of the interface.

IPv4 addresses are

unique

. They are unique in the sense that each address defines
one, and only one, connection to the Internet. Two devices on the Internet can never
have the same address at the same time. However, if a device has two connections to the
Internet, via two networks, it has two IPv4 addresses. The IPv4 addresses are

universal

in the sense that the addressing system must be accepted by any host that wants to be
connected to the Internet.

Address Space

A protocol like IPv4 that defines addresses has an

address space.

 An address space is
the total number of addresses used by the protocol. If a protocol uses

b

 bits to define an
address, the address space is 2

b

 because each bit can have two different values (0 or 1).
IPv4 uses 32-bit addresses, which means that the address space is 2

32

 or 4,294,967,296
(more than four billion). Theoretically, if there were no restrictions, more than 4 billion
devices could be connected to the Internet.

Notation

There are three common notations to show an IPv4 address: binary notation (base 2),
dotted-decimal notation (base 256), and hexadecimal notation (base 16). The most
prevalent, however, is base 256. These bases are defined in Appendix B. We also show
how to convert a number from one base to another in that appendix. We recommend a
review of this appendix before continuing with this chapter.

An IPv4 address is 32 bits long.

The IPv4 addresses are unique and universal.

The address space of IPv4 is 2

32

 or 4,294,967,296.

Numbers in base 2, 16, and 256 are discussed in Appendix B.

for76042_ch05.fm Page 115 Thursday, February 12, 2009 5:15 PM

116

PART 2 NETWORK LAYER

Binary Notation: Base 2

In

binary notation,

 an IPv4 address is displayed as 32 bits. To make the address more
readable, one or more spaces is usually inserted between each octet (8 bits). Each octet
is often referred to as a byte. So it is common to hear an IPv4 address referred to as a
32-bit address, a 4-octet address, or a 4-byte address. The following is an example of an
IPv4 address in binary notation:

Dotted-Decimal Notation: Base 256

To make the IPv4 address more compact and easier to read, an IPv4 address is usually
written in decimal form with a decimal point (dot) separating the bytes. This format is
referred to as

dotted-decimal notation.

 Figure 5.1 shows an IPv4 address in dotted-
decimal notation. Note that because each byte (octet) is only 8 bits, each number in the
dotted-decimal notation is between 0 and 255.

Example 5.1

Change the following IPv4 addresses from binary notation to dotted-decimal notation.

a.

10000001 00001011 00001011 11101111

b.

11000001 10000011 00011011 11111111

c.

11100111 11011011 10001011 01101111

d.

11111001 10011011 11111011 00001111

Solution

We replace each group of 8 bits with its equivalent decimal number (see Appendix B) and add
dots for separation:

a.

129.11.11.239

b.

193.131.27.255

c.

231.219.139.111

d.

249.155.251.15

Example 5.2

Change the following IPv4 addresses from dotted-decimal notation to binary notation.

a.

111.56.45.78

b.

221.34.7.82

01110101 10010101 00011101 11101010

Figure 5.1

Dotted-decimal notation

10000000 00001011 00000011 00011111Binary

Dotted decimal 11128 3. . . 31

for76042_ch05.fm Page 116 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES

117

c.

241.8.56.12

d.

75.45.34.78

Solution

We replace each decimal number with its binary equivalent (see Appendix B):

a.

01101111 00111000 00101101 01001110

b.

11011101 00100010 00000111 01010010

c.

11110001 00001000 00111000 00001100

d.

01001011 00101101 00100010 01001110

Example 5.3

Find the error, if any, in the following IPv4 addresses:

a.

111.56.045.78

b.

221.34.7.8.20

c.

75.45.301.14

d.

11100010.23.14.67

Solution

a.

There should be no leading zeroes in dotted-decimal notation (045).

b.

We may not have more than 4 bytes in an IPv4 address.

c.

Each byte should be less than or equal to 255; 301 is outside this range.

d.

A mixture of binary notation and dotted-decimal notation is not allowed.

Hexadecimal Notation: Base 16

We sometimes see an IPv4 address in

hexadecimal notation.

 Each hexadecimal digit
is equivalent to four bits. This means that a 32-bit address has 8 hexadecimal digits.
This notation is often used in network programming.

Example 5.4

Change the following IPv4 addresses from binary notation to hexadecimal notation.

a.

10000001 00001011 00001011 11101111

b.

11000001 10000011 00011011 11111111

Solution

We replace each group of 4 bits with its hexadecimal equivalent (see Appendix B). Note that
hexadecimal notation normally has no added spaces or dots; however, 0X (or 0x) is added at the
beginning or the subscript 16 at the end to show that the number is in hexadecimal.

a.

0X810B0BEF or 810B0BEF

16

b.

0XC1831BFF or C1831BFF

16

Range of Addresses

We often need to deal with a range of addresses instead of one single address. We
sometimes need to find the number of addresses in a range if the first and last address is
given. Other times, we need to find the last address if the first address and the number
of addresses in the range are given. In this case, we can perform subtraction or addition

for76042_ch05.fm Page 117 Thursday, February 12, 2009 5:15 PM

118

PART 2 NETWORK LAYER

operations in the corresponding base (2, 256, or 16). Alternatively, we can covert the
addresses to decimal values (base 10) and perform operations in this base.

Example 5.5

Find the number of addresses in a range if the first address is 146.102.29.0 and the last address is
146.102.32.255.

Solution

We can subtract the first address from the last address in base 256 (see Appendix B). The result is
0.0.3.255 in this base. To find the number of addresses in the range (in decimal), we convert this
number to base 10 and add 1 to the result.

Example 5.6

The first address in a range of addresses is 14.11.45.96. If the number of addresses in the range is
32, what is the last address?

Solution

We convert the number of addresses minus 1 to base 256, which is 0.0.0.31. We then add it to the
first address to get the last address. Addition is in base 256.

Operations

We often need to apply some operations on 32-bit numbers in binary or dotted-decimal
notation. These numbers either represent IPv4 addresses or some entities related to
IPv4 addresses (such as a

mask

, which is discussed later). In this section, we introduce
three operations that are used later in the chapter: NOT, AND, and OR.

Bitwise NOT Operation

The bitwise NOT operation is a unary operation; it takes one input. When we apply the
NOT operation on a number, it is often said that the number is complemented. The
NOT operation, when applied to a 32-bit number in binary format, inverts each bit.
Every 0 bit is changed to a 1 bit; every 1 bit is changed to a 0 bit. Figure 5.2 shows the
NOT operation.

Number of addresses

=

(0

×

 256

3

+

 0

×

 256

2

+

3

×

 256

1

+

255

×

 256

0

)

 +

1

 =

1024

Last address

=

 (

14.11.45.96

+

0.0.0.31)

256

 =

14.11.45.127

Figure 5.2

Bitwise NOT operation

NOT

NOT operation
Input

Output Operation for each bit

0 1

1 0

32 bits

32 bits

Input Output

for76042_ch05.fm Page 118 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES

119

 Although we can directly use the NOT operation on a 32-bit number, when the
number is represented as a four-byte dotted-decimal notation, we can use a short cut;
we can subtract each byte from 255.

Example 5.7

The following shows how we can apply the NOT operation on a 32-bit number in binary.

We can use the same operation using the dotted-decimal representation and the short cut.

Bitwise AND Operation

The bitwise AND operation is a binary operation; it takes two inputs. The AND oper-
ation compares the two corresponding bits in two inputs and selects the smaller bit
from the two (or select one of them if the bits are equal). Figure 5.3 shows the AND
operation.

 Although we can directly use the AND operation on the 32-bit binary representa-
tion of two numbers, when the numbers are represented in dotted-decimal notation, we
can use two short cuts.

1. When at least one of the numbers is 0 or 255, the AND operation selects the
smaller byte (or one of them if equal).

2. When none of the two bytes is either 0 or 255, we can write each byte as the sum
of eight terms, where each term is a power of 2. We then select the smaller term in
each pair (or one of them if equal) and add them to get the result.

Example 5.8

The following shows how we can apply the AND operation on two 32-bit numbers in binary.

Original number: 00010001 01111001 00001110 00100011

Complement: 11101110 10000110 11110001 11011100

Original number: 17 . 121 . 14 . 35

Complement: 238 . 134 . 241 . 220

Figure 5.3 Bitwise AND operation

AND

AND

Operation for each bit

0 0 0

0 1 0

1 0 0

1 1 1

Input 1 Input 2 Output

Input 1 Input 2

Output

32 bits 32 bits

32 bits

for76042_ch05.fm Page 119 Thursday, February 12, 2009 5:15 PM

120 PART 2 NETWORK LAYER

We can use the same operation using the dotted-decimal representation and the short cut.

We have applied the first short cut on the first, second, and the fourth byte; we have applied the
second short cut on the third byte. We have written 14 and 140 as the sum of terms and selected
the smaller term in each pair as shown below.

Bitwise OR Operation

The bitwise OR operation is a binary operation; it takes two inputs. The OR operation
compares the corresponding bits in the two numbers and selects the larger bit from the
two (or one of them if equal). Figure 5.4 shows the OR operation.

 Although we can directly use the OR operation on the 32-bit binary representation
of the two numbers, when the numbers are represented in dotted-decimal notation, we
can use two short cuts.

1. When at least one of the two bytes is 0 or 255, the OR operation selects the larger
byte (or one of them if equal).

2. When none of the two bytes is 0 or 255, we can write each byte as the sum of eight
terms, where each term is a power of 2. We then select the larger term in each pair
(or one of them if equal) and add them to get the result of OR operation.

First number: 00010001 01111001 00001110 00100011

Second number: 11111111 11111111 10001100 00000000

Result 00010001 01111001 00001100 00000000

First number: 17 . 121 . 14 . 35

Second number: 255 . 255 . 140 . 0

Result: 17 . 121 . 12 . 0

Powers 27 26 25 24 23 22 21 20

Byte (14) 0 + 0 + 0 + 0 + 8 + 4 + 2 + 0

Byte (140) 128 + 0 + 0 + 0 + 8 + 4 + 0 + 0

Result (12) 0 + 0 + 0 + 0 + 8 + 4 + 0 + 0

Figure 5.4 Bitwise OR operation

OR

OR

Operation for each bit

0 0 0

0 1 1

1 0 1

1 1 1

Input 1 Input 2 Output

Input 1 Input 2

Output

32 bits 32 bits

32 bits

for76042_ch05.fm Page 120 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 121

Example 5.9

The following shows how we can apply the OR operation on two 32-bit numbers in binary.

We can use the same operation using the dotted-decimal representation and the short cut.

We have used the first short cut for the first and second bytes and the second short cut for the
third byte.

5.2 CLASSFUL ADDRESSING
IP addresses, when started a few decades ago, used the concept of classes. This archi-
tecture is called classful addressing. In the mid-1990s, a new architecture, called
classless addressing, was introduced that supersedes the original architecture. In this
section, we introduce classful addressing because it paves the way for understanding
classless addressing and justifies the rationale for moving to the new architecture. Class-
less addressing is discussed in the next section.

Classes
In classful addressing, the IP address space is divided into five classes: A, B, C, D, and
E. Each class occupies some part of the whole address space. Figure 5.5 shows the
class occupation of the address space.

First number: 00010001 01111001 00001110 00100011

Second number: 11111111 11111111 10001100 00000000

Result 11111111 11111111 10001110 00100011

First number: 17 . 121 . 14 . 35

Second number: 255 . 255 . 140 . 0

Result: 255 . 255 . 142 . 35

Figure 5.5 Occupation of the address space

In classful addressing, the address space is divided into five classes:
A, B, C, D, and E.

Class A: 231 = 2,147,483,648 addresses, 50%

Class B: 230 = 1,073,741,824 addresses, 25%

Class C: 229 = 536,870,912 addresses, 12.5%

Class D: 228 = 268,435,456 addresses, 6.25%

Class E: 228 = 268,435,456 addresses, 6.25%

Class A

C
la

ss
 B

Clas
s C

Class D

Class E

Class A

C
la

ss
 B

Clas
s C

Class D

Class E

for76042_ch05.fm Page 121 Thursday, February 12, 2009 5:15 PM

122 PART 2 NETWORK LAYER

Recognizing Classes

We can find the class of an address when the address is given either in binary or dotted-
decimal notation. In the binary notation, the first few bits can immediately tell us the
class of the address; in the dotted-decimal notation, the value of the first byte can give
the class of an address (Figure 5.6).

Note that some special addresses fall in class A or E. We emphasize that these
special addresses are exceptions to the classification; they are discussed later in the
chapter.

Computers often store IPv4 addresses in binary notation. In this case, it is very
convenient to write an algorithm to use a continuous checking process for finding the
address as shown in Figure 5.7.

Example 5.10

Find the class of each address:

a. 00000001 00001011 00001011 11101111

b. 11000001 10000011 00011011 11111111

c. 10100111 11011011 10001011 01101111

d. 11110011 10011011 11111011 00001111

Solution
See the procedure in Figure 5.7.

a. The first bit is 0. This is a class A address.

b. The first 2 bits are 1; the third bit is 0. This is a class C address.

c. The first bit is 1; the second bit is 0. This is a class B address.

d. The first 4 bits are 1s. This is a class E address.

Figure 5.6 Finding the class of an address

Figure 5.7 Finding the address class using continuous checking

 Octet 1 Byte 2 Byte 3 Byte 4 Byte 1

Binary notation Dotted-decimal notation

 Octet 2 Octet 3 Octet 4

Class A

Class B

Class C

Class D

Class E

Class A

Class B

Class C

Class D

Class E

0–127

128–191

192–223

224–299

240–255

0........

10......

110.....

1110....

1111....

1 1 1 1
Start

Class: A

0 0 0 0

Class: B Class: C Class: D Class: E

Legend

Check next bit

Address class

for76042_ch05.fm Page 122 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 123

Example 5.11

Find the class of each address:

a. 227.12.14.87

b. 193.14.56.22

c. 14.23.120.8

d. 252.5.15.111

Solution
a. The first byte is 227 (between 224 and 239); the class is D.

b. The first byte is 193 (between 192 and 223); the class is C.

c. The first byte is 14 (between 0 and 127); the class is A.

d. The first byte is 252 (between 240 and 255); the class is E.

Netid and Hostid

In classful addressing, an IP address in classes A, B, and C is divided into netid and hostid.
These parts are of varying lengths, depending on the class of the address. Figure 5.8
shows the netid and hostid bytes. Note that classes D and E are not divided into netid
and hostid, for reasons that we will discuss later.

In class A, 1 byte defines the netid and 3 bytes define the hostid. In class B, 2 bytes
define the netid and 2 bytes define the hostid. In class C, 3 bytes define the netid and
1 byte defines the hostid.

Classes and Blocks
One problem with classful addressing is that each class is divided into a fixed number
of blocks with each block having a fixed size. Let us look at each class.

Class A

Since only 1 byte in class A defines the netid and the leftmost bit should be 0, the next
7 bits can be changed to find the number of blocks in this class. Therefore, class A is
divided into 27 = 128 blocks that can be assigned to 128 organizations (the number is
less because some blocks were reserved as special blocks). However, each block in this
class contains 16,777,216 addresses, which means the organization should be a really

Figure 5.8 Netid and hostid

Byte 1 Byte 2 Byte 3 Byte 4

Hostid

Hostid

Hostid

Netid

Reserved for future use

Multicast address

Netid

NetidClass B

Class A

Class C

Class D

Class E

for76042_ch05.fm Page 123 Thursday, February 12, 2009 5:15 PM

124 PART 2 NETWORK LAYER

large one to use all these addresses. Many addresses are wasted in this class. Figure 5.9
shows the block in class A.

Class B

Since 2 bytes in class B define the class and the two leftmost bit should be 10 (fixed),
the next 14 bits can be changed to find the number of blocks in this class. Therefore,
class B is divided into 214 = 16,384 blocks that can be assigned to 16,384 organizations
(the number is less because some blocks were reserved as special blocks). However,
each block in this class contains 65,536 addresses. Not so many organizations can use
so many addresses. Many addresses are wasted in this class. Figure 5.10 shows the
blocks in class B.

Class C

Since 3 bytes in class C define the class and the three leftmost bits should be 110 (fixed), the
next 21 bits can be changed to find the number of blocks in this class. Therefore, class C is
divided into 221 = 2,097,152 blocks, in which each block contains 256 addresses, that can
be assigned to 2,097,152 organizations (the number is less because some blocks were
reserved as special blocks). Each block contains 256 addresses. However, not so many
organizations were so small as to be satisfied with a class C block. Figure 5.11 shows the
blocks in class C.

Figure 5.9 Blocks in class A

Millions of class A addresses are wasted.

Figure 5.10 Blocks in class B

Many class B addresses are wasted.

Netid 127

128 blocks: 16,777,216 addresses in each block

127.255.255.255

127.0.0.0
Class A

Netid 0

0.255.255.255

0.0.0.0

Netid 1

1.255.255.255

1.0.0.0

Netid 128.0 Netid 191.255

16,384 blocks: 65,536 addresses in each block

Class B
128.0.0.0

128.0.255.255

Netid 128.1

128.1.0.0

128.1.255.255

191.255.0.0

191.255.255.255

for76042_ch05.fm Page 124 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 125

Class D

There is just one block of class D addresses. It is designed for multicasting, as we will
see in a later section. Each address in this class is used to define one group of hosts on
the Internet. When a group is assigned an address in this class, every host that is a member
of this group will have a multicast address in addition to its normal (unicast) address.
Figure 5.12 shows the block.

Class E

There is just one block of class E addresses. It was designed for use as reserved
addresses, as shown in Figure 5.13.

Figure 5.11 Blocks in class C

Not so many organizations are so small to have a class C block.

Figure 5.12 The single block in Class D

Class D addresses are made of one block, used for multicasting.

Figure 5.13 The single block in Class E

The only block of class E addresses was reserved for future purposes.

Netid 192.0.0 Netid 223.255.255

2,097,152 blocks: 256 addresses in each block

Class C
192.0.0.0

192.0.0.255

Netid 192.0.1
192.0.0.1

192.0.1.255

223.255.255.0

223.255.255.255

One block: 268,435,456 addresses

Class D 224.0.0.0 239.255.255.255

One block: 268,435,456 addresses

Class E 240.0.0.0 255.255.255.255

for76042_ch05.fm Page 125 Thursday, February 12, 2009 5:15 PM

126 PART 2 NETWORK LAYER

Two-Level Addressing
The whole purpose of IPv4 addressing is to define a destination for an Internet packet
(at the network layer). When classful addressing was designed, it was assumed that the
whole Internet is divided into many networks and each network connects many hosts.
In other words, the Internet was seen as a network of networks. A network was nor-
mally created by an organization that wanted to be connected to the Internet. The Inter-
net authorities allocated a block of addresses to the organization (in class A, B, or C).

Since all addresses in a network belonged to a single block, each address in class-
ful addressing contains two parts: netid and hostid. The netid defines the network; the
hostid defines a particular host connected to that network. Figure 5.14 shows an IPv4
address in classful addressing. If n bits in the class defines the net, then 32 − n bits
defines the host. However, the value of n depends on the class the block belongs to. The
value of n can be 8, 16 or 24 corresponding to classes A, B, and C respectively.

Example 5.12

Two-level addressing can be found in other communication systems. For example, a telephone
system inside the United States can be thought of as two parts: area code and local part. The area
code defines the area, the local part defines a particular telephone subscriber in that area.

The area code, 626, can be compared with the netid, the local part, 3581301, can be com-
pared to the hostid.

Extracting Information in a Block

A block is a range of addresses. Given any address in the block, we normally like to
know three pieces of information about the block: the number of addresses, the first
address, and the last address. Before we can extract these pieces of information, we
need to know the class of the address, which we showed how to find in the previous
section. After the class of the block is found, we know the value of n, the length
of netid in bits. We can now find these three pieces of information as shown in
Figure 5.15.

1. The number of addresses in the block, N, can be found using N = 232−n.

The range of addresses allocated to an organization in classful addressing was a
block of addresses in Class A, B, or C.

Figure 5.14 Two-level addressing in classful addressing

(626) 3581301

n bits

netid hostid

(32 _ n) bits

32 bits

Class A: n = 8

Class B: n = 16
Class C: n = 24

for76042_ch05.fm Page 126 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES

127

2.

To find the first address, we keep the

n

 leftmost bits and set the (32

−

n

) rightmost
bits all to 0s.

3.

To find the last address, we keep the

n

 leftmost bits and set the (32

−

n

) rightmost
bits all to 1s.

Example 5.13

An address in a block is given as 73.22.17.25. Find the number of addresses in the block, the first
address, and the last address.

Solution

Since 73 is between 0 and 127, the class of the address is A. The value of

n

 for class A is 8.
Figure 5.16 shows a possible configuration of the network that uses this block. Note that we
show the value of

n

 in the network address after a slash. Although this was not a common
practice in classful addressing, it helps to make it a habit in classless addressing in the next
section.

1.

The number of addresses in this block is

N

=

 2

32

−

n

= 2

24

=

16,777,216.

2.

To find the first address, we keep the leftmost 8 bits and set the rightmost 24 bits all to 0s.
The first address is 73.0.0.0/8 in which 8 is the value of

n

. The first address is called the

net-
work address

 and is not assigned to any host. It is used to define the network.

Figure 5.15

Information extraction in classful addressing

Figure 5.16

 Solution to Example 5.13

n bits

netid

N = 232
_
 n

hostid

netidnetid

(32 _ n) bits

First address

Any Address
Class A: n = 8
Class B: n = 16

Class C: n = 24

Number of addresses:

Last address

000 ... 0 111 ... 1

73.0.0.1
73.0.0.8 73.22.17.25

73.255.255.254

73.255.255.255 (Special)

Block

73.0.0.0

73.255.255.255

Netid 73: common in all addresses

Network address: 73.0.0.0/8

Switch

for76042_ch05.fm Page 127 Friday, February 13, 2009 1:40 PM

128

PART 2 NETWORK LAYER

3.

To find the last address, we keep the leftmost 8 bits and set the rightmost 24 bits all to 1s.
The last address is 73.255.255.255. The last address is normally used for a special purpose,
as discussed later in the chapter.

Example 5.14

An address in a block is given as 180.8.17.9. Find the number of addresses in the block, the first
address, and the last address.

Solution

Since 180 is between 128 and 191, the class of the address is B. The value of

n

 for class B is 16.
Figure 5.17 shows a possible configuration of the network that uses this block.

1.

The number of addresses in this block is

N

=

 2

32

−

n

= 2

16

=

65,536.

2.

To find the first address, we keep the leftmost 16 bits and set the rightmost 16 bits all to 0s.
The first address (network address) is 18.8.0.0/16, in which 16 is the value of

n

.

3.

To find the last address, we keep the leftmost 16 bits and set the rightmost 16 bits all to 1s.
The last address is 18.8.255.255.

Example 5.15

An address in a block is given as 200.11.8.45. Find the number of addresses in the block, the first
address, and the last address.

Solution

Since 200 is between 192 and 223, the class of the address is C. The value of

n

 for class C is 24.
Figure 5.18 shows a possible configuration of the network that uses this block.

1.

The number of addresses in this block is

N

=

 2

32

−

n

= 2

8

=

256.

2.

To find the first address, we keep the leftmost 24 bits and set the rightmost 8 bits all to 0s.
The first address is 200.11.8.0/24. The first address is called the network address.

3.

To find the last address, we keep the leftmost 24 bits and set the rightmost 8 bits all to 1s.
The last address is 200.11.8.255.

Figure 5.17

Solution to Example 5.14

Netid 180.8:

180.8.255.254
180.8.17.9180.8.0.9

 common in all addresses

Block

180.8.0.0

180.8.255.255

180.8.0.0/16 Network address 180.8.255.255 (Special)

180.8.0.1

Switch

for76042_ch05.fm Page 128 Friday, February 13, 2009 1:40 PM

CHAPTER 5 IPV4 ADDRESSES

129

An Example

Figure 5.19 shows a hypothetical part of an internet with three networks.

We have

1.

A LAN with the network address 220.3.6.0 (class C).

2.

A LAN with the network address 134.18.0.0 (class B).

3.

A switched WAN (class C), such as Frame Relay or ATM, that can be connected to
many routers. We have shown three. One router connects the WAN to the left LAN,
one connects the WAN to the right LAN, and one connects the WAN to the rest of
the internet.

Network Address

The above three examples show that, given any address, we can find all information about
the block. The first address,

network address,

is particularly important because it is used
in routing a packet to its destination network. For the moment, let us assume that an
internet is made of

m

 networks and a router with

m

 interfaces. When a packet arrives at
the router from any source host, the router needs to know to which network the packet

Figure 5.18

 Solution to Example 5.15

Figure 5.19

Sample internet

200.11.8.255 (Special)

Netid 200.11.8:

200.11.8.254
200.11.8.45

200.11.8.1
200.11.8.7

Block

 common in all addresses

Network address: 200.11.8.0/24

200.11.8.0

200.11.8.255

Switch

220.3.6.26

220.3.6.12

20
0.

78
.6

.1
4

200.78.6.146

20
0.

78
.6

.9
2

22
0.

3.
6.

23

13
4.

18
.6

8.
44

220.3.6.1

R1 R2

R3

Rest of the Internet

Switched WAN
200.78.6.0/24

134.18.10.88

134.18.12.32

134.18.14.121

LAN: 134.18.0.0/16
LAN: 220.3.6.0/24

for76042_ch05.fm Page 129 Friday, February 13, 2009 1:40 PM

130 PART 2 NETWORK LAYER

should be sent; the router needs to know from which interface the packet should be sent
out. When the packet arrives at the network, it reaches its destination host using another
strategy that we discuss in later chapters. Figure 5.20 shows the idea. After the network
address has been found, the router consults its routing table to find the corresponding
interface from which the packet should be sent out. The network address is actually the
identifier of the network; each network is identified by its network address.

Network Mask

The methods we described previously for extracting the network address are mostly
used to show the concept. The routers in the Internet normally use an algorithm to
extract the network address from the destination address of a packet. To do this, we
need a network mask. A network mask or a default mask in classful addressing is a
32-bit number with n leftmost bits all set to 1s and (32 − n) rightmost bits all set to 0s.
Since n is different for each class in classful addressing, we have three default masks in
classful addressing as shown in Figure 5.21.

The network address is the identifier of a network.

Figure 5.20 Network address

Figure 5.21 Network mask

1

2
m

Network 1 Network 2 Network m

1
2

m

Network address Interface

b1 c1 d1 e1

b2 c2 d2 e2

bm cm dm em

Find
Network address

Destination
address

Interface
number

Router

Routing TableRouting Process

255.0.0.0

8 bits 24 bits

11111111 00000000 00000000 00000000

16 bits

255.255.0.0

16 bits

11111111 11111111 00000000 00000000

8 bits

255.255.255.0

Mask for class A

Mask for class B

Mask for class C

24 bits

00000000011111111 11111111 11111111

for76042_ch05.fm Page 130 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 131

To extract the network address from the destination address of a packet, a router uses
the AND operation described in the previous section. When the destination address (or
any address in the block) is ANDed with the default mask, the result is the network
address (Figure 5.22). The router applies the AND operation on the binary (or hexadeci-
mal representation) of the address and the mask, but when we show an example, we use
the short cut discussed before and apply the mask on the dotted-decimal notation. The
default mask can also be used to find the number of addresses in the block and the last
address in the block, but we discuss these applications in classless addressing.

Example 5.16

A router receives a packet with the destination address 201.24.67.32. Show how the router finds
the network address of the packet.

Solution
We assume that the router first finds the class of the address and then uses the corresponding
default mask on the destination address, but we need to know that a router uses another strategy
as we will discuss in the next chapter. Since the class of the address is B, we assume that the
router applies the default mask for class B, 255.255.0.0 to find the network address.

We have used the first short cut as described in the previous section. The network address is
201.24.0.0 as expected.

Three-Level Addressing: Subnetting
As we discussed before, the IP addresses were originally designed with two levels of
addressing. To reach a host on the Internet, we must first reach the network and then the
host. It soon became clear that we need more than two hierarchical levels, for two rea-
sons. First, an organization that was granted a block in class A or B needed to divide its
large network into several subnetworks for better security and management. Second,
since the blocks in class A and B were almost depleted and the blocks in class C were
smaller than the needs of most organizations, an organization that has been granted a
block in class A or B could divide the block into smaller subblocks and share them with

Figure 5.22 Finding a network address using the default mask

Destination address → 201 . 24 . 67 . 32

Default mask → 255 . 255 . 0 . 0

Network address → 201 . 24 . 0 . 0

AND

Destination
address

Default
Mask

Network
address

10010101 ... 101 1111 ... 1 00 ... 0

10010 ... 1 00 ... 0

for76042_ch05.fm Page 131 Thursday, February 12, 2009 5:15 PM

132 PART 2 NETWORK LAYER

other organizations. The idea of splitting a block to smaller blocks is referred to as sub-
netting. In subnetting, a network is divided into several smaller subnetworks (subnets)
with each subnetwork having its own subnetwork address.

Example 5.17

Three-level addressing can be found in the telephone system if we think about the local part of a
telephone number as an exchange and a subscriber connection:

in which 626 is the area code, 358 is the exchange, and 1301 is the subscriber connection.

Example 5.18

Figure 5.23 shows a network using class B addresses before subnetting. We have just one network
with almost 216 hosts. The whole network is connected, through one single connection, to one of the
routers in the Internet. Note that we have shown /16 to show the length of the netid (class B).

Example 5.19

Figure 5.24 shows the same network in Figure 5.23 after subnetting. The whole network is still
connected to the Internet through the same router. However, the network has used a private router
to divide the network into four subnetworks. The rest of the Internet still sees only one network;
internally the network is made of four subnetworks. Each subnetwork can now have almost 214

hosts. The network can belong to a university campus with four different schools (buildings).
After subnetting, each school has its own subnetworks, but still the whole campus is one network
for the rest of the Internet. Note that /16 and /18 show the length of the netid and subnetids.

Subnet Mask

We discussed the network mask (default mask) before. The network mask is used when
a network is not subnetted. When we divide a network to several subnetworks, we need
to create a subnetwork mask (or subnet mask) for each subnetwork. A subnetwork has
subnetid and hostid as shown in Figure 5.25.

(626) 358 - 1301

Figure 5.23 Example 5.18

Network: 141.14.0.0/16

141.14.0.1 141.14.0.2 141.14.100.27 141.14.255.253 141.14.255.254

Internet
router

To the rest of the Internet

To other
networks

To other
networks

Switch

for76042_ch05.fm Page 132 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES

133

Subnetting increases the length of the netid and decreases the length of hostid.
When we divide a network to

s

 number of subnetworks, each of equal numbers of
hosts, we can calculate the subnetid for each subnetwork as

in which

n

 is the length of netid,

n

sub

 is the length of each subnetid, and

s

 is the number
of subnets which must be a power of 2.

Example 5.20

In Example 5.19, we divided a class B network into four subnetworks. The value of

n

=

 16 and
the value of

n

1

=

n

2

=

n

3

=

n

4

=

 16

+

 log

2

4

=

 18. This means that the subnet mask has eighteen 1s
and fourteen 0s. In other words, the subnet mask is 255.255.192.0 which is different from the net-
work mask for class B (255.255.0.0).

Figure 5.24

Example 5.19

Figure 5.25

Network mask and subnetwork mask

n

sub

 =

n

 + log

2

s

Network: 141.14.0.0/16

Internet router

Site router

141.14.0.1 141.14.31.29 141.14.63.254

141.14.128.1 141.14.142.37 141.14.191.254 141.14.192.1 141.14.223.47 141.14.255.254

141.14.64.1 141.14.90.27 141.14.127.254

141.14.0.0/18

141.14.128.0/18 141.14.192.0/18

141.14.64.0/18Subnet 1

Subnet 3 Subnet 4

Subnet 2

n bits

Change

ni bits

netid hostid

32 – n bits

32 – ni bits

Network mask

Subnetwork mask subnetid hostid

for76042_ch05.fm Page 133 Friday, February 13, 2009 1:41 PM

134 PART 2 NETWORK LAYER

Subnet Address

When a network is subnetted, the first address in the subnet is the identifier of the sub-
net and is used by the router to route the packets destined for that subnetwork. Given
any address in the subnet, the router can find the subnet mask using the same procedure
we discussed to find the network mask: ANDing the given address with the subnet
mask. The short cuts we discussed in the previous section can be used to find the subnet
address.

Example 5.21

In Example 5.19, we show that a network is divided into four subnets. Since one of the addresses
in subnet 2 is 141.14.120.77, we can find the subnet address as:

The values of the first, second, and fourth bytes are calculated using the first short cut for AND
operation. The value of the third byte is calculated using the second short cut for the AND
operation.

Designing Subnets

We show how to design a subnet when we discuss classless addressing. Since classful
addressing is a special case of classless addressing, what is discussed later can also be
applied to classful addressing.

Supernetting
Subnetting could not completely solve address depletion problems in classful address-
ing because most organizations did not want to share their granted blocks with others.
Since class C blocks were still available but the size of the block did not meet the
requirement of new organizations that wanted to join the Internet, one solution was
supernetting. In supernetting, an organization can combine several class C blocks to
create a larger range of addresses. In other words, several networks are combined to
create a supernetwork. By doing this, an organization can apply for several class C
blocks instead of just one. For example, an organization that needs 1000 addresses can
be granted four class C blocks.

Supernet Mask

A supernet mask is the reverse of a subnet mask. A subnet mask for class C has more
1s than the default mask for this class. A supernet mask for class C has less 1s than the
default mask for this class.

Address → 141 . 14 . 120 . 77

Mask → 255 . 255 . 192 . 0

Subnet Address → 141 . 14 . 64 . 0

Address (120) 0 + 64 + 32 + 16 + 8 + 0 + 0 + 0

Mask (192) 128 + 64 + 0 + 0 + 0 + 0 + 0 + 0

Result (64) 0 + 64 + 0 + 0 + 0 + 0 + 0 + 0

for76042_ch05.fm Page 134 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 135

Figure 5.26 shows the difference between a subnet mask and a supernet mask. A
subnet mask that divides a block into eight subblocks has three more 1s (23 = 8) than
the default mask; a supernet mask that combines eight blocks into one superblock has
three less 1s than the default mask.

In supernetting, the number of class C addresses that can be combined to make a
supernet needs to be a power of 2. The length of the supernetid can be found using the
formula

in which nsuper defines the length of the supernetid in bits and c defines the number
of class C blocks that are combined.

Unfortunately, supernetting provided two new problems: First, the number of
blocks to combine needs to be a power of 2, which means an organization that
needed seven blocks should be granted at least eight blocks (address wasting). Sec-
ond, supernetting and subnetting really complicated the routing of packets in the
Internet.

5.3 CLASSLESS ADDRESSING
Subnetting and supernetting in classful addressing did not really solve the address
depletion problem and made the distribution of addresses and the routing process more
difficult. With the growth of the Internet, it was clear that a larger address space was
needed as a long-term solution. The larger address space, however, requires that the
length of IP addresses to be increased, which means the format of the IP packets needs
to be changed. Although the long-range solution has already been devised and is called
IPv6 (see Chapters 26 to 28), a short-term solution was also devised to use the same
address space but to change the distribution of addresses to provide a fair share to each
organization. The short-term solution still uses IPv4 addresses, but it is called classless
addressing. In other words, the class privilege was removed from the distribution to
compensate for the address depletion.

Figure 5.26 Comparison of subnet, default, and supernet masks

nsuper = n − log2c

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1

Divide 1 class C block into 8 subblocks

Combine 8 class C blocks into 1 superblock

Default mask

Subnet mask

nsuper = 24 _ 3 = 21

n = 24

nsub = 24 + 3 = 27

Supernet mask 1 0 0 0 0 0 0 0 0 0 0 0

for76042_ch05.fm Page 135 Thursday, February 12, 2009 5:15 PM

136 PART 2 NETWORK LAYER

There was another motivation for classless addressing. During the 1990s, Internet
service providers (ISPs) came into prominence. An ISP is an organization that provides
Internet access for individuals, small businesses, and midsize organizations that do not
want to create an Internet site and become involved in providing Internet services (such
as e-mail services) for their employees. An ISP can provide these services. An ISP is
granted a large range of addresses and then subdivides the addresses (in groups of 1, 2,
4, 8, 16, and so on), giving a range of addresses to a household or a small business. The
customers are connected via a dial-up modem, DSL, or cable modem to the ISP. How-
ever, each customer needs some IPv4 addresses.

In 1996, the Internet authorities announced a new architecture called classless
addressing. In classless addressing, variable-length blocks are used that belong to no
classes. We can have a block of 1 address, 2 addresses, 4 addresses, 128 addresses, and
so on.

Variable-Length Blocks
In classful addressing the whole address space was divided into five classes. Although
each organization was granted one block in class A, B, or C, the size of the blocks was
predefined; the organization needed to choose one of the three block sizes. The only
block in class D and the only block in class E were reserved for a special purpose. In
classless addressing, the whole address space is divided into variable length blocks.
Theoretically, we can have a block of 20, 21, 22, . . . , 232 addresses. The only restriction,
as we discuss later, is that the number of addresses in a block needs to be a power of 2.
An organization can be granted one block of addresses. Figure 5.27 shows the division
of the whole address space into nonoverlapping blocks.

Two-Level Addressing
In classful addressing, two-level addressing was provided by dividing an address into
netid and hostid. The netid defined the network; the hostid defined the host in the net-
work. The same idea can be applied in classless addressing. When an organization is
granted a block of addresses, the block is actually divided into two parts, the prefix and
the suffix. The prefix plays the same role as the netid; the suffix plays the same role as
the hostid. All addresses in the block have the same prefix; each address has a different
suffix. Figure 5.28 shows the prefix and suffix in a classless block.

Figure 5.27 Variable-length blocks in classless addressing

In classless addressing, the prefix defines the network and the suffix
defines the host.

Address
space

Block 1 Block 2 Block i Block i +1 Block m _ 1 Block m

for76042_ch05.fm Page 136 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 137

In classful addressing, the length of the netid, n, depends on the class of the
address; it can be only 8, 16, or 24. In classless addressing, the length of the prefix, n,
depends on the size of the block; it can be 0, 1, 2, 3, . . . , 32. In classless addressing, the
value of n is referred to as prefix length; the value of 32 − n is referred to as suffix
length.

Example 5.22

What is the prefix length and suffix length if the whole Internet is considered as one single block
with 4,294,967,296 addresses?

Solution
In this case, the prefix length is 0 and the suffix length is 32. All 32 bits vary to define 232 =
4,294,967,296 hosts in this single block.

Example 5.23

What is the prefix length and suffix length if the Internet is divided into 4,294,967,296 blocks and
each block has one single address?

Solution
In this case, the prefix length for each block is 32 and the suffix length is 0. All 32 bits are needed
to define 232 = 4,294,967,296 blocks. The only address in each block is defined by the block
itself.

Example 5.24

The number of addresses in a block is inversely related to the value of the prefix length, n. A
small n means a larger block; a large n means a small block.

Slash Notation

The netid length in classful addressing or the prefix length in classless addressing play
a very important role when we need to extract the information about the block from a
given address in the block. However, there is a difference here in classful and classless
addressing.

❑ In classful addressing, the netid length is inherent in the address. Given an address,
we know the class of the address that allows us to find the netid length (8, 16, or 24).

Figure 5.28 Prefix and suffix

 The prefix length in classless addressing can be 1 to 32.

n bits

Network

Prefix Suffix

Host

(32 _ n) bits

for76042_ch05.fm Page 137 Thursday, February 12, 2009 5:15 PM

138 PART 2 NETWORK LAYER

❑ In classless addressing, the prefix length cannot be found if we are given only an
address in the block. The given address can belong to a block with any prefix length.

In classless addressing, we need to include the prefix length to each address if we need
to find the block of the address. In this case, the prefix length, n, is added to the address
separated by a slash. The notation is informally referred to as slash notation. An
address in classless addressing can then be represented as shown in Figure 5.29.

The slash notation is formally referred to as classless interdomain routing or
CIDR (pronounced cider) notation.

Example 5.25

In classless addressing, an address cannot per se define the block the address belongs to. For
example, the address 230.8.24.56 can belong to many blocks some of them are shown below with
the value of the prefix associated with that block:

Network Mask

The idea of network mask in classless addressing is the same as the one in classful
addressing. A network mask is a 32-bit number with the n leftmost bits all set to 0s and
the rest of the bits all set to 1s.

Example 5.26

The following addresses are defined using slash notations.

a. In the address 12.23.24.78/8, the network mask is 255.0.0.0. The mask has eight
1s and twenty-four 0s. The prefix length is 8; the suffix length is 24.

Figure 5.29 Slash notation

 In classless addressing, we need to know one of the addresses in the block
and the prefix length to define the block.

Prefix length:16 → Block: 230.8.0.0 to 230.8.255.255

Prefix length:20 → Block: 230.8.16.0 to 230.8.31.255

Prefix length:26 → Block: 230.8.24.0 to 230.8.24.63

Prefix length:27 → Block: 230.8.24.32 to 230.8.24.63

Prefix length:29 → Block: 230.8.24.56 to 230.8.24.63

Prefix length:31 → Block: 230.8.24.56 to 230.8.24.57

nbyte byte byte byte /

Prefix
length

Slash

for76042_ch05.fm Page 138 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 139

b. In the address 130.11.232.156/16, the network mask is 255.255.0.0. The mask
has sixteen 1s and sixteen 0s.The prefix length is 16; the suffix length is 16.

c. In the address 167.199.170.82/27, the network mask is 255.255.255.224. The
mask has twenty-seven 1s and five 0s. The prefix length is 27; the suffix length
is 5.

Extracting Block Information

An address in slash notation (CIDR) contains all information we need about the block:
the first address (network address), the number of addresses, and the last address. These
three pieces of information can be found as follows:

❑ The number of addresses in the block can be found as:

in which n is the prefix length and N is the number of addresses in the block.

❑ The first address (network address) in the block can be found by ANDing the
address with the network mask:

Alternatively, we can keep the n leftmost bits of any address in the block and set
the 32− n bits to 0s to find the first address.

❑ The last address in the block can be found by either adding the first address with
the number of addresses or, directly, by ORing the address with the complement
(NOTing) of the network mask:

Alternatively, we can keep the n leftmost bits of any address in the block and set
the 32 − n bits to 1s to find the last address.

Example 5.27

One of the addresses in a block is 167.199.170.82/27. Find the number of addresses in the net-
work, the first address, and the last address.

Solution
The value of n is 27. The network mask has twenty-seven 1s and five 0s. It is 255.255.255.240.

a. The number of addresses in the network is 232 − n = 232 − n = 25 = 32.

b. We use the AND operation to find the first address (network address).The first address is
167.199.170.64/27.

 N = 232 − n

First address = (any address) AND (network mask)

 Last address = (any address) OR [NOT (network mask)]

Address in binary: 10100111 11000111 10101010 01010010

Network mask: 11111111 11111111 11111111 11100000

First address: 10100111 11000111 10101010 01000000

for76042_ch05.fm Page 139 Thursday, February 12, 2009 5:15 PM

140 PART 2 NETWORK LAYER

c. To find the last address, we first find the complement of the network mask and then OR it
with the given address: The last address is 167.199.170.95/27.

Example 5.28

One of the addresses in a block is 17.63.110.114/24. Find the number of addresses, the first
address, and the last address in the block.

Solution
The network mask is 255.255.255.0.

a. The number of addresses in the network is 232 − 24 = 256.

b. To find the first address, we use the short cut methods discussed early in the chapter.

The first address is 17.63.110.0/24.

c. To find the last address, we use the complement of the network mask and the first short
cut method we discussed before. The last address is 17.63.110.255/24.

Example 5.29

One of the addresses in a block is 110.23.120.14/20. Find the number of addresses, the first
address, and the last address in the block.

Solution
The network mask is 255.255.240.0.

a. The number of addresses in the network is 232 − 20 = 4096.

b. To find the first address, we apply the first short cut to bytes 1, 2, and 4 and the second
short cut to byte 3. The first address is 110.23.112.0/20.

c. To find the last address, we apply the first short cut to bytes 1, 2, and 4 and the second
short cut to byte 3. The OR operation is applied to the complement of the mask. The last
address is 110.23.127.255/20.

Address in binary: 10100111 11000111 10101010 01010010

Complement of network mask: 00000000 00000000 00000000 00011111

Last address: 10100111 11000111 10101010 01011111

Address: 17 . 63 . 110 . 114

Network mask: 255 . 255 . 255 . 0

First address (AND): 17 . 63 . 110 . 0

Address: 17 . 63 . 110 . 114

Complement of the mask (NOT): 0 . 0 . 0 . 255

Last address (OR): 17 . 63 . 110 . 255

Address: 110 . 23 . 120 . 14

Network mask: 255 . 255 . 240 . 0

First address (AND): 110 . 23 . 112 . 0

for76042_ch05.fm Page 140 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 141

Block Allocation
The next issue in classless addressing is block allocation. How are the blocks allocated?
The ultimate responsibility of block allocation is given to a global authority called the
Internet Corporation for Assigned Names and Addresses (ICANN). However, ICANN
does not normally allocate addresses to individual Internet users. It assigns a large
block of addresses to an ISP (or a larger organization that is considered an ISP in this
case). For the proper operation of the CIDR, three restrictions need to be applied to the
allocated block.

1. The number of requested addresses, N, needs to be a power of 2. This is needed to
provide an integer value for the prefix length, n (see the second restriction). The
number of addresses can be 1, 2, 4, 8, 16, and so on.

2. The value of prefix length can be found from the number of addresses in the block.
Since N = 232 − n, then n = log2 (232/N) = 32 − log2N. That is the reason why N
needs to be a power of 2.

3. The requested block needs to be allocated where there are a contiguous number of
unallocated addresses in the address space. However, there is a restriction on
choosing the beginning addresses of the block. The beginning address needs to be
divisible by the number of addresses in the block. To see this restriction, we can
show that the beginning address can be calculated as X × 2n − 32 in which X is the
decimal value of the prefix. In other words, the beginning address is X × N.

Example 5.30

An ISP has requested a block of 1000 addresses. The following block is granted.

a. Since 1000 is not a power of 2, 1024 addresses are granted (1024 = 210).

b. The prefix length for the block is calculated as n = 32 − log21024 = 22.

c. The beginning address is chosen as 18.14.12.0 (which is divisible by 1024).

The granted block is 18.14.12.0/22. The first address is 18.14.12.0/22 and the last address is
18.14.15.255/22.

Relation to Classful Addressing

All issues discussed for classless addressing can be applied to classful addressing. As a
matter of fact, classful addressing is a special case of the classless addressing in which
the blocks in class A, B, and C have the prefix length nA = 8, nB = 16, and nC = 24. A
block in classful addressing can be easily changed to a block in class addressing if we
use the prefix length defined in Table 5.1.

Address: 110 . 23 . 120 . 14

Network mask: 0 . 0 . 15 . 255

Last address (OR): 110 . 23 . 127 . 255

Table 5.1 Prefix length for classful addressing

 Class Prefix length Class Prefix length
A /8 D /4
B /16 E /4
C /24

for76042_ch05.fm Page 141 Thursday, February 12, 2009 5:15 PM

142 PART 2 NETWORK LAYER

Example 5.31

Assume an organization has given a class A block as 73.0.0.0 in the past. If the block is not
revoked by the authority, the classless architecture assumes that the organization has a block
73.0.0.0/8 in classless addressing.

Subnetting
Three levels of hierarchy can be created using subnetting. An organization (or an
ISP) that is granted a range of addresses may divide the range into several subranges
and assign each subrange to a subnetwork (or subnet). The concept is the same as
we discussed for classful addressing. Note that nothing stops the organization from
creating more levels. A subnetwork can be divided into several sub-subnetworks. A
sub-subnetwork can be divided into several sub-sub-subnetworks. And so on.

Designing Subnets

The subnetworks in a network should be carefully designed to enable the routing of
packets. We assume the total number of addresses granted to the organization is N, the
prefix length is n, the assigned number of addresses to each subnetwork is Nsub, the pre-
fix length for each subnetwork is nsub, and the total number of subnetworks is s. Then,
the following steps need to be carefully followed to guarantee the proper operation of
the subnetworks.

1. The number of addresses in each subnetwork should be a power of 2.

2. The prefix length for each subnetwork should be found using the following
formula:

3. The starting address in each subnetwork should be divisible by the number of
addresses in that subnetwork. This can be achieved if we first assign addresses to
larger networks.

Finding Information about Each Subnetwork

After designing the subnetworks, the information about each subnetwork, such as first
and last address, can be found using the process we described to find the information
about each network in the Internet.

Example 5.32

An organization is granted the block 130.34.12.64/26. The organization needs four subnetworks,
each with an equal number of hosts. Design the subnetworks and find the information about each
network.

nsub = n + log2 (N/Nsub)

The restrictions applied in allocating addresses for a subnetwork are
parallel to the ones used to allocate addresses for a network.

for76042_ch05.fm Page 142 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 143

Solution
The number of addresses for the whole network can be found as N = 232 − 26 = 64. Using the pro-
cess described in the previous section, the first address in the network is 130.34.12.64/26 and the
last address is 130.34.12.127/26. We now design the subnetworks:

1. We grant 16 addresses for each subnetwork to meet the first requirement (64/16 is a power
of 2).

2. The subnetwork mask for each subnetwork is:

3. We grant 16 addresses to each subnet starting from the first available address. Figure 5.30
shows the subblock for each subnet. Note that the starting address in each subnetwork is
divisible by the number of addresses in that subnetwork.

Example 5.33

An organization is granted a block of addresses with the beginning address 14.24.74.0/24. The
organization needs to have 3 subblocks of addresses to use in its three subnets as shown below:

❑ One subblock of 120 addresses.

❑ One subblock of 60 addresses.

❑ One subblock of 10 addresses.

Solution
There are 232 − 24 = 256 addresses in this block. The first address is 14.24.74.0/24; the last
address is 14.24.74.255/24.

a. The number of addresses in the first subblock is not a power of 2. We allocate
128 addresses. The first can be used as network address and the last as the special
address. There are still 126 addresses available. The subnet mask for this subnet can be
found as n1 = 24 + log2 (256/128) = 25. The first address in this block is 14.24.74.0/25;
the last address is 14.24.74.127/25.

n1 = n2 = n3= n4 = n + log2 (N/Ni) = 26 + log24 = 28

Figure 5.30 Solution to Example 5.32

n = 26

n = 28 n = 28 n = 28 n = 28

130.34.12.64/26
First address

First address First address First address First address

Last address

Last address

130.34.12.127/26

130.34.12.127/28130.34.12.64/28

N = 16 addresses

N = 64 addresses

a. Original block

b. Subblocks

N = 16 addresses N = 16 addresses N = 16 addresses

130.34.12.80/28 130.34.12.96/28 130.34.12.112/28

for76042_ch05.fm Page 143 Thursday, February 12, 2009 5:15 PM

144 PART 2 NETWORK LAYER

b. The number of addresses in the second subblock is not a power of 2 either. We allocate
64 addresses. The first can be used as network address and the last as the special address.
There are still 62 addresses available. The subnet mask for this subnet can be found as
n1 = 24 + log2 (256/64) = 26. The first address in this block is 14.24.74.128/26; the last
address is 14.24.74.191/26.

c. The number of addresses in the third subblock is not a power of 2 either. We allocate
16 addresses. The first can be used as network address and the last as the special address.
There are still 14 addresses available. The subnet mask for this subnet can be found as
n1 = 24 + log2 (256/16) = 28. The first address in this block is 14.24.74.192/28; the last
address is 14.24.74.207/28.

d. If we add all addresses in the previous subblocks, the result is 208 addresses, which
means 48 addresses are left in reserve. The first address in this range is 14.24.74.209. The
last address is 14.24.74.255. We don’t know about the prefix length yet.

e. Figure 5.31 shows the configuration of blocks. We have shown the first address in each
block.

Example 5.34

Assume a company has three offices: Central, East, and West. The Central office is connected to
the East and West offices via private, point-to-point WAN lines. The company is granted a block
of 64 addresses with the beginning address 70.12.100.128/26. The management has decided to
allocate 32 addresses for the Central office and divides the rest of addresses between the two
other offices.

1. The number of addresses are assigned as follows:

2. We can find the prefix length for each subnetwork:

Figure 5.31 Solution to Example 5.33

Central office Nc = 32 East office Ne = 16 West office Nw = 16

 nc = n + log2(64/32) = 27 ne = n + log2(64/16) = 28 nw = n + log2(64/16) = 28

n = 24

n = 26n = 25

14.24.74.0/24

14.24.74.0/25 14.24.74.128/26 14.24.192.0/28

First address Last address
14.24.74.255/24

N = 128

N = 256 addresses

a. Original block

b. Subblocks

64 16 48

Unused28

for76042_ch05.fm Page 144 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 145

3. Figure 5.32 shows the configuration designed by the management. The Central office uses
addresses 70.12.100.128/27 to 70.12.100.159/27. The company has used three of these
addresses for the routers and has reserved the last address in the subblock. The East office
uses the addresses 70.12.100.160/28 to 70.12.100.175/28. One of these addresses is used for
the router and the company has reserved the last address in the subblock. The West office
uses the addresses 70.12.100.160/28 to 70.12.100.175/28. One of these addresses is used for
the router and the company has reserved the last address in the subblock. The company uses
no address for the point-to-point connections in WANs.

Address Aggregation

One of the advantages of CIDR architecture is address aggregation. ICANN assigns a
large block of addresses to an ISP. Each ISP in turn divides its assigned block into
smaller subblocks and grants the subblocks to its customers; many blocks of addresses
are aggregated in one block and granted to one ISP.

Example 5.35

An ISP is granted a block of addresses starting with 190.100.0.0/16 (65,536 addresses). The ISP
needs to distribute these addresses to three groups of customers as follows:

❑ The first group has 64 customers; each needs approximately 256 addresses.

❑ The second group has 128 customers; each needs approximately 128 addresses.

❑ The third group has 128 customers; each needs approximately 64 addresses.

We design the subblocks and find out how many addresses are still available after these
allocations.

Solution
Let us solve the problem in two steps. In the first step, we allocate a subblock of addresses to
each group. The total number of addresses allocated to each group and the prefix length for each
subblock can found as

Figure 5.32 Example 14

Subnet
70.12.100.128/27

Network: 70.12.100.128/26

Subnet
70.12.100.176/28

70.12.100.129/27

All addresses from 70.12.100.128 to 70.12.100.191
are delivered to this network

70.12.100.161/2870.12.100.177/28

70.12.100.189/28

70
.1

2.
10

0.
19

0/
28

70.12.100.173/28

70
.1

2.
10

0.
17

4/
28

WAN WAN

70.12.100.131/27

70.12.100.130/27 70.12.100.158/27

70.12.100.156/27

Subnet
70.12.100.160/28

for76042_ch05.fm Page 145 Thursday, February 12, 2009 5:15 PM

146

PART 2 NETWORK LAYER

Figure 5.33 shows the design for the first hierarchical level.

Now we can think about each group. The prefix length changes for the networks in each group
depending on the number of addresses used in each network. Figure 5.34 shows the second level
of the hierarchy. Note that we have used the first address for each customer as the subnet address
and have reserved the last address as a special address.

Group 1: 64

×

256

=

16,384

n

1

=

16

+

 log

2

 (65536/16384)

=

18

Group 2: 128

×

128

=

16,384

n

2

=

16

+

 log

2

 (65536/16384)

=

18

Group 3: 128

×

64

=

8192

n

3

=

16

+

 log

2

 (65536/8192)

=

19

Figure 5.33

Solution to Example 5.35: first step

Figure 5.34

Solution to Example 5.35: second step

ISP

190.100.0.0/16
to

190.100.255.255/16

Group 1

Group 2

Group 3

Unassigned:
190.100.160.0 to 190.100.255.255

(24567 addresses)

190.100.0.0/18

190.100.64.0/18

 190.100.63.255/18

 190.100.127.255/18

 190.100.128.0/19

/16

/18

/18

/19

 190.100.159.255/19

Group 1

Group 2

Group 3

Customer 001 Customer 064

190.100.0.254/24190.100.0.1/24

190.100.0.0/24

190.100.63.254/24190.100.63.1/24

Customer 001 Customer 128

190.100.64.126/25190.100.64.1/25

190.100.64.0/25

190.100.127.254/25190.100.127.129/24

Customer 001 Customer 128

190.100.128.62/26

Group: n = 18

Subnet: n = 18 + log2 (16385/256) = 24

Group: n = 18

Subnet: n = 18 + log2 (16385/128) = 25

Group: n = 19

Subnet: n = 19 + log2 (8192/64) = 26

190.100.128.0/26

190.100.159.254/26190.100.159.193/26

190.100.159.192/26

190.100.63.0/24

190.100.127.128/25

for76042_ch05.fm Page 146 Monday, February 23, 2009 12:25 PM

CHAPTER 5 IPV4 ADDRESSES 147

5.4 SPECIAL ADDRESSES
In classful addressing some addresses were reserved for special purposes. The classless
addressing scheme inherits some of these special addresses from classful addressing.

Special Blocks
Some blocks of addresses are reserved for special purposes.

All-Zeros Address

The block 0.0.0.0/32, which contains only one single address, is reserved for communi-
cation when a host needs to send an IPv4 packet but it does not know its own address.
This is normally used by a host at bootstrap time when it does not know its IPv4 address.
The host sends an IPv4 packet to a bootstrap server (called DHCP server as discussed in
Chapter 18) using this address as the source address and a limited broadcast address as
the destination address to find its own address (see Figure 5.35).

All-Ones Address: Limited Broadcast Address

The block 255.255.255.255/32, which contains one single address, is reserved for limited
broadcast address in the current network. A host that wants to send a message to every
other host can use this address as a destination address in an IPv4 packet. However, a
router will block a packet having this type of address to confine the broadcasting to the
local network. In Figure 5.36, a host sends a datagram using a destination IPv4 address
consisting of all 1s. All devices on this network receive and process this datagram.

Loopback Addresses

The block 127.0.0.0/8 is used for the loopback address, which is an address used to test
the software on a machine. When this address is used, a packet never leaves the
machine; it simply returns to the protocol software. It can be used to test the IPv4 soft-
ware. For example, an application such as “ping” can send a packet with a loopback
address as the destination address to see if the IPv4 software is capable of receiving and
processing a packet. As another example, the loopback address can be used by a client
process (a running application program) to send a message to a server process on the
same machine. Note that this can be used only as a destination address in an IPv4
packet (see Figure 5.37).

Figure 5.35 Examples of using the all-zeros address

address?

221.45.71.140/24

Source: 0.0.0.0
Destination: 255.255.255.255

Network

DHCP
server

Packet

for76042_ch05.fm Page 147 Thursday, February 12, 2009 5:15 PM

148 PART 2 NETWORK LAYER

Private Addresses

A number of blocks are assigned for private use. They are not recognized globally. These
blocks are depicted in Table 5.2. These addresses are used either in isolation or in connec-
tion with network address translation techniques (see NAT section later in this chapter).

Multicast Addresses

The block 224.0.0.0/4 is reserved for multicast communication. We discuss multicasting
in Chapter 12 in detail.

Special Addresses in Each block
It is not mandatory, but it is recommended, that some addresses in a block be used for
special addresses. These addresses are not assigned to any host. However, if a block (or
subblock) is so small, we cannot afford to use part of the addresses as special addresses.

Network Address

We have already discussed network addresses. The first address (with the suffix set all
to 0s) in a block defines the network address. It actually defines the network itself

Figure 5.36 Example of limited broadcast address

Figure 5.37 Example of loopback address

Table 5.2 Addresses for private networks

Block Number of addresses Block Number of addresses
10.0.0.0/8 16,777,216 192.168.0.0/16 65,536

172.16.0.0/12 1,047,584 169.254.0.0/16 65,536

221.45.71.20/24 221.45.71.178/24

221.45.71.64/24 221.45.71.126/24

Destination IP address:
255.255.255.255

Router blocks
the packet

Network

Packet

Destination address:127.x.y.z

Transport layer

Application layer

Network layer

Process 1 Process 2

Packet

for76042_ch05.fm Page 148 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 149

(cabling) and not any host in the network. Of course, the first address in a subnetwork is
called the subnetwork address and plays the same role.

Direct Broadcast Address

The last address in a block or subblock (with the suffix set all to 1s) can be used as a
direct broadcast address. This address is usually used by a router to send a packet to
all hosts in a specific network. All hosts will accept a packet having this type of destina-
tion address. Note that this address can be used only as a destination address in an IPv4
packet. In Figure 5.38, the router sends a datagram using a destination IPv4 address
with a suffix of all 1s. All devices on this network receive and process the datagram.

5.5 NAT
The distribution of addresses through ISPs has created a new problem. Assume that an
ISP has granted a small range of addresses to a small business or a household. If the
business grows or the household needs a larger range, the ISP may not be able to grant
the demand because the addresses before and after the range may have already been
allocated to other networks. In most situations, however, only a portion of computers in
a small network need access to the Internet simultaneously. This means that the number
of allocated addresses does not have to match the number of computers in the network.
For example, assume a small business with 20 computers in which the maximum num-
ber of computers that access the Internet simultaneously is only 5. Most of the comput-
ers are either doing some task that does not need Internet access or communicating
with each other. This small business can use the TCP/IP protocol for both internal and
universal communication. The business can use 20 (or 25) addresses from the private
block addresses discussed before for internal communication; five addresses for univer-
sal communication can be assigned by the ISP.

A technology that can provide the mapping between the private and universal
addresses, and at the same time, support virtual private networks that we discuss in
Chapter 30, is network address translation (NAT). The technology allows a site to use a
set of private addresses for internal communication and a set of global Internet addresses

Figure 5.38 Example of a direct broadcast address

221.45.71.0/24

221.45.71.20/24 221.45.71.178/24

221.45.71.64/24 221.45.71.126/24

Destination IP address:
221.45.71.255

Specific

Prefix Suffix

All 1s

Network:

Packet

for76042_ch05.fm Page 149 Thursday, February 12, 2009 5:15 PM

150 PART 2 NETWORK LAYER

(at least one) for communication with the rest of the world. The site must have only one
single connection to the global Internet through a NAT-capable router that runs NAT soft-
ware. Figure 5.39 shows a simple implementation of NAT.

As the figure shows, the private network uses private addresses. The router that
connects the network to the global address uses one private address and one global
address. The private network is transparent to the rest of the Internet; the rest of the
Internet sees only the NAT router with the address 200.24.5.8.

Address Translation
All of the outgoing packets go through the NAT router, which replaces the source
address in the packet with the global NAT address. All incoming packets also pass
through the NAT router, which replaces the destination address in the packet (the NAT
router global address) with the appropriate private address. Figure 5.40 shows an exam-
ple of address translation.

Translation Table
The reader may have noticed that translating the source addresses for an outgoing
packet is straightforward. But how does the NAT router know the destination address
for a packet coming from the Internet? There may be tens or hundreds of private IP

Figure 5.39 NAT

Figure 5.40 Address translation

Site using private addresses

NAT
router

17
2.

18
.3

.3
0

20
0.

24
.5

.8

172.18.3.1

172.18.3.2

172.18.3.20

Internet

Internet

Source: 172.18.3.1

Destination: 172.18.3.1

Source: 200.24.5.8

Destination: 200.24.5.8

Site using private addresses

172.18.3.1

172.18.3.2

172.18.3.20

for76042_ch05.fm Page 150 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 151

addresses, each belonging to one specific host. The problem is solved if the NAT router
has a translation table.

Using One IP Address

In its simplest form, a translation table has only two columns: the private address and
the external address (destination address of the packet). When the router translates the
source address of the outgoing packet, it also makes note of the destination address—
where the packet is going. When the response comes back from the destination, the
router uses the source address of the packet (as the external address) to find the private
address of the packet. Figure 5.41 shows the idea.

In this strategy, communication must always be initiated by the private network.
The NAT mechanism described requires that the private network start the communica-
tion. As we will see, NAT is used mostly by ISPs that assign one single address to a
customer. The customer, however, may be a member of a private network that has many
private addresses. In this case, communication with the Internet is always initiated from
the customer site, using a client program such as HTTP, TELNET, or FTP to access the
corresponding server program. For example, when e-mail that originates from a non-
customer site is received by the ISP e-mail server, it is stored in the mailbox of the cus-
tomer until retrieved with a protocol such as POP.

A private network cannot run a server program for clients outside of its network if
it is using NAT technology.

Using a Pool of IP Addresses

Using only one global address by the NAT router allows only one private-network host
to access the same external host. To remove this restriction, the NAT router can use a

Figure 5.41 Translation

Translation Table

Private network

Legend

Private network

172.18.3.1 Make table entry

Source addressS:
Destination addressD:

Access table

Change source address

Change destination address

25.8.2.10

Private Universal

S: 172.18.3.1
D:25.8.2.10

Data

S: 172.18.3.1
D:25.8.2.10

Data

S: 200.24.5.8
D:25.8.2.10

Data

S: 200.24.5.8
D:25.8.2.10

Data

S: 25.8.2.10
D:200.24.8.5

Data

S: 25.8.2.10
D:200.24.8.5

Data

S: 25.8.2.10
D: 172.18.3.1

Data

S: 25.8.2.10
D: 172.18.3.1

Data

2

2

3

34

4

1

1

for76042_ch05.fm Page 151 Thursday, February 12, 2009 5:15 PM

152 PART 2 NETWORK LAYER

pool of global addresses. For example, instead of using only one global address
(200.24.5.8), the NAT router can use four addresses (200.24.5.8, 200.24.5.9,
200.24.5.10, and 200.24.5.11). In this case, four private-network hosts can communi-
cate with the same external host at the same time because each pair of addresses defines
a connection. However, there are still some drawbacks. No more than four connections
can be made to the same destination. No private-network host can access two external
server programs (e.g., HTTP and TELNET) at the same time. And, likewise, two
private-network hosts cannot access the same external server program (e.g., HTTP or
TELNET) at the same time.

Using Both IP Addresses and Port Addresses

To allow a many-to-many relationship between private-network hosts and external
server programs, we need more information in the translation table. For example, sup-
pose two hosts inside a private network with addresses 172.18.3.1 and 172.18.3.2 need
to access the HTTP server on external host 25.8.3.2. If the translation table has five
columns, instead of two, that include the source and destination port addresses and the
transport layer protocol, the ambiguity is eliminated. Table 5.3 shows an example of
such a table.

Note that when the response from HTTP comes back, the combination of source
address (25.8.3.2) and destination port address (1400) defines the private network host
to which the response should be directed. Note also that for this translation to work, the
ephemeral port addresses (1400 and 1401) must be unique.

5.6 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give thorough coverage of materials discussed in this chapter. We recom-
mend [Com 06], [Tan 03], [Koz 05], [Ste 95].

RFCs
Several RFCs deal with IPv4 addressing including RFC 917, RFC 927, RFC 930, RFC
932, RFC 940, RFC 950, RFC 1122, and RFC 1519.

Table 5.3 Five-column translation table

Private
Address

Private
Port

External
Address

External
Port

Transport
Protocol

172.18.3.1 1400 25.8.3.2 80 TCP
172.18.3.2 1401 25.8.3.2 80 TCP

… … … … …

for76042_ch05.fm Page 152 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 153

5.7 KEY TERMS

5.8 SUMMARY
❑ The identifier used in the IP layer of the TCP/IP protocol suite is called the Internet

address or IP address. An IPv4 address is 32 bits long. An address space is the total
number of addresses used by the protocol. The address space of IPv4 is 232 or
4,294,967,296.

❑ In classful addressing, the IPv4 address space is divided into five classes: A, B, C,
D, and E. An organization is granted a block in one of the three classes, A, B, or C.
Classes D and E is reserved for special purposes. An IP address in classes A, B,
and C is divided into netid and hostid.

❑ In classful addressing, the first address in the block is called the network address. It
defines the network to which an address belongs. The network address is used in
routing a packet to its destination network.

❑ A network mask or a default mask in classful addressing is a 32-bit number with n
leftmost bits all set to 1s and (32 − n) rightmost bits all set to 0s. It is used by a
router to find the network address from the destination address of a packet.

❑ The idea of splitting a network into smaller subnetworks is called subnetting. A
subnetwork mask, like a network mask, is used to find the subnetwork address
when a destination IP address is given. In supernetting, an organization can com-
bine several class C blocks to create a larger range of addresses.

❑ In 1996, the Internet authorities announced a new architecture called classless
addressing or CIDR that allows an organization to have a block of addresses of any
size as long as the size of the block is a power of two.

address aggregation
address space
binary notation
block of addresses
class A address
class B address
class C address
class D address
class E address
classful addressing
classless addressing
classless interdomain routing (CIDR)
default mask
direct broadcast address
dotted-decimal notation
hexadecimal notation
hostid
IP address

limited broadcast address
loopback address
netid
network address
Network Address Translation (NAT)
network mask
prefix
prefix length
slash notation
subnet
subnet mask
subnetting
subnetwork
suffix
suffix length
supernet mask
supernetting
translation table

for76042_ch05.fm Page 153 Thursday, February 12, 2009 5:15 PM

154 PART 2 NETWORK LAYER

❑ The address in classless addressing is also divided into two parts: the prefix and the suf-
fix. The prefix plays the same role as the netid; the suffix plays the same role as the hos-
tid. All addresses in the block have the same prefix; each address has a different suffix.

❑ Some of the blocks in IPv4 are reserved for special purposes. In addition, some
addresses in a block are traditionally used for special addresses. These addresses
are not assigned to any host.

❑ To improve the distribution of addresses, NAT technology has been created to
allow the separation of private addresses in a network from the global addresses
used in the Internet. A translation table can translate the private addresses, selected
from the blocks allocated for this purpose, to global addresses. The translation
table also translates the IP addresses as well as the port number for mapping from
the private to global addresses and vice versa.

5.9 PRACTICE SET

Exercises
1. What is the address space in each of the following systems?

a. a system with 8-bit addresses

b. a system with 16-bit addresses

c. a system with 64-bit addresses

2. An address space has a total of 1,024 addresses. How many bits are needed to
represent an address?

3. An address space uses three symbols: 0, 1, and 2 to represent addresses. If each
address is made of 10 symbols, how many addresses are available in this
system?

4. Change the following IP addresses from dotted-decimal notation to binary
notation:

a. 114.34.2.8

b. 129.14.6.8

c. 208.34.54.12

d. 238.34.2.1

5. Change the following IP addresses from dotted-decimal notation to hexadecimal
notation:

a. 114.34.2.8

b. 129.14.6.8

c. 208.34.54.12

d. 238.34.2.1

6. Change the following IP addresses from hexadecimal notation to binary
notation:

a. 0x1347FEAB

b. 0xAB234102

for76042_ch05.fm Page 154 Thursday, February 12, 2009 5:15 PM

CHAPTER 5 IPV4 ADDRESSES 155

c. 0x0123A2BE

d. 0x00001111

7. How many hexadecimal digits are needed to define the netid in each of the follow-
ing classes?

a. Class A

b. Class B

c. Class C

8. Change the following IP addresses from binary notation to dotted-decimal
notation:
a. 01111111 11110000 01100111 01111101

b. 10101111 11000000 11111000 00011101

c. 11011111 10110000 00011111 01011101

d. 11101111 11110111 11000111 00011101

9. Find the class of the following IP addresses:

a. 208.34.54.12

b. 238.34.2.1

c. 242.34.2.8

d. 129.14.6.8

10. Find the class of the following IP addresses:
a. 11110111 11110011 10000111 11011101

b. 10101111 11000000 11110000 00011101

c. 11011111 10110000 00011111 01011101

d. 11101111 11110111 11000111 00011101

11. Find the netid and the hostid of the following IP addresses:

a. 114.34.2.8

b. 132.56.8.6

c. 208.34.54.12

d. 251.34.98.5

12. Find the number of addresses in the range if the first address is 14.7.24.0 and the
last address is 14.14.34.255.

13. If the first address in a range is 122.12.7.0 and there are 2048 addresses in the
range, what is the last address?

14. Find the result of each operation:

a. NOT (22.14.70.34)

b. NOT (145.36.12.20)

c. NOT (200.7.2.0)

d. NOT (11.20.255.255)

15. Find the result of each operation:

a. (22.14.70.34) AND (255.255.0.0)

b. (12.11.60.12) AND (255.0.0.0)

for76042_ch05.fm Page 155 Thursday, February 12, 2009 5:15 PM

156

PART 2 NETWORK LAYER

c.

(14.110.160.12) AND (255.200.140.0)

d.

(28.14.40.100) AND (255.128.100.0)

16.

Find the result of each operation:

a.

(22.14.70.34) OR (255.255.0.0)

b.

(12.11.60.12) OR (255.0.0.0)

c.

(14.110.160.12) OR (255.200.140.0)

d.

(28.14.40.100) OR (255.128.100.0)

17.

In a class A subnet, we know the IP address of one of the hosts and the subnet
mask as given below:

What is the first address (subnet address)? What is the last address?

18.

In a class B subnet, we know the IP address of one of the hosts and the subnet
mask as given below:

What is the first address (subnet address)? What is the last address?

19.

In a class C subnet, we know the IP address of one of the hosts and the subnet
mask as given below:

What is the first address (subnet address)? What is the last address?

20.

Find the subnet mask in each case:

a.

1024 subnets in class A

b.

256 subnets in class B

c.

32 subnets in class C

d.

4 subnets in class C

21.

In a block of addresses, we know the IP address of one host is 25.34.12.56/16.
What is the first address (network address) and the last address (limited broadcast
address) in this block?

22.

In a block of addresses, we know the IP address of one host is 182.44.82.16/26.
What is the first address (network address) and the last address (limited broadcast
address) in this block?

23.

In fixed-length subnetting, find the number of 1s that must be added to the mask if
the number of desired subnets is _______.

a.

2

b.

62

c.

122

d.

250

IP Address: 25.34.12.56 Subnet

mask: 255.255.0.0

IP Address: 131.134.112.66 Subnet

mask:

255.255.224.0

IP Address: 202.44.82.16 Subnet

mask:

255.255.255.192

for76042_ch05.fm Page 156 Monday, February 23, 2009 3:11 PM

CHAPTER 5 IPV4 ADDRESSES 157

24. An organization is granted the block 16.0.0.0/8. The administrator wants to create
500 fixed-length subnets.

a. Find the subnet mask.

b. Find the number of addresses in each subnet.

c. Find the first and the last address in the first subnet.

d. Find the first and the last address in the last subnet (subnet 500).

25. An organization is granted the block 130.56.0.0/16. The administrator wants to
create 1024 subnets.

a. Find the subnet mask.

b. Find the number of addresses in each subnet.

c. Find the first and the last address in the first subnet.

d. Find the first and the last address in the last subnet (subnet 1024).

26. An organization is granted the block 211.17.180.0/24. The administrator wants to
create 32 subnets.

a. Find the subnet mask.

b. Find the number of addresses in each subnet.

c. Find the first and the last address in the first subnet.

d. Find the first and the last address in the last subnet (subnet 32).

27. Write the following mask in slash notation (/n):

a. 255.255.255.0

b. 255.0.0.0

c. 255.255.224.0

d. 255.255.240.0

28. Find the range of addresses in the following blocks:

a. 123.56.77.32/29

b. 200.17.21.128/27

c. 17.34.16.0/23

d. 180.34.64.64/30

29. In classless addressing, we know the first and the last address in the block. Can we
find the prefix length? If the answer is yes, show the process and give an example.

30. In classless addressing, we know the first address and the number of addresses in
the block. Can we find the prefix length? If the answer is yes, show the process and
give an example.

31. In classless addressing, can two blocks have the same prefix length? Explain.

32. In classless addressing, we know the first address and one of the addresses in
the block (not necessarily the last address). Can we find the prefix length?
Explain.

33. An ISP is granted a block of addresses starting with 150.80.0.0/16. The ISP wants
to distribute these blocks to 2600 customers as follows:

a. The first group has 200 medium-size businesses; each needs approximately
128 addresses.

for76042_ch05.fm Page 157 Thursday, February 12, 2009 5:15 PM

158 PART 2 NETWORK LAYER

b. The second group has 400 small businesses; each needs approximately
16 addresses.

c. The third group has 2000 households; each needs 4 addresses.

Design the subblocks and give the slash notation for each subblock. Find out how
many addresses are still available after these allocations.

34. An ISP is granted a block of addresses starting with 120.60.4.0/20. The ISP wants
to distribute these blocks to 100 organizations with each organization receiving
8 addresses only. Design the subblocks and give the slash notation for each subblock.
Find out how many addresses are still available after these allocations.

35. An ISP has a block of 1024 addresses. It needs to divide the addresses to 1024 cus-
tomers. Does it need subnetting? Explain your answer.

for76042_ch05.fm Page 158 Thursday, February 12, 2009 5:15 PM

for76042_ch05.fm Page 159 Thursday, February 12, 2009 5:15 PM

C H A P T E R

6

160

6

Delivery and Forwarding
of IP Packets

his chapter describes the delivery and forwarding of IP packets.

Delivery

 refers to the way a packet is handled by the underlying net-
works under the control of the network layer. Concepts such as direct and
indirect delivery are discussed.

Forwarding

refers to the way a packet is
delivered to the next station.

We discuss two trends in forwarding: for-
warding based on destination address of the packet and forwarding based
on the label attached to the packet.

OBJECTIVES

The chapter has several objectives:

❑

To discuss the delivery of packets in the network layer and distin-
guish between direct and indirect delivery.

❑

To discuss the forwarding of packets in the network layer and distin-
guish between destination-address–based forwarding and label-based
forwarding.

❑

To discuss different forwarding techniques, including next-hop,
network-specific, host-specific, and default.

❑

To discuss the contents of routing tables in classful and classless
addressing and some algorithms used to search the tables.

❑

To introduce MPLS technology and show how it can achieve label-
based forwarding.

❑

To list the components of a router and explain the purpose of each
component and their relations to other components.

T

for76042_ch06.fm Page 160 Friday, February 13, 2009 4:48 PM

161

6.1 DELIVERY

The network layer supervises the handling of the packets by the underlying physical
networks. We define this handling as the delivery of a packet. The delivery of a packet
to its final destination is accomplished using two different methods of delivery: direct
and indirect.

Direct Delivery

In a

direct delivery,

 the final destination of the packet is a host connected to the same
physical network as the deliverer. Direct delivery occurs when the source and destina-
tion of the packet are located on the same physical network or if the delivery is between
the last router and the destination host (see Figure 6.1).

The sender can easily determine if the delivery is direct. It can extract the network
address of the destination (using the mask) and compare this address with the addresses
of the networks to which it is connected. If a match is found, the delivery is direct.

In direct delivery, the sender uses the destination IP address to find the destination
physical address. The IP software then gives the destination IP address with the desti-
nation physical address to the data link layer for actual delivery. This process is called

mapping the IP address to the physical address

. Although this mapping can be done by
finding a match in a table, we will see in Chapter 8 that a protocol called Address Res-
olution Protocol (ARP) dynamically maps an IP address to the corresponding physical
address.

Indirect Delivery

If the destination host is not on the same network as the deliverer, the packet is deliv-
ered indirectly. In an

indirect delivery,

 the packet goes from router to router until it

Figure 6.1

Direct delivery

To the rest
of the Internet

Direct delivery

Direct delivery

 A Link
B

for76042_ch06.fm Page 161 Friday, February 13, 2009 4:48 PM

162

PART 2 NETWORK LAYER

reaches the one connected to the same physical network as its final destination.
Figure 6.2 shows the concept of indirect delivery.

 In an indirect delivery, the sender uses the destination IP address and a routing
table to find the IP address of the next router to which the packet should be delivered.
The sender then uses ARP (see Chapter 8) to find the physical address of the next
router. Note that in direct delivery, the address mapping is between the IP address of the
final destination and the physical address of the final destination. In an indirect deliv-
ery, the address mapping is between the IP address of the next router and the physical
address of the next router. Note that a delivery always involves one direct delivery but
zero or more indirect deliveries. Note also that the last delivery is always a direct delivery.

6.2 FORWARDING

Forwarding means to place the packet in its route to its destination. Since the Internet
today is made of a combination of links (networks), forwarding means to deliver the
packet to the next hop (which can be the final destination or the intermediate connect-
ing device). Although the IP protocol was originally designed as a connectionless pro-
tocol, today the tendency is to use IP as a connection-oriented protocol.

When IP is used as a connectionless protocol, forwarding is based on the destina-
tion address of the IP datagram; when the IP is used as a connection-oriented protocol,
forwarding is based on the label attached to an IP datagram. We first discuss forwarding
based on the destination address and then forwarding based on the label.

Forwarding Based on Destination Address

We first discuss forwarding based on the destination address. This is a traditional approach,
which is prevalent today. In this case, forwarding requires a host or a router to have a rout-
ing table. When a host has a packet to send or when a router has received a packet to be
forwarded, it looks at this table to find the route to the final destination. However, this sim-
ple solution is inefficient today in an internetwork such as the Internet because the number
of entries needed in the routing table would make table lookups inefficient.

Forwarding Techniques

Several techniques can make the size of the routing table manageable and also handle
issues such as security. We briefly discuss these methods here.

Figure 6.2

Indirect delivery

Indirect delivery Indirect delivery Direct delivery

Link LinkLink

A B

for76042_ch06.fm Page 162 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS

163

Next-Hop Method

One technique to reduce the contents of a routing table is called
the

next-hop method.

 In this technique, the routing table holds only the address of the
next hop instead of information about the complete route. The entries of a routing table
must be consistent with each other. Figure 6.3 shows how routing tables can be sim-
plified using this technique.

Network-Specific Method

A second technique to reduce the routing table and sim-
plify the searching process is called the

network-specific method.

 Here, instead of
having an entry for every destination host connected to the same physical network, we
have only one entry that defines the address of the destination network itself. In other
words, we treat all hosts connected to the same network as one single entity. For exam-
ple, if 1000 hosts are attached to the same network, only one entry exists in the routing
table instead of 1000. Figure 6.4 shows the concept.

Host-Specific Method

In the

host-specific method,

 the destination host address is
given in the routing table. The rationale behind this method is the inverse of the
network-specific method. Here efficiency is sacrificed for other advantages: Although
it is not efficient to put the host address in the routing table, there are occasions in

Figure 6.3

Next-hop method

Figure 6.4

Network-specific method

a. Routing tables based on route

Host B

Destination

R1, R2, Host B

Route

 A

Host B Host B

Destination Route

 R2

R2, Host BHost B

Destination Route

R1

b. Routing tables based on next hop

--- Host B R1

Destination Next Hop

 A R2 R1

Host B R2

Destination Next Hop

Host B

Destination Next Hop

R1 R2

A B

R1
N1 N2

S A B C D

A
B
C
D

Destination
R1
R1
R1
R1

Next Hop

N2 R1

Destination Next Hop
 Host-specific

routing table for host S

Network-specific
routing table for host S

for76042_ch06.fm Page 163 Friday, February 13, 2009 4:48 PM

164

PART 2 NETWORK LAYER

which the administrator wants to have more control over routing. For example, in
Figure 6.5 if the administrator wants all packets arriving for host B delivered to
router R3 instead of R1, one single entry in the routing table of host A can explicitly
define the route.

Host-specific routing is used for purposes such as checking the route or providing
security measures.

Default Method

Another technique to simplify routing is called the

default method.

In Figure 6.6 host A is connected to a network with two routers. Router R1 routes the
packets to hosts connected to network N2. However, for the rest of the Internet, router
R2 is used. So instead of listing all networks in the entire Internet, host A can just have
one entry called the

default

 (normally defined as network address 0.0.0.0).

Forwarding with Classful Addressing

As we mentioned in the previous chapter, classful addressing has several disadvan-
tages. However, the existence of a default mask in a classful address makes the for-
warding process simple. In this section, we first show the contents of a routing table

Figure 6.5

Host-specific routing

Figure 6.6

Default routing

R2

Host B

R3

Host A

R1

Routing table for host A

R3
R1
R3

......

Destination Next Hop

Host B
N2
N3
......

N1

N2 N3

R1

Host A
Routing table for host A

Destination Next Hop

......
N2

Default

......
R1

R2

N1

Rest of the Internet

Default
router R2

N2

for76042_ch06.fm Page 164 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS

165

and forwarding module for the situation in which there is no subnetting. We then show
how the module changes if subnetting is involved.

Forwarding without Subnetting

In classful addressing, most of the routers in the
global Internet are not involved in subnetting. Subnetting happens inside the organiza-
tion. A typical forwarding module in this case can be designed using three tables, one
for each unicast class (A, B, C). If the router supports multicasting, another table can be
added to handle class D addresses. Having three different tables makes searching more
efficient. Each routing table has a minimum of three columns:

1.

The network address of the destination network tells us where the destination host
is located. Note that we use network-specific forwarding and not the rarely used
host-specific forwarding.

2.

The next-hop address tells us to which router the packet must be delivered for an
indirect delivery. This column is empty for a direct delivery.

3.

The interface number defines the outgoing port from which the packet is sent out.
A router is normally connected to several networks. Each connection has a differ-
ent numbered port or interface. We show them as m0, m1, and so on.

Figure 6.7 shows a simplified module.

In its simplest form, the forwarding module follows these steps:

1.

The destination address of the packet is extracted.

2.

A copy of the destination address is used to find the class of the address. This is
done by shifting the copy of the address 28 bits to the right. The result is a 4-bit
number between 0 and 15. If the result is

a.

0 to 7, the class is A.

b.

8 to 11, the class is B.

c.

12 or 13, the class is C

Figure 6.7

Simplified forwarding module in classful address without subnetting

Next-hop
address

Interface
number

Network
address

.............

.............
.............
.............

.............

.............

Class A

Next-hop
address

Network
address

.............

.............
.............
.............

.............

.............

Class B

Next-hop
address

Network
address

.............

.............
.............
.............

.............

.............

Class C

Find
class

Search
table

Extract
network
address

Extract
destination

address
Packet

To ARP

Forwarding module

Next-hop address
and

interface number

A, B, or C

D or E

Error

Interface
number

Interface
number

for76042_ch06.fm Page 165 Friday, February 13, 2009 4:48 PM

166

PART 2 NETWORK LAYER

d.

14, the class is D.

e.

15, the class is E.

3.

The result of Step 2 for class A, B, or C and the destination address are used to
extract the network address. This is done by masking off (changing to 0s) the right-
most 8, 16, or 24 bits based on the class.

4.

The class of the address and the network address are used to find next-hop infor-
mation. The class determines which table is to be searched. The module searches
this table for the network address. If a match is found, the

next-hop address

 and
the interface number of the output port are extracted from the table. If no match is
found, the default is used.

5.

The ARP module (Chapter 8) uses the next-hop address and the interface number
to find the physical address of the next router. It then asks the data link layer to
deliver the packet to the next hop.

Example 6.1

Figure 6.8 shows an imaginary part of the Internet. Show the routing tables for router R1.

Solution

Figure 6.9 shows the three tables used by router R1. Note that some entries in the next-hop
address column are empty because in these cases, the destination is in the same network to which
the router is connected (direct delivery). In these cases, the next-hop address used by ARP is sim-
ply the destination address of the packet as we will see in Chapter 8.

Example 6.2

Router R1 in Figure 6.8 receives a packet with destination address 192.16.7.14. Show how the
packet is forwarded.

Figure 6.8

Configuration for routing, Example 1

Rest
of
the

Internet

111.0.0.0/8
111.25.19.20

111.30.31.18

Default
router

111.15.17.32

170.14.0.0/16 145.80.0.0/16

145.80.7.11
R1

R2

R3

192.16.7.0/24

192.16.7.5

m0

m0

m0

m1

m1

m1

m2170.14.5.165

for76042_ch06.fm Page 166 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS

167

Solution

The destination address in binary is 11000000 00010000 00000111 00001110. A copy of the
address is shifted 28 bits to the right. The result is 00000000 00000000 00000000 0000

1100

 or
12. The destination network is class C. The network address is extracted by masking off the left-
most 24 bits of the destination address; the result is 192.16.7.0. The table for Class C is searched.
The network address is found in the first row. The next-hop address 111.15.17.32. and the inter-
face m0 are passed to ARP (see Chapter 8).

Example 6.3

Router R1 in Figure 6.8 receives a packet with destination address 167.24.160.5. Show how the
packet is forwarded.

Solution

The destination address in binary is 10100111 00011000 10100000 00000101. A copy of the
address is shifted 28 bits to the right. The result is 00000000 00000000 00000000 0000

1010

 or
10. The class is B. The network address can be found by masking off 16 bits of the destination
address, the result is 167.24.0.0. The table for Class B is searched. No matching network
address is found. The packet needs to be forwarded to the default router (the network is some-
where else in the Internet). The next-hop address 111.30.31.18 and the interface number m0
are passed to ARP.

Forwarding with Subnetting

In classful addressing, subnetting happens inside the
organization. The routers that handle subnetting are either at the border of the organiza-
tion site or inside the site boundary. If the organization is using variable-length subnet-
ting, we need several tables; otherwise, we need only one table. Figure 6.10 shows a
simplified module for fixed-length subnetting.

1.

The module extracts the destination address of the packet.

2.

If the destination address matches any of the host-specific addresses in the table,
the next-hop and the interface number is extracted from the table.

3.

The destination address and the mask are used to extract the subnet address.

4.

The table is searched using the subnet address to find the next-hop address and the
interface number. If no match is found, the default is used.

5.

The next-hop address and the interface number are given to ARP (see Chapter 8).

Figure 6.9

Tables for Example 6.1

Next-hop
address

InterfaceNetwork
address

111.0.0.0 ------------ m0

Class A

Next-hop
address

InterfaceNetwork
address

192.16.7.0 111.15.17.32 m0

Class C

Next-hop
address

InterfaceNetwork
address

145.80.0.0
170.14.0.0

m1
m2

Class B

Default: 111.30.31.18, m0

for76042_ch06.fm Page 167 Friday, February 13, 2009 4:48 PM

168

PART 2 NETWORK LAYER

Example 6.4

Figure 6.11 shows a router connected to four subnets.

 Note several points. First, the site address is 145.14.0.0/16 (a class B address). Every packet
with destination address in the range 145.14.0.0 to 145.14.255.255 is delivered to the interface
m4 and distributed to the final destination subnet by the router. Second, we have used the address
x.y.z.t/

n

 for the interface m4 because we do not know to which network this router is connected.
Third, the table has a default entry for packets that are to be sent out of the site. The router is con-
figured to apply the subnet mask /18 to any destination address.

Example 6.5

The router in Figure 6.11 receives a packet with destination address 145.14.32.78. Show how the
packet is forwarded.

Figure 6.10

Simplified forwarding module in classful address with subnetting

Figure 6.11

Configuration for Example 6.4

Next-hop
address

Interface
number

Subnet
address
.............
.............

.............

.............
.............
.............

Search
table

Extract
subnet
address

Extract
destination

address
Packet

Mask

To ARP

Next-hop address
and interface number

Forwarding module

145.14.192.1/18

m0
m1m2

m3

m4

145.14.64.1/18

x.y.z.t/n

Next-hop
address

Interface
number

Subnet
address

145.14.0.0 ---------- m0
145.14.64.0 ---------- m1
145.14.128.0 ---------- m2
145.14.192.0 ---------- m3
 0.0.0.0 default router m4

145.14.128.0/18

Site: 145.14.0.0/16

145.14.192.0/18

145.14.192.1/18

145.14.64.0/18

145.14.0.0/18

145.14.0.1/18

Subnet mask: /18

Rest
of
the

Internet

for76042_ch06.fm Page 168 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS

169

Solution

The mask is /18. After applying the mask, the subnet address is 145.14.0.0. The packet is delivered
to ARP (see Chapter 8) with the next-hop address 145.14.32.78 and the outgoing interface m0.

Example 6.6

A host in network 145.14.0.0 in Figure 6.11 has a packet to send to the host with address
7.22.67.91. Show how the packet is routed.

Solution

The router receives the packet and applies the mask (/18). The network address is 7.22.64.0. The
table is searched and the address is not found. The router uses the address of the default router
(not shown in figure) and sends the packet to that router.

Forwarding with Classless Addressing

In classless addressing, the whole address space is one entity; there are no classes. This
means that forwarding requires one row of information for each block involved. The
table needs to be searched based on the network address (first address in the block).
Unfortunately, the destination address in the packet gives no clue about the network
address (as it does in classful addressing).

To solve the problem, we need to include the mask (/

n

) in the table; we need to
have an extra column that includes the mask for the corresponding block. In other
words, although a classful routing table can be designed with three columns, a classless
routing table needs at least four columns.

Figure 6.12 shows a simple forwarding module for classless addressing. Note that
network address extraction is done at the same time as table searching because there is
no inherent information in the destination address that can be used for network address
extraction.

Example 6.7

Make a routing table for router R1 using the configuration in Figure 6.13.

In classful addressing we can have a routing table with three columns;
in classless addressing, we need at least four columns.

Figure 6.12

Simplified forwarding module in classless address

Next-hop
address

Interface
Network
address

Mask
(/n)

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

Extract
destination

address
Packet

To ARP

Forwarding module

Next-hop address
and

interface number

Search
table

for76042_ch06.fm Page 169 Friday, February 13, 2009 4:48 PM

170

PART 2 NETWORK LAYER

Solution

Table 6.1 shows the corresponding table.

Example 6.8

Show the forwarding process if a packet arrives at R1 in Figure 6.13 with the destination address
180.70.65.140.

Solution

The router performs the following steps:

1.

The first mask (/26) is applied to the destination address. The result is 180.70.65.128, which
does not match the corresponding network address.

2.

The second mask (/25) is applied to the destination address. The result is 180.70.65.128,
which matches the corresponding network address. The next-hop address (the destination
address of the packet in this case) and the interface number m0 are passed to ARP (see
Chapter 8) for further processing.

Example 6.9

Show the forwarding process if a packet arrives at R1 in Figure 6.13 with the destination address
201.4.22.35.

Figure 6.13

Configuration for Example 6.7

Table 6.1

Routing table for router R1 in Figure 6.13

Mask Network Address Next Hop Interface

/26 180.70.65.192 - m2
/25 180.70.65.128 - m0
/24 201.4.22.0 - m3
/22 201.4.16.0 m1

Default Default 180.70.65.200 m2

201.4.16.0/22

201.4.16.2/22

201.4.22.0/24

201.4.22.3/24

180.70.65.128/25

180.70.65.135/25

180.70.65.192/26 180.70.65.194/26

180.70.65.200/26

R1

m0

m2

m3m1

Rest of the
Internet

for76042_ch06.fm Page 170 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS

171

Solution

The router performs the following steps:

1.

The first mask (/26) is applied to the destination address. The result is 201.4.22.0, which
does not match the corresponding network address (row 1).

2.

The second mask (/25) is applied to the destination address. The result is 201.4.22.0, which
does not match the corresponding network address (row 2).

3.

The third mask (/24) is applied to the destination address. The result is 201.4.22.0, which
matches the corresponding network address. The destination address of the packet and the
interface number m3 are passed to ARP (see Chapter 8).

Example 6.10

Show the forwarding process if a packet arrives at R1 in Figure 6.13 with the destination address
18.24.32.78.

Solution

This time all masks are applied to the destination address, but no matching network address is
found. When it reaches the end of the table, the module gives the next-hop address 180.70.65.200
and interface number m2 to ARP (see Chapter 8). This is probably an outgoing package that
needs to be sent, via the default router, to someplace else in the Internet.

Example 6.11

Now let us give a different type of example. Can we find the configuration of a router if we know
only its routing table? The routing table for router R1 is given in Table 6.2. Can we draw its
topology?

Solution
We know some facts but we don’t have all for a definite topology. We know that router R1 has
three interfaces: m0, m1, and m2. We know that there are three networks directly connected to
router R1. We know that there are two networks indirectly connected to R1. There must be at
least three other routers involved (see next-hop column). We know to which networks these rout-
ers are connected by looking at their IP addresses. So we can put them at their appropriate place.
We know that one router, the default router, is connected to the rest of the Internet. But there is
some missing information.We do not know if network 130.4.8.0 is directly connected to router
R2 or through a point-to-point network (WAN) and another router. We do not know if network
140.6.12.64 is connected to router R3 directly or through a point-to-point network (WAN) and
another router. Point-to-point networks normally do not have an entry in the routing table because
no hosts are connected to them. Figure 6.14 shows our guessed topology.

Table 6.2 Routing table for Example 6.11

Mask
Network
Address

Next-Hop
Address

Interface
Number

/26 140.6.12.64 180.14.2.5 m2
/24 130.4.8.0 190.17.6.2 m1
/16 110.70.0.0 ----------------- m0
/16 180.14.0.0 ----------------- m2
/16 190.17.0.0 ----------------- m1

Default Default 110.70.4.6 m0

for76042_ch06.fm Page 171 Friday, February 13, 2009 4:48 PM

172 PART 2 NETWORK LAYER

Address Aggregation When we use classful addressing, there is only one entry in
the routing table for each site outside the organization. The entry defines the site even if
that site is subnetted. When a packet arrives at the router, the router checks the corre-
sponding entry and forwards the packet accordingly. When we use classless addressing,
it is likely that the number of routing table entries will increase. This is because the
intent of classless addressing is to divide up the whole address space into manageable
blocks. The increased size of the table results in an increase in the amount of time
needed to search the table. To alleviate the problem, the idea of address aggregation
was designed. In Figure 6.15 we have two routers.

R1 is connected to networks of four organizations that each use 64 addresses. R2 is
somewhere far from R1. R1 has a longer routing table because each packet must be cor-
rectly routed to the appropriate organization. R2, on the other hand, can have a very

Figure 6.14 Guessed topology for Example 6.11

Figure 6.15 Address aggregation

190.17.6.2

180.14.2.5

m1

m2
m0

110.70.4.6

Unknown

Unknown

R1

R3
R4

R2

Rest of the
Internet

110.70.0.0/16

190.17.0.0/16130.4.8.0/24

140.6.12.64/26 180.14.0.0/16

m0
m0

m1
m1

m2 m3

m4

R1 R2

Organization 1

Organization 2

Organization 3

Organization 4

Routing table for R2

140.24.7.0/26

140.24.7.64/26

140.24.7.128/26

140.24.7.192/26

Next-hop
address InterfaceNetwork

address
140.24.7.0 ---------- m0
140.24.7.64 ---------- m1
140.24.7.128 ---------- m2
140.24.7.192 ---------- m3

0.0.0.0

Mask

/26
/26
/26
/26
/0 default router m4

Next-hop
address InterfaceNetwork

address
140.24.7.0 ---------- m0
 0.0.0.0

Routing table for R1

Mask

/24
/0 default router m1

Somewhere
in the Internet

for76042_ch06.fm Page 172 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS 173

small routing table. For R2, any packet with destination 140.24.7.0 to 140.24.7.255 is
sent out from interface m0 regardless of the organization number. This is called address
aggregation because the blocks of addresses for four organizations are aggregated into
one larger block. R2 would have a longer routing table if each organization had
addresses that could not be aggregated into one block.

Note that although the idea of address aggregation is similar to the idea of subnet-
ting, we do not have a common site here; the network for each organization is indepen-
dent. In addition, we can have several levels of aggregation.

Longest Mask Matching What happens if one of the organizations in the previous fig-
ure is not geographically close to the other three? For example, if organization 4 cannot be
connected to router R1 for some reason, can we still use the idea of address aggregation
and still assign block 140.24.7.192/26 to organization 4? The answer is yes because rout-
ing in classless addressing uses another principle, longest mask matching. This principle
states that the routing table is sorted from the longest mask to the shortest mask. In other
words, if there are three masks, /27, /26, and /24, the mask /27 must be the first entry and
/24 must be last. Let us see if this principle solves the situation in which organization 4 is
separated from the other three organizations. Figure 6.16 shows the situation.

Suppose a packet arrives for organization 4 with destination address 140.24.7.200.
The first mask at router R2 is applied, which gives the network address 140.24.7.192.
The packet is routed correctly from interface m1 and reaches organization 4. If, how-
ever, the routing table was not stored with the longest prefix first, applying the /24 mask
would result in the incorrect routing of the packet to router R1.

Figure 6.16 Longest mask matching

m0

m0

m0

m1

m2m1

m1

m2

m2

m3

R1

R3

R2

Organization 1

Organization 2

Organization 3

Organization 4

Routing table for R1

Routing table for R3

140.24.7.0/26

140.24.7.64/26

140.24.7.128/26

140.24.7.192/26

Next-hop
address InterfaceNetwork

address
140.24.7.0 ---------- m0
140.24.7.64 ---------- m1
140.24.7.128 ---------- m2

0.0.0.0

Mask

/26
/26
/26
/0 default router m3

Next-hop
address InterfaceNetwork

address
140.24.7.192 ---------- m0

???????
0.0.0.0

Mask

/26
/??
/0

?????????
default router

m1
m2

Routing table for R2

Next-hop
address InterfaceNetwork

address

140.24.7.0 ---------- m0

 0.0.0.0

Mask

/24

/0 default router m2

To other networks

140.24.7.192 ---------- m1/26

 ???????/?? ????????? m1

for76042_ch06.fm Page 173 Friday, February 13, 2009 4:48 PM

174 PART 2 NETWORK LAYER

Hierarchical Routing To solve the problem of gigantic routing tables, we can create
a sense of hierarchy in the routing tables. In Chapter 1, we mentioned that the Internet
today has a sense of hierarchy. We said that the Internet is divided into backbone,
regional and local ISPs. If the routing table has a sense of hierarchy like the Internet
architecture, the routing table can decrease in size.

Let us take the case of a local ISP. A local ISP can be assigned a single, but large,
block of addresses with a certain prefix length. The local ISP can divide this block into
smaller blocks of different sizes, and assign these to individual users and organizations,
both large and small. If the block assigned to the local ISP starts with a.b.c.d/n, the ISP can
create blocks starting with e.f.g.h/m, where m may vary for each customer and is greater
than n.

How does this reduce the size of the routing table? The rest of the Internet does not
have to be aware of this division. All customers of the local ISP are defined as a.b.c.d/n
to the rest of the Internet. Every packet destined for one of the addresses in this large
block is routed to the local ISP. There is only one entry in every router in the world for
all of these customers. They all belong to the same group. Of course, inside the local
ISP, the router must recognize the subblocks and route the packet to the destined
customer. If one of the customers is a large organization, it also can create another level
of hierarchy by subnetting and dividing its subblock into smaller subblocks (or sub-
subblocks). In classless routing, the levels of hierarchy are unlimited so long as we
follow the rules of classless addressing.

Example 6.12

As an example of hierarchical routing, let us consider Figure 6.17. A regional ISP is granted
16,384 addresses starting from 120.14.64.0. The regional ISP has decided to divide this block
into 4 subblocks, each with 4096 addresses. Three of these subblocks are assigned to three local

Figure 6.17 Hierarchical routing with ISPs

Regional
ISP

Local
ISP 1

Unused

Local
ISP 2

Local
ISP 3

Small
ISP1

Small
ISP8

120.14.64.0/18

120.14.64.0/20

120.14.64.0/23
120.14.64.0/30

120.14.78.0/30
120.14.78.0/23

Total 512

Total 512

H 001
H 128

H 001
H 128

Total 4096

Total 4096

Total 4096

Total 16,384

Total 4096

120.14.80.0/20

120.14.96.0/20
120.14.96.0/22

120.14.112.0/20

LOrg 01

LOrg 04

120.14.112.0/24
SOrg 01

SOrg 16

To the rest of Internet

for76042_ch06.fm Page 174 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS

175

ISPs, the second subblock is reserved for future use. Note that the mask for each block is /20
because the original block with mask /18 is divided into 4 blocks.

The first local ISP has divided its assigned subblock into 8 smaller blocks and assigned
each to a small ISP. Each small ISP provides services to 128 households (H001 to H128),
each using four addresses. Note that the mask for each small ISP is now /23 because the block
is further divided into 8 blocks. Each household has a mask of /30, because a household has
only 4 addresses (2

32

−

30

 = 4). The second local ISP has divided its block into 4 blocks and has
assigned the addresses to 4 large organizations (LOrg01 to LOrg04). Note that each large
organization has 1024 addresses and the mask is /22.

The third local ISP has divided its block into 16 blocks and assigned each block to a small
organization (SOrg01 to SOrg15). Each small organization has 256 addresses and the mask is
/24. There is a sense of hierarchy in this configuration. All routers in the Internet send a packet
with destination address 120.14.64.0 to 120.14.127.255 to the regional ISP. The regional ISP
sends every packet with destination address 120.14.64.0 to 120.14.79.255 to Local ISP1. Local
ISP1 sends every packet with destination address 120.14.64.0 to 120.14.64.3 to H001.

Geographical Routing

To decrease the size of the routing table even further, we
need to extend hierarchical routing to include geographical routing. We must divide the
entire address space into a few large blocks. We assign a block to America, a block to
Europe, a block to Asia, a block to Africa, and so on. The routers of ISPs outside of
Europe will have only one entry for packets to Europe in their routing tables. The rout-
ers of ISPs outside of America will have only one entry for packets to North America in
their routing tables. And so on.

Routing Table Search Algorithms

The algorithms in classful addressing that search the routing tables must be changed to
make classless routing more efficient. This includes the algorithms that update routing
tables. We will discuss this updating issue in Chapter 11.

Searching in Classful Addressing

In classful addressing, the routing table is orga-
nized as a list. However, to make searching more efficient, the routing table can be
divided into three tables (sometimes called buckets), one for each class. When the
packet arrives, the router applies the default mask (which is inherent in the address
itself) to find the corresponding bucket (A, B, or C). The router then searches the corre-
sponding bucket instead of the whole table. Some routers even assign 8 buckets for
class A, 4 buckets for class B, and 2 buckets for class C based on the outcome of the
class finding process.

Searching in Classless Addressing

In classless addressing, there is no network
information in the destination address. The simplest, but not the most efficient, search
method is called the

longest prefix match

(as we discussed before

)

. The routing table
can be divided into buckets, one for each prefix. The router first tries the longest prefix.
If the destination address is found in this bucket, the search is complete. If the address
is not found, the next prefix is searched. And so on. It is obvious that this type of search
takes a long time.

One solution is to change the data structure used for searching. Instead of a list,
other data structures (such as a tree or a binary tree) can be used. One candidate is a
trie (a special kind of tree). However, this discussion is beyond the scope of this
book.

for76042_ch06.fm Page 175 Monday, February 16, 2009 1:00 PM

176 PART 2 NETWORK LAYER

Forwarding Based on Label
In 1980s, an effort started to somehow change IP to behave like a connection-oriented
protocol in which the routing is replaced by switching. As we discussed in Chapter 4, in
a connectionless network (datagram approach), a router forwards a packet based on the
destination address in the header of packet. On the other hand, in a connection-oriented
network (virtual-circuit approach), a switch forwards a packet based on the label
attached to a packet. Routing is normally based on searching the contents of a table;
switching can be done by accessing a table using an index. In other words, routing
involves searching; switching involves accessing.

Example 6.13

Figure 6.18 shows a simple example of searching in a routing table using the longest match algo-
rithm. Although there are some more efficient algorithms today, the principle is the same.

When the forwarding algorithm gets the destination address of the packet, it needs to delve
into the mask column. For each entry, it needs to apply the mask to find the destination network
address. It then needs to check the network addresses in the table until it finds the match. The
router then extracts the next-hop address and the interface number to be delivered to the ARP
protocol for delivery of the packet to the next hop.

Example 6.14

Figure 6.19 shows a simple example of using a label to access a switching table. Since the labels
are used as the index to the table, finding the information in the table is immediate.

MPLS

During the 1980s, several vendors created routers that implement switching technol-
ogy. Later IETF approved a standard that is called Multi-Protocol Label Switching. In

Figure 6.18 Example 6.13: Forwarding based on destination address

Next-hop
address InterfaceNetwork

address
Mask
(/n)

NF

NF

NF
NF
NF
NF
NF
NF
F

F

32
32
31
31
31
31
31

30

29
2

0

1

2

Routing Table

Legend

: Compare
:Not found

:Found

Destination
address interface and

next-hop address

x

y

y

x

for76042_ch06.fm Page 176 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS 177

this standard, some conventional routers in the Internet can be replaced by MPLS rout-
ers that can behave like a router and a switch. When behaving like a router, MPLS can
forward the packet based on the destination address; when behaving like a switch, it
can forward a packet based on the label.

A New Header

To simulate connection-oriented switching using a protocol like IP, the first thing that is
needed is to add a field to the packet that carry the label discussed in Chapter 4. The
IPv4 packet format does not allow this extension (although this field is provided in IPv6
packet format, as we will see in Chapter 27). The solution is to encapsulate the IPv4
packet in an MPLS packet (as though MPLS is a layer between the data link layer and
the network layer). The whole IP packet is encapsulated as the payload in an MPLS
packet and MPLS header is added. Figure 6.20 shows the encapsulation.

The MPLS header is actually a stack of subheaders that is used for multilevel hier-
archical switching as we discuss shortly. Figure 6.21 shows the format of an MPLS
header in which each subheader is 32 bits (4 bytes) long.

The following is a brief description of each field:

❑ Label. This 20-bit field defines the label that is used to index the routing table in
the router.

❑ Exp. This 3-bit field is reserved for experimental purposes.

Figure 6.19 Example 6.14: Forwarding based on label

Figure 6.20 MPLS header added to an IP packet

Interface Next label

0000

0001

0002

1

0

2

0003

0004 2

0005

0006

1000

interface and
label address

Switching Table

Label

Label used
as index

0004

0012

0012

Switch

IP
Header

MPLS
Header

IP
Payload

for76042_ch06.fm Page 177 Friday, February 13, 2009 4:48 PM

178 PART 2 NETWORK LAYER

❑ S. The one-bit stack field defines the situation of the subheader in the stack. When
the bit is 1, it means that the header is the last one in the stack.

❑ TTL. This 8-bit field is similar to the TTL field in the IP datagram (see Chapter 7).
Each visited router decrement the value of this field. When it reaches zero, the
packet is discarded to prevent looping.

Hierarchical Switching

A stack of labels in MPLS allows hierarchical switching. This is similar to conventional
hierarchical routing. For example, a packet with two labels can use the top label to for-
ward the packet through switches outside an organization; the bottom label can be used
to route the packet inside the organization to reach the destination subnet.

6.3 STRUCTURE OF A ROUTER
In our discussion of forwarding and routing, we represented a router as a black box that
accepts incoming packets from one of the input ports (interfaces), uses a routing table
to find the output port from which the packet departs, and sends the packet from this
output port. In this section we open the black box and look inside. However, our discus-
sion won’t be very detailed; entire books have been written about routers. We just give
an overview to the reader.

Components
We can say that a router has four components: input ports, output ports, the routing
processor, and the switching fabric, as shown in Figure 6.22.

Figure 6.21 MPLS header made of stack of labels

Figure 6.22 Router components

 Label Exp S TTL

 Label Exp S TTL

 Label Exp S TTL

20 24 310

Input ports Output ports
Port 1

Port 2

Port 1

Port 2

Port NPort N

Routing
processor

Switching fabric

for76042_ch06.fm Page 178 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS

179

Input Ports

Figure 6.23 shows a schematic diagram of an input port.

An input port performs the physical and data link layer functions of the router.
The bits are constructed from the received signal. The packet is decapsulated from the
frame. Errors are detected and corrected. The packet is ready to be forwarded by
the network layer. In addition to a physical layer processor and a data link proces-
sor, the input port has buffers (queues) to hold the packets before they are directed to
the switching fabric.

Output Ports

An output port performs the same functions as the input port, but in the reverse order.
First the outgoing packets are queued, then the packet is encapsulated in a frame, and
finally the physical layer functions are applied to the frame to create the signal to be
sent on the line. Figure 6.24 shows a schematic diagram of an output port.

Routing Processor

The routing processor performs the functions of the network layer. The destination
address is used to find the address of the next hop and, at the same time, the output port
number from which the packet is sent out. This activity is sometimes referred to as

table lookup

 because the routing processor searches the routing table. In the newer
routers, this function of the routing processor is being moved to the input ports to facil-
itate and expedite the process.

Switching Fabrics

The most difficult task in a router is to move the packet from the input queue to the out-
put queue. The speed with which this is done affects the size of the input/output queue
and the overall delay in packet delivery. In the past, when a router was actually a dedi-
cated computer, the memory of the computer or a bus was used as the switching fabric.
The input port stored the packet in memory; the output port got the packet from the

Figure 6.23

Input port

Figure 6.24

Output port

Input port

Queue

Physical layer
processor

Data link layer
processor

Output port

Queue

Physical layer
processor

Data link layer
processor

for76042_ch06.fm Page 179 Monday, February 23, 2009 2:31 PM

180 PART 2 NETWORK LAYER

memory. Today, routers use a variety of switching fabrics. We briefly discuss some of
these fabrics here.

Crossbar Switch The simplest type of switching fabric is the crossbar switch shown
in Figure 6.25. A crossbar switch connects n inputs to n outputs in a grid, using elec-
tronic microswitches at each crosspoint.

Banyan Switch More realistic than the crossbar switch is the banyan switch
(named after the banyan tree) as shown in Figure 6.26.

A banyan switch is a multistage switch with microswitches at each stage that route
the packets based on the output port represented as a binary string. For n inputs and n
outputs, we have log2(n) stages with n/2 microswitches at each stage. The first stage
routes the packet based on the highest order bit of the binary string. The second stage
routes the packets based on the second highest order bit, and so on. Figure 6.27 shows a
banyan switch with eight inputs and eight outputs. The number of stages is log2(8) = 3.
Suppose a packet has arrived at input port 1 and must go to output port 6 (110 in binary).
The first microswitch (A-2) routes the packet based on the first bit (1), the second
microswitch (B-4) routes the packet based on the second bit (1), and the third
microswitch (C-4) routes the packet based on the third bit (0). In part b, a packet has
arrived at input port 5 and must go to output port 2 (010 in binary). The first microswitch
(A-2) routes the packet based on the first bit (0), the second microswitch (B-2) routes the
packet based on the second bit (1), and the third microswitch (C-2) routes the packet
based on the third bit (0).

Figure 6.25 Crossbar switch

Figure 6.26 A banyan switch

0

0

1

1

2

2

3

3

Input

Output

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

2

3

4

5

6

7

1

0

2

3

4

5

6

7

A-1

A-2

A-3

A-4

B-1

B-2

B-3

B-4

C-1

C-3

C-2

C-4

Left bit Middle bit Right bit

BitsBits

for76042_ch06.fm Page 180 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS 181

Batcher-Banyan Switch The problem with the banyan switch is the possibility of
internal collision even when two packets are not heading for the same output port. We
can solve this problem by sorting the arriving packets based on their destination port.
K. E. Batcher designed a switch that comes before the banyan switch and sorts the
incoming packets according to their final destination. The combination is called the
Batcher-banyan switch (see Figure 6.28).

 The sorting switch uses hardware merging techniques, but we will not discuss the
details here. Normally, another hardware module called a trap is added between the
Batcher switch and the banyan switch. The trap module prevents duplicate packets
(packets with the same output destination) from passing to the banyan switch simulta-
neously. Only one packet for each destination is allowed at each tick; if there is more
than one, they wait for the next tick.

6.4 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Figure 6.27 Examples of routing in a banyan switch

Figure 6.28 Batcher-banyan switch

a. Input 1 sending to output 6 (110) b. Input 5 sending to output 2 (010)

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1
0

2
3

4
5

6
7

1
0

2
3

4
5

6
7

A-1

A-2

A-3

A-4

B-1

B-2

B-3

B-4

C-1

C-3

C-2

C-4

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1
0

2
3

4
5

6
7

1
0

2
3

4
5

6
7

A-1

A-2

A-3

A-4

B-1

B-2

B-3

B-4

C-1

C-3

C-2

C-4

1

0

2
3

4

5

6

7

Trap
module

Batcher
switch

Banyan switch

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

2
3

4

5

6

7

A-1

A-2

A-3

A-4

B-1

B-2

B-3

B-4

C-1

C-3

C-2

C-4

for76042_ch06.fm Page 181 Friday, February 13, 2009 4:48 PM

182 PART 2 NETWORK LAYER

Books
Several books give thorough coverage of materials discussed in this chapter. We recom-
mend [Com 06], [Tan 03], and [Kur & Ros 08].

RFCs
Forwarding is discussed in RFC 1812, RFC 1971, and RFC 1980. MPLS is discussed
in RFC 3031, RFC 3032, RFC 3036, and RFC 3212.

6.5 KEY TERMS

6.6 SUMMARY
❑ The network layer supervises the handling of the packets by the underlying physi-

cal networks.We define this handling as the delivery of a packet. The delivery of a
packet is called direct if the deliverer (host or router) and the destination are on the
same network. The delivery of a packet is called indirect if the deliverer (host or
router) and the destination are on different networks.

❑ Forwarding means to deliver the packet to the next hop. Two categories of forward-
ing were discussed in this chapter: forwarding based on the destination address of
the IP datagram and forwarding based on the label attached to an IP datagram. The
first searches a routing table to forward a packet; the second uses the label as an
index to a switching table to forward a packet.

❑ We discussed several methods in destination-address–based forwarding including
host-specific method, next-hop method, network-specific method, and the default
method.

❑ In destination-address–based forwarding, the routing table for classful for-
warding can have three columns. The routing table for classless addressing
needs at least four columns. Address aggregation simplifies the forwarding
process in classless addressing. Longest mask matching is required in classless
addressing.

banyan switch
Batcher-banyan switch
crossbar switch
crosspoint
default method
delivery
direct delivery
forwarding
host-specific method

indirect delivery
input ports
longest mask matching
longest prefix match
network-specific method
next-hop address
next-hop method
output ports
routing processor

for76042_ch06.fm Page 182 Friday, February 13, 2009 4:48 PM

CHAPTER 6 DELIVERY AND FORWARDING OF IP PACKETS 183

❑ In label-based forwarding, a switching table is used instead of a routing table. The
Multi-Protocol Label Switching (MPLS) is the standard approved by IETF, which
adds a pseudo layer to the TCP/IP protocol suite by encapsulating the IP packet in
an MPLS packet.

❑ A router is normally made of four components: input ports, output ports, the rout-
ing processor, and the switching fabric.

6.7 PRACTICE SET

Exercises
1. A host with IP address 137.23.56.23/16 sends a packet to a host with IP address

137.23.67.9/16. Is the delivery direct or indirect? Assume no subnetting.

2. A host with IP address 137.23.56.23/16 sends a packet to a host with IP address
142.3.6.9/24. Is the delivery direct or indirect? Assume no subnetting.

3. In Figure 6.8, find the routing table for router R2.

4. In Figure 6.8, find the routing table for router R3.

5. A packet arrives at router R1 in Figure 6.8 with destination address 192.16.7.42.
Show how it is forwarded.

6. A packet arrives at router R1 in Figure 6.8 with destination address 145.80.14.26.
Show how it is forwarded.

7. A packet arrives at router R1 in Figure 6.8 with destination address 147.26.50.30.
Show how it is forwarded.

8. A packet arrives at the router in Figure 6.11 with destination address 145.14.192.71.
Show how it is forwarded.

9. A packet arrives at the router in Figure 6.11 with destination address 135.11.80.21.
Show how it is forwarded.

10. A packet arrives at router R1 in Figure 6.13 with destination address 201.4.16.70.
Show how it is forwarded.

11. A packet arrives at router R1 in Figure 6.13 with destination address 202.70.20.30.
Show how it is forwarded.

12. Show a routing table for a host that is totally isolated.

13. Show a routing table for a host that is connected to a LAN without being con-
nected to the Internet.

14. Find the topology of the network if Table 6.3 is the routing table for router R1.

Table 6.3 Routing table for Exercise 14

Mask
Network
Address

Next-Hop
Address Interface

/27 202.14.17.224 ---- m1
/18 145.23.192.0 ---- m0

default default 130.56.12.4 m2

for76042_ch06.fm Page 183 Friday, February 13, 2009 4:48 PM

184 PART 2 NETWORK LAYER

15. Can router R1 in Figure 6.16 receive a packet with destination address
140.24.7.194? Explain your answer.

16. Can router R1 in Figure 6.16 receive a packet with destination address
140.24.7.42? Explain your answer.

17. Show the routing table for regional ISP in Figure 6.17.

18. Show the routing table for local ISP 1 in Figure 6.17.

19. Show the routing table for local ISP 2 in Figure 6.17.

20. Show the routing table for local ISP 3 in Figure 6.17.

21. Show the routing table for small ISP 1 in Figure 6.17.

Research Activities
22. Show how an MPLS packet is encapsulated in a frame. Find out what should be the

value of the type field when the protocol is the Ethernet.

23. Compare Multi-Layer Switching (MLS) used by Cisco Systems Inc. with MPLS
technology we described here.

24. Some people argue that the MPLS should be called layer 2.5 in the TCP/IP proto-
col suite. Do you agree? Explain.

25. Find how your ISP uses address aggregation and longest mask match principles.

26. Find whether or not your IP address is part of the geographical address allocation.

27. If you are using a router, find the number and names of the columns in the routing
table.

28. Cisco is one of the dominant manufacturers of routers. Find information about the
different types of routers manufactured by this company.

for76042_ch06.fm Page 184 Friday, February 13, 2009 4:48 PM

for76042_ch06.fm Page 185 Friday, February 13, 2009 4:48 PM

C H A P T E R

7

186

7

Internet Protocol Version 4
(IPv4)

fter discussing the IP addressing mechanism and delivery and for-
warding of IP packets, we discuss the format of the IP packet in this

chapter. We show how an IP packet is made of a base header and options
that sometimes are used to facilitate or control the delivery of packets.

OBJECTIVES

The chapter has several objectives:

❑

To explain the general idea behind the IP protocol and show the posi-
tion of IP in relation to other protocols in TCP/IP protocol suite.

❑

To show the general format of an IPv4 datagram and list the fields in
the header.

❑

To discuss fragmentation and reassembly of datagrams and how the
original datagram can be recovered out of fragmented ones.

❑

To discuss several options that can be in an IPv4 datagram and their
applications.

❑

To discuss some reserved blocks in the address space and their
applications.

❑

To show how a checksum is calculated for the header of an IPv4
datagram at the sending site and how the checksum is checked at the
receiver site.

❑

To discuss IP over ATM and compare it with IP over LANs and/or
point-to-point WANs.

❑

To show a simplified version of the IP package and give the
pseudocode for some modules.

A

for76042_ch07.fm Page 186 Friday, February 13, 2009 4:16 PM

187

7.1 INTRODUCTION

The

Internet Protocol (IP)

 is the transmission mechanism used by the TCP/IP protocols
at the network layer. Figure 7.1 shows the position of IP in the suite.

IP is an unreliable and connectionless datagram protocol—a

best-effort delivery

service. The term

best-effort

 means that IP packets can be corrupted, lost, arrive out of
order, or delayed and may create congestion for the network.

If reliability is important, IP must be paired with a reliable protocol such as TCP.
An example of a more commonly understood best-effort delivery service is the post
office. The post office does its best to deliver the mail but does not always succeed. If
an unregistered letter is lost, it is up to the sender or would-be recipient to discover the
loss and rectify the problem. The post office itself does not keep track of every letter
and cannot notify a sender of loss or damage.

IP is also a connectionless protocol for a packet switching network that uses the
datagram approach (see Chapter 4). This means that each datagram is handled indepen-
dently, and each datagram can follow a different route to the destination. This implies
that datagrams sent by the same source to the same destination could arrive out of
order. Also, some could be lost or corrupted during transmission. Again, IP relies on a
higher-level protocol to take care of all these problems.

7.2 DATAGRAMS

Packets in the network (internet) layer are called

datagrams.

 Figure 7.2 shows the IP
datagram format. A datagram is a variable-length packet consisting of two parts: header
and data. The header is 20 to 60 bytes in length and contains information essential to

Figure 7.1

Position of IP in TCP/IP protocol suite

Application
layer

Transport
layer

Network
layer

Physical
layer

Data link
layer

SMTP FTP DNS DHCPSNMPTFTP

IP
ICMPIGMP

ARP

Underlying LAN or WAN
technology

SCTP TCP UDP

for76042_ch07.fm Page 187 Friday, February 13, 2009 4:16 PM

188

PART 2 NETWORK LAYER

routing and delivery. It is customary in TCP/IP to show the header in 4-byte sections. A
brief description of each field is in order.

❑

Version (VER).

 This 4-bit field defines the version of the IP protocol. Currently
the version is 4. However, version 6 (or IPv6) may totally replace version 4 in the
future. This field tells the IP software running in the processing machine that the
datagram has the format of version 4. All fields must be interpreted as specified
in the fourth version of the protocol. If the machine is using some other version of
IP, the datagram is discarded rather than interpreted incorrectly.

❑

Header length (HLEN).

 This 4-bit field defines the total length of the datagram
header in 4-byte words. This field is needed because the length of the header is
variable (between 20 and 60 bytes). When there are no options, the

header length

is 20 bytes, and the value of this field is 5 (5

 ×

4

=

 20). When the option field is at
its maximum size, the value of this field is 15 (15

×

 4

=

 60).

❑

Service type.

 In the original design of IP header, this field was referred to as

type of
service (TOS)

, which defined how the datagram should be handled. Part of the field
was used to define the precedence of the datagram; the rest defined the type of ser-
vice (low delay, high throughput, and so on). IETF has changed the interpretation of
this 8-bit field. This field now defines a set of

differentiated services.

 The new inter-
pretation is shown in Figure 7.3.

In this interpretation, the first 6 bits make up the

codepoint

 subfield and the last
2 bits are not used. The codepoint subfield can be used in two different ways.

a.

When the 3 right-most bits are 0s, the 3 left-most bits are interpreted the same
as the precedence bits in the service type interpretation. In other words, it is
compatible with the old interpretation. The precedence defines the eight-level

Figure 7.2

IP datagram

Total length
16 bits

VER
4 bits

HLEN
4 bits

Service type
8 bits

Fragmentation offset
13 bits

Flags
3 bits

Identification
16 bits

Header checksum
16 bits

Time to live
8 bits

Protocol
8 bits

Source IP address

Destination IP address

b. Header format

0 43 8 157 16 31

Header

20–60 bytes
20–65,535 bytes

a. IP datagram

Data

Options + padding
(0 to 40 bytes)

for76042_ch07.fm Page 188 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4)

189

priority of the datagram (0 to 7) in issues such as congestion. If a router is con-
gested and needs to discard some datagrams, those datagrams with lowest pre-
cedence are discarded first. Some datagrams in the Internet are more important
than the others. For example, a datagram used for network management is much
more urgent and important than a datagram containing optional information for
a group.

b.

When the 3 right-most bits are not all 0s, the 6 bits define 56 (64

−

 8) services
based on the priority assignment by the Internet or local authorities according to
Table 7.1. The first category contains 24 service types; the second and the third
each contain 16. The first category is assigned by the Internet authorities (IETF).
The second category can be used by local authorities (organizations). The third
category is temporary and can be used for experimental purposes. Note that these
assignments have not yet been finalized.

❑

Total length.

 This is a 16-bit field that defines the total length (header plus data) of
the IP datagram in bytes. To find the length of the data coming from the upper
layer, subtract the header length from the total length. The header length can be
found by multiplying the value in the HLEN field by four.

Since the field length is 16 bits, the total length of the IP datagram is limited to
65,535 (2

16

−

 1) bytes, of which 20 to 60 bytes are the header and the rest is data
from the upper layer.

Figure 7.3

Service type

Table 7.1

Values for codepoints

Category Codepoint Assigning Authority

1 XXXXX0 Internet
2 XXXX11 Local
3 XXXX01 Temporary or experimental

Length of data

=

total length

−

header length

The

total length

 field defines the total length of the datagram including the header.

Codepoint

Precedence
interpretation

Differential service
interpretation

6 bits

0

0

1

xx

x

x

x

x

x

x

x

x

x

x

x

1

1

0 0 0

2 bits

Unused

xxx

for76042_ch07.fm Page 189 Friday, February 13, 2009 4:16 PM

190

PART 2 NETWORK LAYER

Though a size of 65,535 bytes might seem large, the size of the IP datagram may
increase in the near future as the underlying technologies allow even more
throughput (more bandwidth). When we discuss fragmentation in the next section,
we will see that some physical networks are not able to encapsulate a datagram of
65,535 bytes in their frames. The datagram must be fragmented to be able to pass
through those networks.

One may ask why we need this field anyway. When a machine (router or host)
receives a frame, it drops the header and the trailer leaving the datagram. Why
include an extra field that is not needed? The answer is that in many cases we
really do not need the value in this field. However, there are occasions in which the
datagram is not the only thing encapsulated in a frame; it may be that padding has
been added. For example, the Ethernet protocol has a minimum and maximum
restriction on the size of data that can be encapsulated in a frame (46 to 1500 bytes).
If the size of an IP datagram is less than 46 bytes, some padding will be added to
meet this requirement. In this case, when a machine decapsulates the datagram, it
needs to check the total length field to determine how much is really data and how
much is padding (see Figure 7.4).

❑

Identification.

 This field is used in fragmentation (discussed in the next section).

❑

Flags.

 This field is used in fragmentation (discussed in the next section).

❑

Fragmentation offset.

 This field is used in fragmentation (discussed in the next
section).

❑

Time to live.

 A datagram has a limited lifetime in its travel through an internet. This
field was originally designed to hold a timestamp, which was decremented by each
visited router. The datagram was discarded when the value became zero. However,
for this scheme, all the machines must have synchronized clocks and must know how
long it takes for a datagram to go from one machine to another. Today, this field is
mostly used to control the maximum number of hops (routers) visited by the data-
gram. When a source host sends the datagram, it stores a number in this field. This
value is approximately two times the maximum number of routes between any two
hosts. Each router that processes the datagram decrements this number by one. If this
value, after being decremented, is zero, the router discards the datagram.

This field is needed because routing tables in the Internet can become corrupted. A
datagram may travel between two or more routers for a long time without ever get-
ting delivered to the destination host. This field limits the lifetime of a datagram.

Another use of this field is to intentionally limit the journey of the packet. For
example, if the source wants to confine the packet to the local network, it can store

Figure 7.4

Encapsulation of a small datagram in an Ethernet frame

L2
Header

L2
TrailerPaddingData < 46 bytes

Length: Minimum 46 bytes

for76042_ch07.fm Page 190 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4)

191

1 in this field. When the packet arrives at the first router, this value is decremented
to 0, and the datagram is discarded.

❑

Protocol.

 This 8-bit field defines the higher-level protocol that uses the services of
the IP layer. An IP datagram can encapsulate data from several higher level proto-
cols such as TCP, UDP, ICMP, and IGMP. This field specifies the final destination
protocol to which the IP datagram should be delivered. In other words, since the
IP protocol multiplexes and demultiplexes data from different higher-level proto-
cols, the value of this field helps in the demultiplexing process when the datagram
arrives at its final destination (see Figure 7.5).

Some of the value of this field for different higher-level protocols is shown in Table 7.2.

❑

Checksum.

 The checksum concept and its calculation are discussed later in this
chapter.

❑

Source address.

 This 32-bit field defines the IP address of the source. This field
must remain unchanged during the time the IP datagram travels from the source
host to the destination host.

❑

Destination address.

 This 32-bit field defines the IP address of the destination.
This field must remain unchanged during the time the IP datagram travels from the
source host to the destination host.

Example 7.1

An IP packet has arrived with the first 8 bits as shown:

The receiver discards the packet. Why?

Solution

There is an error in this packet. The 4 left-most bits (0100) show the version, which is correct. The
next 4 bits (0010) show the wrong header length (2

×

 4

=

 8). The minimum number of bytes in
the header must be 20. The packet has been corrupted in transmission.

Figure 7.5

Multiplexing

Table 7.2

Protocols

Value Protocol Value Protocol

1 ICMP 17 UDP
2 IGMP 89 OSPF
6 TCP

01000010

Header

Transport
layer

Network
layer

TCP UDP

IGMPICMP OSPF

for76042_ch07.fm Page 191 Friday, February 13, 2009 4:16 PM

192

PART 2 NETWORK LAYER

Example 7.2

In an IP packet, the value of HLEN is 1000 in binary. How many bytes of options are being car-
ried by this packet?

Solution

The HLEN value is 8, which means the total number of bytes in the header is 8

×

 4 or 32 bytes.
The first 20 bytes are the base header, the next 12 bytes are the options.

Example 7.3

In an IP packet, the value of HLEN is 5

16

 and the value of the total length field is 0028

16

. How
many bytes of data are being carried by this packet?

Solution

The HLEN value is 5, which means the total number of bytes in the header is 5

×

 4 or 20 bytes (no
options). The total length is 40 bytes, which means the packet is carrying 20 bytes of data (40

 −

20).

Example 7.4

An IP packet has arrived with the first few hexadecimal digits as shown below:

How many hops can this packet travel before being dropped? The data belong to what upper layer
protocol?

Solution

To find the time-to-live field, we skip 8 bytes (16 hexadecimal digits). The time-to-live field is the
ninth byte, which is 01. This means the packet can travel only one hop. The protocol field is the
next byte (02), which means that the upper layer protocol is IGMP (see Table 7.2).

7.3 FRAGMENTATION

A datagram can travel through different networks. Each router decapsulates the IP data-
gram from the frame it receives, processes it, and then encapsulates it in another frame.
The format and size of the received frame depend on the protocol used by the physical
network through which the frame has just traveled. The format and size of the sent
frame depend on the protocol used by the physical network through which the frame is
going to travel. For example, if a router connects a LAN to a WAN, it receives a frame
in the LAN format and sends a frame in the WAN format.

Maximum Transfer Unit (MTU)

Each data link layer protocol has its own frame format in most protocols. One of the
fields defined in the format is the maximum size of the data field. In other words, when
a datagram is encapsulated in a frame, the total size of the datagram must be less than
this maximum size, which is defined by the restrictions imposed by the hardware and
software used in the network (see Figure 7.6).

45000028000100000102 . . .

for76042_ch07.fm Page 192 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4)

193

The value of the MTU differs from one physical network protocol to another. For
example, the value for the Ethernet LAN is 1500 bytes, for FDDI LAN is 4352 bytes,
and for PPP is 296 bytes.

In order to make the IP protocol independent of the physical network, the designers
decided to make the maximum length of the IP datagram equal to 65,535 bytes. This
makes transmission more efficient if we use a protocol with an MTU of this size. How-
ever, for other physical networks, we must divide the datagram to make it possible to
pass through these networks. This is called

fragmentation.

The source usually does not fragment the IP packet. The transport layer will
instead segment the data into a size that can be accommodated by IP and the data link
layer in use.

When a datagram is fragmented, each fragment has its own header with most of
the fields repeated, but some changed. A fragmented datagram may itself be frag-
mented if it encounters a network with an even smaller MTU. In other words, a data-
gram can be fragmented several times before it reaches the final destination.

A datagram can be fragmented by the source host or any router in the path. The
reassembly of the datagram, however, is done only by the destination host because each
fragment becomes an independent datagram. Whereas the fragmented datagram can
travel through different routes, and we can never control or guarantee which route a
fragmented datagram may take, all of the fragments belonging to the same datagram
should finally arrive at the destination host. So it is logical to do the reassembly at the
final destination. An even stronger objection for reassembling packets during the trans-
mission is the loss of efficiency it incurs.

When a datagram is fragmented, required parts of the header must be copied by all
fragments. The option field may or may not be copied as we will see in the next section.
The host or router that fragments a datagram must change the values of three fields:
flags, fragmentation offset, and total length. The rest of the fields must be copied. Of
course, the value of the checksum must be recalculated regardless of fragmentation.

Fields Related to Fragmentation

The fields that are related to fragmentation and reassembly of an IP datagram are the
identification, flags, and fragmentation offset fields.

❑

Identification.

 This 16-bit field identifies a datagram originating from the source
host. The combination of the identification and source IP address must uniquely

Figure 7.6

MTU

Only data in a datagram is fragmented.

IP datagram

Frame

Header TrailerMTU
Maximum length of data that can be encapsulated in a frame

·

for76042_ch07.fm Page 193 Friday, February 13, 2009 4:16 PM

194

PART 2 NETWORK LAYER

define a datagram as it leaves the source host. To guarantee uniqueness, the IP pro-
tocol uses a counter to label the datagrams. The counter is initialized to a positive
number. When the IP protocol sends a datagram, it copies the current value of the
counter to the identification field and increments the counter by one. As long as the
counter is kept in the main memory, uniqueness is guaranteed. When a datagram is
fragmented, the value in the identification field is copied into all fragments. In
other words, all fragments have the same identification number, which is also the
same as the original datagram. The identification number helps the destination in
reassembling the datagram. It knows that all fragments having the same identifica-
tion value should be assembled into one datagram.

❑

Flags.

 This is a three-bit field. The first bit is reserved (not used). The second bit is
called the

do not

fragment

 bit. If its value is 1, the machine must not fragment the
datagram. If it cannot pass the datagram through any available physical network, it
discards the datagram and sends an ICMP error message to the source host (see
Chapter 9). If its value is 0, the datagram can be fragmented if necessary. The third
bit is called the

more fragment

 bit. If its value is 1, it means the datagram is not the
last fragment; there are more fragments after this one. If its value is 0, it means this
is the last or only fragment (see Figure 7.7).

❑

Fragmentation offset.

 This 13-bit field shows the relative position of this
fragment with respect to the whole datagram. It is the offset of the data in the orig-
inal datagram measured in units of 8 bytes. Figure 7.8 shows a datagram with a
data size of 4000 bytes fragmented into three fragments. The bytes in the original
datagram are numbered 0 to 3999. The first fragment carries bytes 0 to 1399. The
offset for this datagram is 0/8

=

 0. The second fragment carries bytes 1400 to 2799;
the offset value for this fragment is 1400/8

=

175. Finally, the third fragment
carries bytes 2800 to 3999. The offset value for this fragment is 2800/8

=

350.

Figure 7.7

Flags field

Figure 7.8

Fragmentation example

MDD: Do not fragment
M: More fragments

Byte 0000 Byte 3999

Offset = 0000/8 = 0

0000 1399

Offset = 0000/8 = 0

2800 3999

Offset = 2800/8 = 350

1400 2799

Offset = 1400/8 = 175

for76042_ch07.fm Page 194 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4)

195

Remember that the value of the offset is measured in units of 8 bytes. This is done
because the length of the offset field is only 13 bits long and cannot represent a
sequence of bytes greater than 8191. This forces hosts or routers that fragment
datagrams to choose the size of each fragment so that the first byte number is divis-
ible by 8.

Figure 7.9 shows an expanded view of the fragments in the previous figure. Notice
the value of the identification field is the same in all fragments. Notice the value of
the flags field with the

 more bit set for all fragments except the last. Also, the value
of the offset field for each fragment is shown.

The figure also shows what happens if a fragment itself is fragmented. In this case
the value of the offset field is always relative to the original datagram. For exam-
ple, in the figure, the second fragment is itself fragmented later to two fragments of
800 bytes and 600 bytes, but the offset shows the relative position of the fragments
to the original data.

It is obvious that even if each fragment follows a different path and arrives out of
order, the final destination host can reassemble the original datagram from the
fragments received (if none of them is lost) using the following strategy:

a. The first fragment has an offset field value of zero.

b. Divide the length of the first fragment by 8. The second fragment has an offset
value equal to that result.

c. Divide the total length of the first and second fragment by 8. The third fragment
has an offset value equal to that result.

d. Continue the process. The last fragment has a more bit value of 0.

Figure 7.9 Detailed fragmentation example

000
1420

14,567

Bytes 0000–1399

Fragment 1

1

175
1420

14,567

Bytes 1400–2799

Fragment 2

1

350
1220

14,567

Bytes 2800–3999

Fragment 3

0

000
4020

14,567

Bytes 0000–3999

Original datagram

0

175
820

14,567

Bytes 1400–2199

Fragment 2.1

1

275
620

14,567

Bytes 2200–2799

Fragment 2.2

1

for76042_ch07.fm Page 195 Friday, February 13, 2009 4:16 PM

196 PART 2 NETWORK LAYER

Example 7.5

A packet has arrived with an M bit value of 0. Is this the first fragment, the last fragment, or a
middle fragment? Do we know if the packet was fragmented?

Solution
If the M bit is 0, it means that there are no more fragments; the fragment is the last one. However,
we cannot say if the original packet was fragmented or not. A nonfragmented packet is consid-
ered the last fragment.

Example 7.6

A packet has arrived with an M bit value of 1. Is this the first fragment, the last fragment, or a
middle fragment? Do we know if the packet was fragmented?

Solution
If the M bit is 1, it means that there is at least one more fragment. This fragment can be the
first one or a middle one, but not the last one. We don’t know if it is the first one or a middle
one; we need more information (the value of the fragmentation offset). See also the next
example.

Example 7.7

A packet has arrived with an M bit value of 1 and a fragmentation offset value of zero. Is this the
first fragment, the last fragment, or a middle fragment?

Solution
Because the M bit is 1, it is either the first fragment or a middle one. Because the offset value is 0,
it is the first fragment.

Example 7.8

A packet has arrived in which the offset value is 100. What is the number of the first byte? Do we
know the number of the last byte?

Solution
To find the number of the first byte, we multiply the offset value by 8. This means that the first
byte number is 800. We cannot determine the number of the last byte unless we know the length
of the data.

Example 7.9

A packet has arrived in which the offset value is 100, the value of HLEN is 5 and the value of the
total length field is 100. What is the number of the first byte and the last byte?

Solution
The first byte number is 100 × 8 = 800. The total length is 100 bytes and the header length is 20
bytes (5 × 4), which means that there are 80 bytes in this datagram. If the first byte number is 800,
the last byte number must be 879.

for76042_ch07.fm Page 196 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 197

7.4 OPTIONS
The header of the IP datagram is made of two parts: a fixed part and a variable part. The
fixed part is 20 bytes long and was discussed in the previous section. The variable part
comprises the options, which can be a maximum of 40 bytes.

Options, as the name implies, are not required for a datagram. They can be used for
network testing and debugging. Although options are not a required part of the IP
header, option processing is required of the IP software. This means that all implemen-
tations must be able to handle options if they are present in the header.

Format
Figure 7.10 shows the format of an option. It is composed of a 1-byte type field, a
1-byte length field, and a variable-sized value field. The three fields are often referred to
as type-length-value or TLV.

Type

The type field is 8 bits long and contains three subfields: copy, class, and number.

❑ Copy. This 1-bit subfield controls the presence of the option in fragmentation.
When its value is 0, it means that the option must be copied only to the first frag-
ment. If its value is 1, it means the option must be copied to all fragments.

❑ Class. This 2-bit subfield defines the general purpose of the option. When its value
is 00, it means that the option is used for datagram control. When its value is 10, it
means that the option is used for debugging and management. The other two possible
values (01 and 11) have not yet been defined.

❑ Number. This 5-bit subfield defines the type of option. Although 5 bits can define
up to 32 different types, currently only 6 types are in use. These will be discussed
in a later section.

Figure 7.10 Option format

Type Length

8 bits

bits1 2 5

8 bits

Value

Variable length

Copy

0 Copy only in first fragment
1 Copy into all fragments

Class

00 Datagram control
01 Reserved
10 Debugging and management
11 Reserved

Number

00000 End of option
00001 No operation
00011 Loose source route
00100 Timestamp
00111 Record route
01001 Strict source route

for76042_ch07.fm Page 197 Friday, February 13, 2009 4:16 PM

198

PART 2 NETWORK LAYER

Length

The

length field

 defines the total length of the option including the type field and the
length field itself. This field is not present in all of the option types.

Value

The

value field

 contains the data that specific options require. Like the length field, this
field is also not present in all option types.

Option Types

As mentioned previously, only six options are currently being used. Two of these are
1-byte options, and they do not require the length or the data fields. Four of them are
multiple-byte options; they require the length and the data fields (see Figure 7.11).

No-Operation Option

A

no-operation option

is a 1-byte option used as a filler between options. For example,
it can be used to align the next option on a 16-bit or 32-bit boundary (see Figure 7.12).

End-of-Option Option

An

end-of-option option

is also a 1-byte option used for padding at the end of the
option field. It, however, can only be used as the last option. Only one end-of-option
option can be used. After this option, the receiver looks for the payload data. This

Figure 7.11

Categories of options

Figure 7.12

No operation option

Options

Single-byte

Multiple-byte

No operation

End of option

Record route

Loose source route

Strict source route

Timestamp

Type: 1
00000001

a. No operation option

b. Used to align beginning of an option

NO-OP

An 11-byte option

c. Used to align the next option

NO-OP
A 7-byte option

An 8-byte option

for76042_ch07.fm Page 198 Monday, February 16, 2009 1:17 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 199

means that if more than 1 byte is needed to align the option field, some no-operation
options must be used, followed by an end-of-option option (see Figure 7.13).

Record-Route Option

A record-route option is used to record the Internet routers that handle the datagram. It
can list up to nine router IP addresses since the maximum size of the header is 60 bytes,
which must include 20 bytes for the base header. This implies that only 40 bytes are left
over for the option part. The source creates placeholder fields in the option to be filled
by the visited routers. Figure 7.14 shows the format of the record route option.

Both the code and length fields have been described above. The pointer field is an
offset integer field containing the byte number of the first empty entry. In other words,
it points to the first available entry.

The source creates empty fields for the IP addresses in the data field of the option.
When the datagram leaves the source, all of the fields are empty. The pointer field has a
value of 4, pointing to the first empty field.

When the datagram is traveling, each router that processes the datagram compares
the value of the pointer with the value of the length. If the value of the pointer is greater
than the value of the length, the option is full and no changes are made. However, if the
value of the pointer is not greater than the value of the length, the router inserts its out-
going IP address in the next empty field (remember that a router has more than one IP
address). In this case, the router adds the IP address of its interface from which the dat-
agram is leaving. The router then increments the value of the pointer by 4. Figure 7.15
shows the entries as the datagram travels left to right from router to router.

Figure 7.13 End-of-option option

Figure 7.14 Record-route option

Type: 0
00000000

a. End of option

b. Used for padding

END-OP
 Options

Data

Type: 7
00000111

Length
(Total length) Pointer

 First IP address
(Empty when started)
 Second IP address

(Empty when started)

 Last IP address
(Empty when started)

O
nl

y
9

ad
dr

es
se

s
ca

n
be

 li
st

ed
.

for76042_ch07.fm Page 199 Friday, February 13, 2009 4:16 PM

200 PART 2 NETWORK LAYER

Strict-Source-Route Option

A strict-source-route option is used by the source to predetermine a route for the dat-
agram as it travels through the Internet. Dictation of a route by the source can be useful
for several purposes. The sender can choose a route with a specific type of service, such
as minimum delay or maximum throughput. Alternatively, it may choose a route that is
safer or more reliable for the sender’s purpose. For example, a sender can choose a
route so that its datagram does not travel through a competitor’s network.

If a datagram specifies a strict source route, all of the routers defined in the option
must be visited by the datagram. A router must not be visited if its IP address is not listed
in the datagram. If the datagram visits a router that is not on the list, the datagram is dis-
carded and an error message is issued. If the datagram arrives at the destination and some
of the entries were not visited, it will also be discarded and an error message issued.

Regular users of the Internet, however, are not usually aware of the physical topol-
ogy of the Internet. Consequently, strict source routing is not the choice of most users.
Figure 7.16 shows the format of the strict source route option.

The format is similar to the record route option with the exception that all of the IP
addresses are entered by the sender.

When the datagram is traveling, each router that processes the datagram compares
the value of the pointer with the value of the length. If the value of the pointer is greater

Figure 7.15 Record-route concept

Figure 7.16 Strict-source-route option

67.34.30.6 138.6.25.40

67
.1

4.
10

.2
2

140.10.0.0/16

14
0.

10
.5

.4

20
0.

14
.7

.9

200.14.7.0/24

20
0.

14
.7

.1
4

13
8.

6.
22

.2
6

138.6.0.0/16

14
0.

10
.6

.3

7 15 4 7 15 8
140.10.6.3

7 15 12
140.10.6.3
200.14.7.9

7 1615
140.10.6.3
200.14.7.9
138.6.22.26

Network Network Network Network
67.0.0.0/24

Type: 137
10001001

Length
(Total length)

Pointer

First IP address
(Filled when started)

Second IP address
(Filled when started)

Last IP address
(Filled when started)

O
nl

y
9

ad
dr

es
se

s
ca

n
be

 li
st

ed
.

for76042_ch07.fm Page 200 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 201

than the value of the length, the datagram has visited all of the predefined routers. The
datagram cannot travel anymore; it is discarded and an error message is created. If
the value of the pointer is not greater than the value of the length, the router compares
the destination IP address with its incoming IP address: If they are equal, it processes the
datagram, swaps the IP address pointed by the pointer with the destination address,
increments the pointer value by 4, and forwards the datagram. If they are not equal, it
discards the datagram and issues an error message. Figure 7.17 shows the actions taken
by each router as a datagram travels from source to destination.

Loose-Source-Route Option

A loose-source-route option is similar to the strict source route, but it is more relaxed.
Each router in the list must be visited, but the datagram can visit other routers as well.
Figure 7.18 shows the format of the loose source route option.

Timestamp

A timestamp option is used to record the time of datagram processing by a router. The
time is expressed in milliseconds from midnight, Universal Time. Knowing the time a

Figure 7.17 Strict-source-route concept

Figure 7.18 Loose-source-route option

Source: 67.34.30.6
Destination: 67.14.10.22 Destination:140.10.5.4

Source: 67.34.30.6
Destination:200.14.7.14

Source: 67.34.30.6
Destination:138.6.25.40

Source: 67.34.30.6

1615137

200.14.7.14
140.10.5.4

415137 815137 1215137

138.6.25.40 138.6.25.40 138.6.25.40

67.14.10.22 67.14.10.22 67.14.10.22
200.14.7.14

200.14.7.14
140.10.5.4 140.10.5.4

67.34.30.6 138.6.25.40

67
.1

4.
10

.2
2

140.10.0.0/16

14
0.

10
.5

.4

20
0.

14
.7

.9
200.14.7.0/24

20
0.

14
.7

.1
4

13
8.

6.
22

.2
6

138.6.0.0/16

14
0.

10
.6

.3

Network Network Network Network
67.0.0.0/24

Type: 131
10000011

Length
(Total length)

Pointer

First IP address
(Filled when started)

Second IP address
(Filled when started)

Last IP address
(Filled when started)

O
nl

y
9

ad
dr

es
se

s
ca

n
be

 li
st

ed
.

for76042_ch07.fm Page 201 Friday, February 13, 2009 4:16 PM

202 PART 2 NETWORK LAYER

datagram is processed can help users and managers track the behavior of the routers in
the Internet. We can estimate the time it takes for a datagram to go from one router to
another. We say estimate because, although all routers may use Universal Time, their
local clocks may not be synchronized.

However, nonprivileged users of the Internet are not usually aware of the physical
topology of the Internet. Consequently, a timestamp option is not a choice for most
users. Figure 7.19 shows the format of the timestamp option.

In this figure, the definitions of the code and length fields are the same as before.
The overflow field records the number of routers that could not add their timestamp
because no more fields were available. The flags field specifies the visited router
responsibilities. If the flag value is 0, each router adds only the timestamp in the pro-
vided field. If the flag value is 1, each router must add its outgoing IP address and the
timestamp. If the value is 3, the IP addresses are given, and each router must check
the given IP address with its own incoming IP address. If there is a match, the router
overwrites the IP address with its outgoing IP address and adds the timestamp (see
Figure 7.20).

Figure 7.19 Timestamp option

Figure 7.20 Use of flag in timestamp

Code: 68
01000100

Length
(Total length)

Pointer Flags
4 bits

First IP address

 Second IP address

 Last IP address

O-Flow
4 bits

0 1

Enter timestamps
only

Enter IP addresses
and timestamps

Flag: 0

Flag: 1

3
140.10.6.3

200.14.7.9

138.6.22.26

IP addresses given,
enter timestamps

Flag: 3

for76042_ch07.fm Page 202 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 203

Figure 7.21 shows the actions taken by each router when a datagram travels from
source to destination. The figure assumes a flag value of 1.

Example 7.10

Which of the six options must be copied to each fragment?

Solution
We look at the first (left-most) bit of the type for each option.

a. No operation: type is 00000001; not copied.

b. End of option: type is 00000000; not copied.

c. Record route: type is 00000111; not copied.

d. Strict source route: type is 10001001; copied.

e. Loose source route: type is 10000011; copied.

f. Timestamp: type is 01000100; not copied.

Example 7.11

Which of the six options are used for datagram control and which are used for debugging and
management?

Solution
We look at the second and third (left-most) bits of the type.

a. No operation: type is 00000001; datagram control.

b. End of option: type is 00000000; datagram control.

c. Record route: type is 00000111; datagram control.

d. Strict source route: type is 10001001; datagram control.

e. Loose source route: type is 10000011; datagram control.

f. Timestamp: type is 01000100; debugging and management control.

Figure 7.21 Timestamp concept

68 28 05 1 68 28 13 0 1
140.10.6.3
36000000

68 28 21 0 1
140.10.6.3
36000000
200.14.7.9
36000012

68 28 29 0 1
140.10.6.3
36000000
200.14.7.9

138.6.22.26
36000012

36000020

67.34.30.6 138.6.25.40
67

.1
4.

10
.2

2

140.10.0.0/16

14
0.

10
.5

.4

20
0.

14
.7

.9

200.14.7.0/24

20
0.

14
.7

.1
4

13
8.

6.
22

.2
6

138.6.0.0/16

14
0.

10
.6

.3

Network Network Network Network
67.0.0.0/24

for76042_ch07.fm Page 203 Friday, February 13, 2009 4:16 PM

204 PART 2 NETWORK LAYER

Example 7.12

One of the utilities available in UNIX to check the traveling of the IP packets is ping. In the next
chapter, we talk about the ping program in more detail. In this example, we want to show how to
use the program to see if a host is available. We ping a server at De Anza College named
fhda.edu. The result shows that the IP address of the host is 153.18.8.1. The result also shows the
number of bytes used.

Example 7.13

We can also use the ping utility with the -R option to implement the record route option. The
result shows the interfaces and IP addresses.

Example 7.14

The traceroute utility can also be used to keep track of the route of a packet. The result shows
the three routers visited.

Example 7.15

The traceroute program can be used to implement loose source routing. The -g option allows us
to define the routers to be visited, from the source to destination. The following shows how we
can send a packet to the fhda.edu server with the requirement that the packet visit the router
153.18.251.4.

$ ping fhda.edu
PING fhda.edu (153.18.8.1) 56(84) bytes of data.
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq =
0 ttl=62 time=1.87 ms
...

$ ping -R fhda.edu
PING fhda.edu (153.18.8.1) 56(124) bytes of data.
64 bytes from tiptoe.fhda.edu
(153.18.8.1): icmp_seq=0 ttl=62 time=2.70 ms
RR: voyager.deanza.fhda.edu (153.18.17.11)
 Dcore_G0_3-69.fhda.edu (153.18.251.3)
 Dbackup_V13.fhda.edu (153.18.191.249)
 tiptoe.fhda.edu (153.18.8.1)
 Dbackup_V62.fhda.edu (153.18.251.34)
 Dcore_G0_1-6.fhda.edu (153.18.31.254)
 voyager.deanza.fhda.edu (153.18.17.11)

$ traceroute fhda.edu
traceroute to fhda.edu (153.18.8.1), 30 hops max, 38 byte packets
 1 Dcore_G0_1-6.fhda.edu (153.18.31.254) 0.972 ms 0.902 ms
 0.881 ms
 2 Dbackup_V69.fhda.edu (153.18.251.4) 2.113 ms 1.996 ms
 2.059 ms
 3 tiptoe.fhda.edu (153.18.8.1) 1.791 ms 1.741 ms 1.751 ms

$ traceroute -g 153.18.251.4 fhda.edu.
traceroute to fhda.edu (153.18.8.1), 30 hops max, 46 byte packets
 1 Dcore_G0_1-6.fhda.edu (153.18.31.254) 0.976 ms 0.906 ms
 0.889 ms
 2 Dbackup_V69.fhda.edu (153.18.251.4) 2.168 ms 2.148 ms
 2.037 ms

for76042_ch07.fm Page 204 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 205

Example 7.16

The traceroute program can also be used to implement strict source routing. The -G option
forces the packet to visit the routers defined in the command line. The following shows how
we can send a packet to the fhda.edu server and force the packet to visit only the router
153.18.251.4.

7.5 CHECKSUM
The error detection method used by most TCP/IP protocols is called the checksum.
The checksum protects against the corruption that may occur during the transmission of
a packet. It is redundant information added to the packet.

The checksum is calculated at the sender and the value obtained is sent with the
packet. The receiver repeats the same calculation on the whole packet including the
checksum. If the result is satisfactory (see below), the packet is accepted; otherwise, it
is rejected.

Checksum Calculation at the Sender
At the sender, the packet header is divided into n-bit sections (n is usually 16). These
sections are added together using one’s complement arithmetic (see Appendix D),
resulting in a sum that is also n bits long. The sum is then complemented (all 0s
changed to 1s and all 1s to 0s) to produce the checksum.

To create the checksum the sender does the following:

❑ The packet is divided into k sections, each of n bits.

❑ All sections are added together using one’s complement arithmetic.

❑ The final result is complemented to make the checksum.

Checksum Calculation at the Receiver
The receiver divides the received packet into k sections and adds all sections. It then
complements the result. If the final result is 0, the packet is accepted; otherwise, it is
rejected. Figure 7.22 shows graphically what happens at the sender and the receiver.

We said when the receiver adds all of the sections and complements the result, it
should get zero if there is no error in the data during transmission or processing. This is
true because of the rules in one’s complement arithmetic.

Assume that we get a number called T when we add all the sections in the
sender. When we complement the number in one’s complement arithmetic, we get
the negative of the number. This means that if the sum of all sections is T, the check-
sum is −T.

$ traceroute -G 153.18.251.4 fhda.edu.
traceroute to fhda.edu (153.18.8.1), 30 hops max, 46 byte packets
 1 Dbackup_V69.fhda.edu (153.18.251.4) 2.168 ms 2.148 ms
 2.037 ms

for76042_ch07.fm Page 205 Friday, February 13, 2009 4:16 PM

206 PART 2 NETWORK LAYER

When the receiver receives the packet, it adds all the sections. It adds T and –T
which, in one’s complement, is –0 (minus zero). When the result is complemented, –0
becomes 0. Thus if the final result is 0, the packet is accepted; otherwise, it is rejected
(see Figure 7.23).

Checksum in the IP Packet
The implementation of the checksum in the IP packet follows the same principles dis-
cussed above. First, the value of the checksum field is set to 0. Then, the entire header
is divided into 16-bit sections and added together. The result (sum) is complemented
and inserted into the checksum field.

The checksum in the IP packet covers only the header, not the data. There are two
good reasons for this. First, all higher-level protocols that encapsulate data in the IP
datagram have a checksum field that covers the whole packet. Therefore, the checksum
for the IP datagram does not have to check the encapsulated data. Second, the header of
the IP packet changes with each visited router, but the data do not. So the checksum
includes only the part that has changed. If the data were included, each router would
have to recalculate the checksum for the whole packet, which means an increase in pro-
cessing time.

Example 7.17

Figure 7.24 shows an example of a checksum calculation at the sender site for an IP header with-
out options. The header is divided into 16-bit sections. All the sections are added and the sum is
complemented. The result is inserted in the checksum field.

Figure 7.22 Checksum concept

Figure 7.23 Checksum in one’s complement arithmetic

Checksum in IP covers only the header, not the data.

..............

..............

Checksum
Packet

n bits n bits

n bits

n bits

n bits

n bits

n bits

Sender

Section 1

n bits

n bits

Sum
Complement

Checksum

n bits

All 0s

Section 2

Checksum

n bitsSection k

Section 1

Sum
Complement

Result

Section 2

Checksum

Section k

Receiver

n bits

..............

..............

If the result is 0, keep;
otherwise, discard.

Sender

Sum : T
Checksum : _T

Sum : T _ T = _ 0
Checksum : _ (_ 0) = 0

ReceiverDatagram

_TT

for76042_ch07.fm Page 206 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 207

Example 7.18

Figure 7.25 shows the checking of checksum calculation at the receiver site (or intermediate
router) assuming that no errors occurred in the header. The header is divided into 16-bit sections.
All the sections are added and the sum is complemented. Since the result is 16 0s, the packet is
accepted.

7.6 IP OVER ATM
In the previous sections, we assumed that the underlying networks over which the IP
datagrams are moving are either LANs or point-to-point WANs. In this section, we
want to see how an IP datagram is moving through a switched WAN such as an ATM.
We will see that there are similarities as well as differences. The IP packet is encapsu-
lated in cells (not just one). An ATM network has its own definition for the physical
address of a device. Binding between an IP address and a physical address is attained
through a protocol called ATMARP (discussed in Chapter 8).

Figure 7.24 Example of checksum calculation at the sender

Figure 7.25 Example of checksum calculation at the receiver

Appendix D gives an algorithm for checksum calculation.

10.12.14.5

0 284 5
1 00

4 17

12.6.7.9

01000101
00000000
00000000
00000000
00000100
00000000
00001010
00001110
00001100
00000111

00000000
00011100
00000001
00000000
00010001
00000000
00001100
00000101
00000110
00001001

4, 5, and 0
28
1

0 and 0
4 and 17

0
10.12
14.5
12.6
7.9

0

Sum
Checksum

Substitute for 001110100
10001011

01001110
10110001

10.12.14.5

0 284 5
1 00

4 17

12.6.7.9

01000101
00000000
00000000
00000000
00000100
10001011
00001010
00001110
00001100
00000111

00000000
00011100
00000001
00000000
00010001
10110001
00001100
00000101
00000110
00001001

4, 5, and 0
28
1

0 and 0
4 and 17

Checksum
10.12
14.5
12.6
7.9

Sum
Checksum

35761

1111 1111
0000 0000

1111 1111
0000 0000

for76042_ch07.fm Page 207 Friday, February 13, 2009 4:16 PM

208 PART 2 NETWORK LAYER

ATM WANs
We discussed ATM WANs in Chapter 3. ATM, a cell-switched network, can be a high-
way for an IP datagram. Figure 7.26 shows how an ATM network can be used in the
Internet.

AAL Layer

In Chapter 3, we discussed different AAL layers and their applications. The only AAL
used by the Internet is AAL5. It is sometimes called the simple and efficient adaptation
layer (SEAL). AAL5 assumes that all cells created from one IP datagram belong to a
single message. AAL5 therefore provides no addressing, sequencing, or other header
information. Instead, only padding and a four-field trailer are added to the IP packet.

AAL5 accepts an IP packet of no more than 65,536 bytes and adds an 8-byte trailer
as well as any padding required to ensure that the position of the trailer falls where the
receiving equipment expects it (at the last 8 bytes of the last cell). Once the padding and
trailer are in place, AAL5 passes the message in 48-byte segments to the ATM layer.

Why Use AAL5?

A question that frequently comes up is why do we use AAL5. Why can’t we just encap-
sulate an IP packet in a cell? The answer is that it is more efficient to use AAL5. If an IP
datagram is to be encapsulated in a cell, the data at the IP level must be 53 − 5 − 20 =
27 bytes because a minimum of 20 bytes is needed for the IP header and 5 bytes is
needed for the ATM header. The efficiency is 27/53, or almost 51 percent. By letting an
IP datagram span over several cells, we are dividing the IP overhead (20 bytes) among
those cells and increasing efficiency.

Routing the Cells
The ATM network creates a route between two routers. We call these routers entering-
point and exiting-point routers. The cells start from the entering-point router and end at
the exiting-point router as shown in Figure 7.27.

Figure 7.26 An ATM WAN in the Internet

The AAL layer used by the IP protocol is AAL5.

Switch Switch

Switch
IP router

IP router

ATM
Network

IP router

Switch

I II

IV

III

for76042_ch07.fm Page 208 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 209

Addresses

Routing the cells from one specific entering-point router to one specific exiting-point
router requires three types of addressing: IP addresses, physical addresses, and virtual
circuit identifiers.

IP Addresses Each router connected to the ATM network has an IP address. Later we
will see that the addresses may or may not have the same prefix. The IP address defines
the router at the IP layer. It does not have anything to do with the ATM network.

Physical Addresses Each router (or any other device) connected to the ATM network
has also a physical address. The physical address is associated with the ATM network
and does not have anything to do with the Internet. The ATM Forum defines 20-byte
addresses for ATM networks. Each address must be unique in a network and is defined
by the network administrator. The physical addresses in an ATM network play the same
role as the MAC addresses in a LAN. The physical addresses are used during connection
establishment.

Virtual Circuit Identifiers The switches inside the ATM network route the cells
based on the virtual circuit identifiers (VPIs and VCIs), as we discussed in Chapter 3.
The virtual circuit identifiers are used during data transfer.

Address Binding

An ATM network needs virtual circuit identifiers to route the cells. The IP datagram
contains only source and destination IP addresses. Virtual circuit identifiers must be
determined from the destination IP address. Figure 7.28 shows how this is done. These
are the steps:

1. The entering-point router receives an IP datagram. It uses the destination address
and its routing table to find the IP address of the next router, the exiting-point router.
This is exactly the same step followed when a datagram passes through a LAN.

Figure 7.27 Entering-point and exiting-point routers

ATM Network

ATM cell

Entering-point
router

Exiting-point
router

IP Packet

IP
 P

ac
ke

t

I II III

for76042_ch07.fm Page 209 Friday, February 13, 2009 4:16 PM

210 PART 2 NETWORK LAYER

2. The entering-point router uses the services of a protocol called ATMARP to find
the physical address of the exiting-point router. ATMARP is similar to ARP (dis-
cussed in Chapter 8).

3. The virtual circuit identifiers are bound to the physical addresses as discussed in
Chapter 3.

7.7 SECURITY
The IPv4 protocol, as well as the whole Internet, was started when the Internet users
trusted each other. No security was provided for the IPv4 protocol. Today, however, the
situation is different; the Internet is not secure any more. Although we discuss network
security in general and IP security in particular in Chapters 29 and 30, we give a brief
idea about the security issues in IP protocol and the solution.

Security Issues
There are three security issues that are particularly applicable to the IP protocol: packet
sniffing, packet modification, and IP spoofing.

Packet Sniffing

An intruder may intercept an IP packet and make a copy of it. Packet sniffing is a pas-
sive attack, in which the attacker does not change the contents of the packet. This type
of attack is very difficult to detect because the sender and the receiver may never know
that the packet has been copied. Although packet sniffing cannot be stopped, encryption
of the packet can make the attacker effort useless. The attacker may still sniff the
packet, but it cannot find its contents.

Packet Modification

The second type of attack is to modify the packet. The attacker intercepts the packet,
changes its contents, and sends the new packet to the receiver. The receiver believes
that the packet is coming from the original sender. This type of attack can be detected
using a data integrity mechanism. The receiver before opening and using the contents
of the message can use this mechanism to make sure that the packet has not been
changed during the transmission.

IP Spoofing

An attacker can masquerade as somebody else and create an IP packet that carries
the source address of another computer. An attacker can send an IP packet to a bank

Figure 7.28 Address binding in IP over ATM

ATMARP ATM
setup

Destination
IP address

Next-hop
IP address

Routing Table
Exit-point

physical address
VCI

Next-hop

address

Destination

address
.............

.............

.............

.............

for76042_ch07.fm Page 210 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 211

pretending that it is coming from one of the customers. This type of attack can be
prevented using an origin authentication mechanism.

IPSec
The IP packets today can be protected from the previously mentioned attacks using a
protocol called IPSec (IP Security). This protocol, which is used in conjunction with
the IP protocol, creates a connection-oriented service between two entities in which
they can exchange IP packets without worrying about the three attacks discussed
before. We will discuss IPSec in detail in Chapter 30, it is enough to mention that IPSec
provides the following four services:

Defining Algorithms and Keys

The two entities that want to create a secure channel between themselves can agree on
some available algorithms and keys to be used for security purposes.

Packets Encryption

The packets exchanged between two parties can be encrypted for privacy using one of
the encryption algorithms and a shared key agreed upon in the first step. This makes the
packet sniffing attack useless.

Data Integrity

Data integrity guarantees that the packet is not modified during the transmission. If the
received packet does not pass the data integrity test, it is discarded. This prevents the
second attack, packet modification, described above.

Origin Authentication

IPsec can authenticate the origin of the packet to be sure that the packet is not created
by an imposter. This can prevent IP spoofing attack as described above.

7.8 IP PACKAGE
In this section, we present a simplified example of a hypothetical IP package. Our
purpose is to show the relationships between the different concepts discussed in this
chapter. Figure 7.29 shows eight components and their interactions.

Although IP supports several options, we have omitted option processing in our
package to make it easier to understand at this level. In addition, we have sacrificed
efficiency for the sake of simplicity.

We can say that the IP package involves eight components: a header-adding mod-
ule, a processing module, a forwarding module, a fragmentation module, a reassembly
module, a routing table, an MTU table, and a reassembly table. In addition, the package
includes input and output queues.

The package receives a packet, either from the data link layer or from a higher-
level protocol. If the packet comes from an upper-layer protocol, it is delivered to the
data link layer for transmission (unless it has a loopback address of 127.X.Y.Z). If the
packet comes from the data link layer, it is either delivered to the data link layer for for-
warding (in a router) or it is delivered to a higher-layer protocol if the destination IP

for76042_ch07.fm Page 211 Friday, February 13, 2009 4:16 PM

212 PART 2 NETWORK LAYER

address of the packet is the same as the station IP address. Note that we used multiple
queues to and from the data link layer because a router is multihomed.

Header-Adding Module
The header-adding module (Table 7.3) receives data from an upper-layer protocol
along with the destination IP address. It encapsulates the data in an IP datagram by add-
ing the IP header.

Figure 7.29 IP components

Table 7.3 Adding module

1 IP_Adding_Module (data, destination_address)

2 {

3 Encapsulate data in an IP datagram

4 Calculate checksum and insert it in the checksum field

5 Send data to the corresponding queue

6 Return

7 }

Reassembly
 module

Processing
module

Header-adding
module

Reassembly
table

Routing
table

MTU
table

Forwarding
module

From data link layer

From upper-layer protocol To upper-layer protocol

To data link layer

Fragmentation
module

IP

IP packet

IP packet

IP packet

Data and
destination address

Data

IP packet,
next hop,
interface

IP packet,
next hop

IP packet

for76042_ch07.fm Page 212 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4)

213

Processing Module

The

processing module

 (Table 7.4) is the heart of the IP package. In our package, the
processing module receives a datagram from an interface or from the header-adding
module. It treats both cases the same. A datagram must be processed and routed regard-
less of where it comes from.

The processing module first checks to see if the datagram has reached its final
destination. In this case, the packet is sent to the reassembly module.

If the node is a router, it decrements the time-to-live (TTL) field by one. If this
value is less than or equal to zero, the datagram is discarded and an ICMP message (see
Chapter 9) is sent to the original sender. If the value of TTL is greater than zero after dec-
rement, the processing module sends the datagram to the forwarding module.

Queues

Our package uses two types of queues: input queues and output queues. The

input
queues

 store the datagrams coming from the data link layer or the upper-layer proto-
cols. The

output queues

 store the datagrams going to the data link layer or the upper-
layer protocols. The processing module dequeues (removes) the datagrams from the
input queues. The fragmentation and reassembly modules enqueue (add) the datagrams
into the output queues.

Table 7.4

 Processing module

1 IP_Processing_Module (Datagram)

2 {

3 Remove one datagram from one of the input queues.

4 If (destination address matches a local address)

5 {

6 Send the datagram to the reassembly module.

7 Return.

8 }

9 If (machine is a router)

10 {

11 Decrement TTL.

12 }

13 If (TTL less than or equal to zero)

14 {

15 Discard the datagram.

16 Send an ICMP error message.

17 Return.

18 }

19 Send the datagram to the forwarding module.

20 Return.

21 }

for76042_ch07.fm Page 213 Monday, February 16, 2009 1:19 PM

214 PART 2 NETWORK LAYER

Routing Table
We discussed the routing table in Chapter 6. The routing table is used by the forwarding
module to determine the next-hop address of the packet.

Forwarding Module
We discussed the forwarding module in Chapter 6. The forwarding module receives
an IP packet from the processing module. If the packet is to be forwarded, it is passed
to this module. The module finds the IP address of the next station along with the inter-
face number to which the packet should be sent. It then sends the packet with this infor-
mation to the fragmentation module.

MTU Table
The MTU table is used by the fragmentation module to find the maximum transfer
unit (MTU) of a particular interface. It can have only two columns: interface and MTU.

Fragmentation Module
In our package, the fragmentation module (Table 7.5) receives an IP datagram from
the forwarding module. The forwarding module gives the IP datagram, the IP address
of the next station (either the final destination in a direct delivery or the next router in
an indirect delivery), and the interface number through which the datagram is sent out.

The fragmentation module consults the MTU table to find the MTU for the specific
interface number. If the length of the datagram is larger than the MTU, the fragmentation
module fragments the datagram, adds a header to each fragment, and sends them to the
ARP package (see Chapter 8) for address resolution and delivery.

Table 7.5 Fragmentation module

1 IP_Fragmentation_Module (datagram)

2 {

3 Extract the size of datagram

4 If (size > MTU of the corresponding network)

5 {

6 If (D bit is set)

7 {

8 Discard datagram

9 Send an ICMP error message

10 return

11 }

12 Else

13 {

14 Calculate maximum size

15 Divide the segment into fragments

16 Add header to each fragment

17 Add required options to each fragment

for76042_ch07.fm Page 214 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 215

Reassembly Table
The reassembly table is used by the reassembly module. In our package, the reassem-
bly table has five fields: state, source IP address, datagram ID, time-out, and fragments
(see Figure 7.30).

The value of the state field can be either FREE or IN-USE. The IP address field
defines the source IP address of the datagram. The datagram ID is a number that
uniquely defines a datagram and all of the fragments belonging to that datagram. The
time-out is a predetermined amount of time in which all fragments must arrive. Finally,
the fragments field is a pointer to a linked list of fragments.

Reassembly Module
The reassembly module (Table 7.6) receives, from the processing module, those data-
gram fragments that have arrived at their final destinations. In our package, the reas-
sembly module treats an unfragmented datagram as a fragment belonging to a datagram
with only one fragment.

Because the IP protocol is a connectionless protocol, there is no guarantee that the
fragments arrive in order. Besides, the fragments from one datagram can be intermixed
with fragments from another datagram. To keep track of these situations, the module
uses a reassembly table with associated linked lists, as we described earlier.

The job of the reassembly module is to find the datagram to which a fragment
belongs, to order the fragments belonging to the same datagram, and reassemble all
fragments of a datagram when all have arrived. If the established time-out has expired
and any fragment is missing, the module discards the fragments.

18 Send fragment

19 return

20 }

21 }

22 Else

23 {

24 Send the datagram

25 }

26 Return.

27 }

Figure 7.30 Reassembly table

Table 7.5 Fragmentation module (continued)

S. A. D. I.St. T. O. F.
St.: State
S. A.: Source address
D. I.: Datagram ID
T. O.: Time-out
F.: Fragments

for76042_ch07.fm Page 215 Friday, February 13, 2009 4:16 PM

216 PART 2 NETWORK LAYER

7.9 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give thorough coverage of materials discussed in this chapter. We recom-
mend [Com 06], [Tan 03], [Kur & Ros 08], and [Gar & Vid 04].

Table 7.6 Reassembly module

1 IP_Reassembly_Module (datagram)

2 {

3 If (offset value = 0 AND M = 0)

4 {

5 Send datagram to the appropriate queue

6 Return

7 }

8 Search the reassembly table for the entry

9 If (entry not found)

10 {

11 Create a new entry

12 }

13 Insert datagram into the linked list

14 If (all fragments have arrived)

15 {

16 Reassemble the fragment

17 Deliver the fragment to upper-layer protocol

18 return

19 }

20 Else

21 {

22 If (time-out expired)

23 {

24 Discard all fragments

25 Send an ICMP error message

26 }

27 }

28 Return.

29 }

for76042_ch07.fm Page 216 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 217

RFCs
Several RFCs discuss the IPv4 protocol including: RFC 791, RFC 815, RFC 894, RFC
1122, RFC 2474, and RFC 2475.

7.10 KEY TERMS

7.11 SUMMARY
❑ IP is an unreliable connectionless protocol responsible for source-to-destination

delivery. Packets in the IP layer are called datagrams.

❑ The MTU is the maximum number of bytes that a data link protocol can encapsu-
late. MTUs vary from protocol to protocol. Fragmentation is the division of a data-
gram into smaller units to accommodate the MTU of a data link protocol.

❑ The IP datagram header consists of a fixed, 20-byte section and a variable
options section with a maximum of 40 bytes. The options section of the IP
header is used for network testing and debugging. The six IP options each have a
specific function.

❑ The error detection method used by IP is the checksum. The checksum, however,
covers only the header, but not the data. The checksum uses one’s complement
arithmetic to add equal-size sections of the IP header. The complemented result is
stored in the checksum field. The receiver also uses one’s complement arithmetic
to check the header.

best-effort delivery maximum transfer unit (MTU)
checksum no-operation option
codepoint output queue
datagram ping
destination address pointer field
differentiated services precedence
end-of-option option processing module
entering-point router reassembly module
exiting-point router reassembly table
forwarding module record-route option
fragmentation service type
fragmentation module source address
fragmentation offset strict-source-route option
header length time to live
header-adding module timestamp option
input queue traceroute

type field
type of service (TOS)
value field

Internet Protocol (IP)
length field
loose-source-route option

for76042_ch07.fm Page 217 Friday, February 13, 2009 4:16 PM

218 PART 2 NETWORK LAYER

❑ IP over ATM uses AAL5 layer in an ATM network. An ATM network creates a
route between an entering-point router and an exiting-point router. The next-hop
address of an IP packet can be mapped to a physical address of an exiting-point
router using ATMARP.

❑ An IP package can consist of the following: a header-adding module, a processing
module, a forwarding module, a fragmentation module, a reassembly module, a rout-
ing table, an MTU table, and a reassembly table.

7.12 PRACTICE SET

Exercises
1. Which fields of the IP header change from router to router?

2. Calculate the HLEN value if the total length is 1200 bytes, 1176 of which is data
from the upper layer.

3. Table 7.3 lists the MTUs for many different protocols. The MTUs range from 296
to 65,535. What would be the advantages of having a large MTU? What would be
the advantages of having a small MTU?

4. Given a fragmented datagram with an offset of 120, how can you determine the
first and last byte number?

5. An IP datagram must go through router 128.46.10.5. There are no other restric-
tions on the routers to be visited. Draw the IP options with their values.

6. What is the maximum number of routers that can be recorded if the timestamp
option has a flag value of 1? Why?

7. Can the value of the header length in an IP packet be less than 5? When is it
exactly 5?

8. The value of HLEN in an IP datagram is 7. How many option bytes are present?

9. The size of the option field of an IP datagram is 20 bytes. What is the value of
HLEN? What is the value in binary?

10. The value of the total length field in an IP datagram is 36 and the value of the
header length field is 5. How many bytes of data is the packet carrying?

11. A datagram is carrying 1024 bytes of data. If there is no option information, what
is the value of the header length field? What is the value of the total length field?

12. A host is sending 100 datagrams to another host. If the identification number of the
first datagram is 1024, what is the identification number of the last?

13. An IP datagram arrives with fragmentation offset of 0 and an M bit (more fragment
bit) of 0. Is this a first fragment, middle fragment, or last fragment?

14. An IP fragment has arrived with an offset value of 100. How many bytes of data
were originally sent by the source before the data in this fragment?

15. An IP datagram has arrived with the following information in the header (in hexa-
decimal):

45 00 00 54 00 03 00 00 20 06 00 00 7C 4E 03 02 B4 0E 0F 02

for76042_ch07.fm Page 218 Friday, February 13, 2009 4:16 PM

CHAPTER 7 INTERNET PROTOCOL VERSION 4 (IPV4) 219

a. Are there any options?

b. Is the packet fragmented?

c. What is the size of the data?

d. Is a checksum used?

e. How many more routers can the packet travel to?

f. What is the identification number of the packet?

g. What is the type of service?

16. In a datagram, the M bit is zero, the value of HLEN is 5, the value of total length is
200, and the offset value is 200. What is the number of the first byte and number of
the last byte in this datagram? Is this the last fragment, the first fragment, or a middle
fragment?

Research Activities
17. Use the ping utility with the -R option to check the routing of a packet to a destina-

tion. Interpret the result.

18. Use the traceroute utility with the -g option to implement the loose source route
option. Choose some routers between the source and destination. Interpret the
result and find if all defined routers have been visited.

19. Use the traceroute utility with the -G option to implement the strict source route
option. Choose some routers between the source and destination. Interpret the
result and find if all defined routers have been visited and no undefined router
visited.

for76042_ch07.fm Page 219 Friday, February 13, 2009 4:16 PM

C H A P T E R

8

220

8

Address Resolution
Protocol (ARP)

efore the IP protocol can deliver a packet from a source host to the desti-
nation host, it needs to know how to deliver it to the next hop first. An

IP packet can consult its routing table, as discussed in Chapter 6, to find the
IP address of the next hop. But since IP uses the services of the data link
layer, it needs to know the physical address of the next hop. This can be
done using a protocol, called Address Resolution Protocol (ARP), which
we discuss in this section.

OBJECTIVES

The chapter has several objectives:

❑

To make a distinction between logical address (IP address), which
is used at the network layer, and physical address (MAC address),
which is used at the data link layer.

❑

To describe how the mapping of a logical address to a physical
address can be static or dynamic.

❑

To show how the address resolution protocol (ARP) is used to
dynamically map a logical address to a physical address.

❑

To show that the proxy ARP can be used to create a subnetting effect.

❑

To discuss ATMARP, which maps the IP addresses when the underly-
ing network is an ATM WAN.

❑

To show that an ARP software package can be made of five compo-
nents: a cache table, queues, an output module, an input module, and
a cache-control module.

❑

To show the pseudocode for each module used in the ARP software
package.

B

for76042_ch08.fm Page 220 Friday, February 13, 2009 4:28 PM

221

8.1 ADDRESS MAPPING

An internet is made of a combination of physical networks connected together by
internetworking devices such as routers. A packet starting from a source host may pass
through several different physical networks before finally reaching the destination host.

The hosts and routers are recognized at the network level by their logical addresses.
A logical address is an internetwork address. Its jurisdiction is universal. A logical
address is unique universally. It is called a

logical

 address because it is usually imple-
mented in software. Every protocol that deals with interconnecting networks requires
logical addresses. The logical addresses in the TCP/IP protocol suite are called

IP
addresses

 and are 32 bits long.
However, packets pass through physical networks to reach these hosts and routers.

At the physical level, the hosts and routers are recognized by their physical addresses.
A

physical address

 is a local address. Its jurisdiction is a local network. It should be
unique locally, but not necessarily universally. It is called a

physical

 address because it
is usually (but not always) implemented in hardware. Examples of physical addresses
are 48-bit MAC addresses in the Ethernet protocol, which are imprinted on the NIC
installed in the host or router.

The physical address and the logical address are two different identifiers. We need
both of them because a physical network such as Ethernet can have two different proto-
cols at the network layer such as IP and IPX (Novell) at the same time. Likewise, a
packet at a network layer such as IP may pass through different physical networks such
as Ethernet and LocalTalk (Apple).

This means that delivery of a packet to a host or a router requires two levels of
addressing: logical and physical. We need to be able to map a logical address to its cor-
responding physical address and vice versa. These can be done using either static or
dynamic mapping.

Static Mapping

Static mapping

 means creating a table that associates a logical address with a physical
address. This table is stored in each machine on the network. Each machine that knows,
for example, the IP address of another machine but not its physical address can look it
up in the table. This has some limitations because physical addresses may change in the
following ways:

1.

A machine could change its NIC, resulting in a new physical address.

2.

In some LANs, such as LocalTalk, the physical address changes every time the
computer is turned on.

3.

A mobile computer can move from one physical network to another, resulting in a
change in its physical address.

for76042_ch08.fm Page 221 Friday, February 13, 2009 4:28 PM

222

PART 2 NETWORK LAYER

To implement these changes, a static mapping table must be updated periodically. This
overhead could affect network performance.

Dynamic Mapping

In

dynamic mapping

, each time a machine knows the logical address of another machine,
it can use a protocol to find the physical address. Two protocols have been designed to per-
form dynamic mapping:

Address Resolution Protocol (ARP)

and

 Reverse Address
Resolution Protocol (RARP)

. ARP maps a logical address to a physical address; RARP
maps a physical address to a logical address. Since RARP is replaced with another proto-
col and therefore deprecated, we discuss only ARP protocol in this chapter.

8.2 THE ARP PROTOCOL

Anytime a host or a router has an IP datagram to send to another host or router, it has
the logical (IP) address of the receiver. But the IP datagram must be encapsulated in a
frame to be able to pass through the physical network. This means that the sender needs
the physical address of the receiver. A mapping corresponds a logical address to a phys-
ical address. Figure 8.1 shows the position of the ARP in the TCP/IP protocol suite. ARP
accepts a logical address from the IP protocol, maps the address to the corresponding
physical address and pass it to the data link layer.

ARP associates an IP address with its physical address. On a typical physical net-
work, such as a LAN, each device on a link is identified by a physical or station address
that is usually imprinted on the NIC.

Anytime a host, or a router, needs to find the physical address of another host or
router on its network, it sends an ARP query packet. The packet includes the physical
and IP addresses of the sender and the IP address of the receiver. Because the sender
does not know the physical address of the receiver, the query is broadcast over the net-
work (see Figure 8.2).

Every host or router on the network receives and processes the ARP query packet,
but only the intended recipient recognizes its IP address and sends back an ARP
response packet. The response packet contains the recipient’s IP and physical
addresses. The packet is unicast directly to the inquirer using the physical address
received in the query packet.

In Figure 8.2a,

the system on the left (A) has a packet that needs to be delivered to
another system (B) with IP address 141.23.56.23. System A needs to pass the packet to
its data link layer for the actual delivery, but it does not know the physical address of

Figure 8.1

Position of ARP in TCP/IP protocol suite

Network
layer IP

ICMP IGMP

ARP

Logical
address

Physical
address

for76042_ch08.fm Page 222 Friday, February 13, 2009 4:28 PM

CHAPTER 8 ADDRESS RESOLUTION PROTOCOL (ARP)

223

the recipient. It uses the services of ARP by asking the ARP protocol to send a broad-
cast ARP request packet to ask for the physical address of a system with an IP address
of 141.23.56.23.

This packet is received by every system on the physical network, but only system
B will answer it, as shown in Figure 8.2b. System B sends an ARP reply packet that
includes its physical address. Now system A can send all the packets it has for this des-
tination using the physical address it received.

Packet Format

Figure 8.3 shows the format of an ARP packet. The fields are as follows:

❑

Hardware type.

 This is a 16-bit field defining the type of the network on which
ARP is running. Each LAN has been assigned an integer based on its type. For
example, Ethernet is given the type 1. ARP can be used on any physical network.

❑

Protocol type.

 This is a 16-bit field defining the protocol. For example, the value
of this field for the IPv4 protocol is 0800

16

. ARP can be used with any higher-level
protocol.

❑

Hardware length.

 This is an 8-bit field defining the length of the physical address
in bytes. For example, for Ethernet the value is 6.

❑

Protocol length.

 This is an 8-bit field defining the length of the logical address in
bytes. For example, for the IPv4 protocol the value is 4.

Figure 8.2

ARP operation

b. ARP reply is unicast

LAN

a. ARP request is multicast

Looking for physical address of a
node with IP address 141.23.56.23

System A System B

Request

The node physical address
is A4:6E:F4:59:83:AB

LAN

System A System B

Reply

for76042_ch08.fm Page 223 Friday, February 13, 2009 4:28 PM

224

PART 2 NETWORK LAYER

❑

Operation.

 This is a 16-bit field defining the type of packet. Two packet types are
defined: ARP request (1), ARP reply (2).

❑

Sender hardware address.

 This is a variable-length field defining the physical
address of the sender. For example, for Ethernet this field is 6 bytes long.

❑

Sender protocol address.

 This is a variable-length field defining the logical (for
example, IP) address of the sender. For the IP protocol, this field is 4 bytes long.

❑

Target hardware address.

 This is a variable-length field defining the physical
address of the target. For example, for Ethernet this field is 6 bytes long. For an
ARP request message, this field is all 0s because the sender does not know the
physical address of the target.

❑

Target protocol address.

 This is a variable-length field defining the logical (for
example, IP) address of the target. For the IPv4 protocol, this field is 4 bytes long.

Encapsulation

An ARP packet is encapsulated directly into a data link frame. For example, in Figure 8.4
an ARP packet is encapsulated in an Ethernet frame. Note that the type field indicates
that the data carried by the frame is an ARP packet.

Operation

Let us see how ARP functions on a typical internet. First we describe the steps
involved. Then we discuss the four cases in which a host or router needs to use ARP.

Steps Involved

These are seven steps involved in an ARP process:

1.

The sender knows the IP address of the target. We will see how the sender obtains
this shortly.

2.

IP asks ARP to create an ARP request message, filling in the sender physical
address, the sender IP address, and the target IP address. The target physical
address field is filled with 0s.

Figure 8.3

ARP packet

Operation
Request 1, Reply 2

Target hardware address
(For example, 6 bytes for Ethernet)

(It is not filled in a request)

Target protocol address
(For example, 4 bytes for IP)

Sender protocol address
(For example, 4 bytes for IP)

Sender hardware address
(For example, 6 bytes for Ethernet)

Hardware Type Protocol Type

Hardware
length

Protocol
length

for76042_ch08.fm Page 224 Friday, February 13, 2009 4:28 PM

CHAPTER 8 ADDRESS RESOLUTION PROTOCOL (ARP)

225

3.

The message is passed to the data link layer where it is encapsulated in a frame
using the physical address of the sender as the source address and the physical
broadcast address as the destination address.

4.

Every host or router receives the frame. Because the frame contains a broadcast desti-
nation address, all stations remove the message and pass it to ARP. All machines
except the one targeted drop the packet. The target machine recognizes the IP address.

5.

The target machine replies with an ARP reply message that contains its physical
address. The message is unicast.

6.

The sender receives the reply message. It now knows the physical address of the
target machine.

7.

The IP datagram, which carries data for the target machine, is now encapsulated in
a frame and is unicast to the destination.

Four Different Cases

The following are four different cases in which the services of ARP can be used (see
Figure 8.5).

❑

Case 1:

 The sender is a host and wants to send a packet to another host on the same
network. In this case, the logical address that must be mapped to a physical address
is the destination IP address in the datagram header.

❑

Case 2:

 The sender is a host and wants to send a packet to another host on another
network. In this case, the host looks at its routing table and finds the IP address of
the next hop (router) for this destination. If it does not have a routing table, it looks
for the IP address of the default router. The IP address of the router becomes the
logical address that must be mapped to a physical address.

❑

Case 3:

 The sender is a router that has received a datagram destined for a host on
another network. It checks its routing table and finds the IP address of the next
router. The IP address of the next router becomes the logical address that must be
mapped to a physical address.

❑

Case 4:

 The sender is a router that has received a datagram destined for a host in
the same network. The destination IP address of the datagram becomes the logical
address that must be mapped to a physical address.

Figure 8.4

Encapsulation of ARP packet

An ARP request is broadcast; an ARP reply is unicast.

ARP request or reply packet

Data
Preamble
and SFD

Destination
address

Source
address

Type CRC

8 bytes 6 bytes 6 bytes 2 bytes 4 bytes

Type: 0x0806

for76042_ch08.fm Page 225 Friday, February 13, 2009 4:28 PM

226

PART 2 NETWORK LAYER

Example 8.1

A host with IP address 130.23.43.20 and physical address B2:34:55:10:22:10 has a packet to
send to another host with IP address 130.23.43.25 and physical address A4:6E:F4:59:83:AB
(which is unknown to the first host). The two hosts are on the same Ethernet network. Show the
ARP request and reply packets encapsulated in Ethernet frames.

Solution

Figure 8.6 shows the ARP request and reply packets. Note that the ARP data field in this case is
28 bytes, and that the individual addresses do not fit in the 4-byte boundary. That is why we do
not show the regular 4-byte boundaries for these addresses. Also note that the IP addresses are
shown in hexadecimal. For information on binary or hexadecimal notation see Appendix B.

Proxy ARP

A technique called

proxy

 ARP is used to create a subnetting effect. A

proxy ARP

 is an
ARP that acts on behalf of a set of hosts. Whenever a router running a proxy ARP
receives an ARP request looking for the IP address of one of these hosts, the router
sends an ARP reply announcing its own hardware (physical) address. After the router
receives the actual IP packet, it sends the packet to the appropriate host or router.

Let us give an example. In Figure 8.7 the ARP installed on the right-hand host will
answer only to an ARP request with a target IP address of 141.23.56.23.

Figure 8.5

Four cases using ARP

Case 1: Case 2:

Case 3: Case 4:

A host has a packet to send to
a host on the same network.

Sender

Receiver
Receiver

Receiver

Host

Sender

Host

Host

Target IP address:
Destination address in the IP datagram

Router

A host has a packet to send to
a host on another network.

Target IP address:
IP address of a router

Target IP address:
IP address of a router

A router has a packet to send
to a host on another network.

Receiver

RouterRouter

Sender

 A router has a packet to send
 to a host on the same network.

Router

Sender

Target IP address:
Destination address in the IP datagram

Host

for76042_ch08.fm Page 226 Friday, February 13, 2009 4:28 PM

CHAPTER 8 ADDRESS RESOLUTION PROTOCOL (ARP)

227

Figure 8.6

Example 8.1

Figure 8.7

Proxy ARP

B2:34:55:10:22:10 A4:6E:F4:59:83:AB

System A System B

From A to B

From B to A

130.23.43.20 130.23.43.25

ARP Reply

130.23.43.20

130.23.43.25

0x0800

0x04

0x0001

0xA46EF45983AB
0x82172B19

0xB23455102210
0x82172B14

0xA46EF45983AB

0x06 0x0002

0xB23455102210 Data
Preamble
and SFD

0x0806 CRC

ARP Request

130.23.43.20

130.23.43.25

0xFFFFFFFFFFFF 0xB23455102210
Data

28 bytes

0x0800

0x04

0x0001

0xB23455102210
0x82172B14

0x000000000000
0x82172B19

0x06 0x0001

Preamble
and SFD

CRC0x0806

1

2

The proxy ARP router replies
to any ARP request received
for destinations 141.23.56.21,

141.23.56.22, and 141.23.56.23.

Router or host
Proxy ARP

router

141.23.56.21 141.23.56.22 141.23.56.23

Added subnetwork

Request

for76042_ch08.fm Page 227 Friday, February 13, 2009 4:28 PM

228

PART 2 NETWORK LAYER

However, the administrator may need to create a subnet without changing the
whole system to recognize subnetted addresses. One solution is to add a router running
a proxy ARP. In this case, the router acts on behalf of all of the hosts installed on the
subnet. When it receives an ARP request with a target IP address that matches the
address of one of its protégés (141.23.56.21, 141.23.56.22, and 141.23.56.23), it sends
an ARP reply and announces its hardware address as the target hardware address. When
the router receives the IP packet, it sends the packet to the appropriate host.

8.3 ATMARP

We discussed IP over ATM in Chapter 7. When IP packet are moving through an ATM
WAN, a mechanism protocol is needed to find (map) the physical address of the
exiting-point router in the ATM WAN given the IP address of the router. This is the
same task performed by ARP on a LAN. However, there is a difference between a LAN
and an ATM network. A LAN is a broadcast network (at the data link layer); ARP uses
the broadcasting capability of a LAN to send (broadcast) an ARP request. An ATM net-
work is not a broadcast network; another solution is needed to handle the task.

Packet Format

The format of an

ATMARP

 packet, which is similar to the ARP packet, is shown in
Figure 8.8. The fields are as follows:

❑

Hardware type (HTYPE).

 The 16-bit HTYPE field defines the type of the physi-
cal network. Its value is 0013

16

 for an ATM network.

❑

Protocol type (PTYPE).

 The 16-bit PTYPE field defines the type of the protocol.
For IPv4 protocol the value is 0800

16

.

❑

Sender hardware length (SHLEN).

 The 8-bit SHLEN field defines the length of
the sender’s physical address in bytes. For an ATM network the value is 20. Note

Figure 8.8

ATMARP packet

Protocol Type

Sender Protocol
Length

Target Protocol
Length

Hardware Type

Sender hardware address
(20 bytes)

Sender protocol address

Sender Hardware
Length Reserved

ReservedTarget Hardware
Length

Operation

Target hardware address
(20 bytes)

Target protocol address

for76042_ch08.fm Page 228 Friday, February 13, 2009 4:28 PM

CHAPTER 8 ADDRESS RESOLUTION PROTOCOL (ARP)

229

that if the binding is done across an ATM network and two levels of hardware
addressing are necessary, the neighboring 8-bit

reserved

field

 is used to define the
length of the second address.

❑

Operation (OPER).

 The 16-bit OPER field defines the type of the packet. Five
packet types are defined as shown in Table 8.1.

❑

Sender protocol length (SPLEN).

 The 8-bit SPLEN field defines the length of the
address in bytes. For IPv4 the value is 4 bytes.

❑

Target hardware length (TLEN).

 The 8-bit TLEN field defines the length of the
receiver’s physical address in bytes. For an ATM network the value is 20. Note that
if the binding is done across an ATM network and two levels of hardware address-
ing are necessary, the neighboring 8-bit reserved field is used to define the length
of the second address.

❑

Target protocol length (TPLEN).

 The 8-bit TPLEN field defines the length of the
address in bytes. For IPv4 the value is 4 bytes.

❑

Sender hardware address (SHA).

 The variable-length SHA field defines the
physical address of the sender. For ATM networks defined by the ATM Forum, the
length is 20 bytes.

❑

Sender protocol address (SPA).

 The variable-length SPA field defines the address
of the sender. For IPv4 the length is 4 bytes.

❑

Target hardware address (THA).

 The variable-length THA field defines the
physical address of the receiver. For ATM networks defined by the ATM Forum,
the length is 20 bytes. This field is left empty for request messages and filled in for
reply and NACK messages.

❑

Target protocol address (TPA).

 The variable-length TPA field defines the address
of the receiver. For IPv4 the length is 4 bytes.

ATMARP Operation
There are two methods to connect two routers on an ATM network: through a perma-
nent virtual circuit (PVC) or through a switched virtual circuit (SVC). The operation of
ATMARP depends on the connection method.

PVC Connection

A permanent virtual circuit (PVC) connection is established between two end points by
the network provider. The VPIs and VCIs are defined for the permanent connections
and the values are entered in a table for each switch.

Table 8.1 OPER field

Message OPER value
Request 1
Reply 2
Inverse Request 8
Inverse Reply 9
NACK 10

for76042_ch08.fm Page 229 Friday, February 13, 2009 4:28 PM

230 PART 2 NETWORK LAYER

If a permanent virtual circuit is established between two routers, there is no need
for an ATMARP server. However, the routers must be able to bind a physical address to
an IP address. The inverse request message and inverse reply message can be used
for the binding. When a PVC is established for a router, the router sends an inverse
request message. The router at the other end of the connection receives the message
(which contains the physical and IP address of the sender) and sends back an inverse
reply message (which contains its own physical and IP address).

After the exchange, both routers add a table entry that maps the physical addresses
to the PVC. Now, when a router receives an IP datagram, the table provides information
so that the router can encapsulate the datagram using the virtual circuit identifier.
Figure 8.9 shows the exchange of messages between two routers.

SVC Connection

In a switched virtual circuit (SVC) connection, each time a router wants to make a con-
nection with another router (or any computer), a new virtual circuit must be estab-
lished. However, the virtual circuit can be created only if the entering-point router
knows the physical address of the exiting-point router (ATM does not recognize IP
addresses).

To map the IP addresses to physical addresses, each router runs a client ATMARP
program, but only one computer runs an ATMARP server program. To understand the
difference between ARP and ATMARP, remember that ARP operates on a LAN, which
is a broadcast network. An ARP client can broadcast an ARP request message and
each router on the network will receive it; only the target router will respond. ATM is a
nonbroadcast network; an ATMARP request cannot reach all routers connected to the
network.

The process of establishing a virtual connection requires three steps: connecting to
the server, receiving the physical address, and establishing the connection. Figure 8.10
shows the steps.

The inverse request and inverse reply messages can bind the physical
address to an IP address in a PVC situation.

Figure 8.9 Binding with PVC

time time

Two routers connected through PVC

I II III

Inverse Request

Inverse Reply

1

2

ATM

for76042_ch08.fm Page 230 Friday, February 13, 2009 4:28 PM

CHAPTER 8 ADDRESS RESOLUTION PROTOCOL (ARP) 231

Connecting to the Server Normally, there is a permanent virtual circuit established
between each router and the server. If there is no PVC connection between the router
and the server, the server must at least know the physical address of the router to create
an SVC connection just for exchanging ATMARP request and reply messages.

Receiving the Physical Address When there is a connection between the entering-
point router and the server, the router sends an ATMARP request to the server. The
server sends back an ATMARP reply if the physical address can be found or an
ATMARP NACK otherwise. If the entering-point router receives a NACK, the datagram
is dropped.

Establishing Virtual Circuits After the entering-point router receives the physical
address of the exiting-point router, it can request an SVC between itself and the exiting-
point router. The ATM network uses the two physical addresses to set up a virtual cir-
cuit which lasts until the entering-point router asks for disconnection. In this step, each
switch inside the network adds an entry to its tables to enable them to route the cells
carrying the IP datagram.

Figure 8.10 Binding with ATMARP

The request and reply message can be used to bind a physical address to an
IP address in an SVC situation.

Entering-point
router

Exiting-point
router

Using PVC or SVC
connection

SVC connection

Finding
physical address

ATMARP
Server

Time Time

I III

or

Request

Reply

NACK

II

1

2

2

ATM

for76042_ch08.fm Page 231 Friday, February 13, 2009 4:28 PM

232 PART 2 NETWORK LAYER

Building the Table

How does the ATM server build its mapping table? This is also done through the use of
ATMARP and the two inverse messages (inverse request and inverse reply). When a
router is connected to an ATM network for the first time and a permanent virtual con-
nection is established between the router and the server, the server sends an inverse
request message to the router. The router sends back an inverse reply message, which
includes its IP address and physical address. Using these two addresses, the server cre-
ates an entry in its routing table to be used if the router becomes an exiting-point router
in the future. Figure 8.11 shows the inverse operation of ATMARP.

Logical IP Subnet (LIS)
Before we leave the subject of IP over ATM, we need to discuss a concept called logi-
cal IP subnet (LIS). For the same reason that a large LAN can be divided into several
subnets, an ATM network can be divided into logical (not physical) subnetworks. This
facilitates the operation of ATMARP and other protocols (such as IGMP) that need to
simulate broadcasting on an ATM network.

Routers connected to an ATM network can belong to one or more logical subnets,
as shown in Figure 8.12. In the figure, routers B, C, and D belong to one logical subnet
(shown by broken-line boxes); routers F, G, and H belong to another logical subnet
(shown by shaded boxes). Routers A and E belong to both logical subnets. A router can
communicate and send IP packets directly to a router in the same subnet; however, if it
needs to send a packet to a router that belongs to another subnet, the packet must first
go to a router that belongs to both subnets. For example, router B can send a packet
directly to routers C and D. But a packet from B to F must first pass through A or E.

Note that routers belonging to the same logical subnet share the same prefix and
subnet mask. The prefix for routers in different subnets is different.

To use ATMARP, there must be a different ATMARP server in each subnet. For
example, in the above figure, we need two ATMARP servers, one for each subnet.

The inverse request and inverse reply can also be used to
build the server’s mapping table.

Figure 8.11 Building a table

A newly connected
router

Time Time

I II III

Inverse request

Inverse reply

ATMARP
server

1

2

ATM

for76042_ch08.fm Page 232 Friday, February 13, 2009 4:28 PM

CHAPTER 8 ADDRESS RESOLUTION PROTOCOL (ARP)

233

8.4 ARP PACKAGE

In this section, we give an example of a simplified ARP software package. The
purpose is to show the components of a hypothetical ARP package and the relation-
ships between the components. Figure 8.13 shows these components and their
interactions.

We can say that this ARP package involves five components: a

cache table,

queues, an output module, an input module, and a cache-control module. The package
receives an IP datagram that needs to be encapsulated in a frame that needs the destina-
tion physical (hardware) address. If the ARP package finds this address, it delivers the
IP packet and the physical address to the data link layer for transmission.

Cache Table

A sender usually has more than one IP datagram to send to the same destination. It is
inefficient to use the ARP protocol for each datagram destined for the same host or
router. The solution is the cache table. When a host or router receives the corresponding
physical address for an IP datagram, the address can be saved in the cache table. This
address can be used for the datagrams destined for the same receiver within the next
few minutes. However, as space in the cache table is very limited, mappings in the
cache are not retained for an unlimited time.

The cache table is implemented as an array of entries. In our package, each entry
contains the following fields:

❑

State.

 This column shows the state of the entry. It can have one of three values:

FREE,

PENDING,

 or

RESOLVED

. The FREE state

means that the time-to-live for

Figure 8.12

LIS

LIS allows an ATM network to be divided into several logical subnets.
To use ATMARP, we need a separate server for each subnet.

A

B C D

E

H G F

I IIIII

ATM

for76042_ch08.fm Page 233 Monday, February 16, 2009 3:17 PM

234 PART 2 NETWORK LAYER

this entry has expired. The space can be used for a new entry. The PENDING state
means a request for this entry has been sent, but the reply has not yet been
received. The RESOLVED state means that the entry is complete. The entry now
has the physical (hardware) address of the destination. The packets waiting to be
sent to this destination can use the information in this entry.

❑ Hardware type. This column is the same as the corresponding field in the ARP packet.

❑ Protocol type. This column is the same as the corresponding field in the ARP packet.

❑ Hardware length. This column is the same as the corresponding field in the ARP
packet.

❑ Protocol length. This column is the same as the corresponding field in the ARP packet.

❑ Interface number. A router (or a multihomed host) can be connected to different
networks, each with a different interface number. Each network can have different
hardware and protocol types.

❑ Queue number. ARP uses numbered queues to enqueue the packets waiting for
address resolution. Packets for the same destination are usually enqueued in the
same queue.

❑ Attempts. This column shows the number of times an ARP request is sent out for
this entry.

❑ Time-out. This column shows the lifetime of an entry in seconds.

❑ Hardware address. This column shows the destination hardware address. It
remains empty until resolved by an ARP reply.

❑ Protocol address. This column shows the destination IP address.

Figure 8.13 ARP components

Input module

ARP packet
(request or reply)

ARP packet
(reply)

ARP packet
(request)

ARP packet
(request)

IP packet
with resolved

 hardware address

IP packet

IP packet
with resolved

 hardware address

ARP

IP layer

Data link
 layer

Output module

C
ac

h
e-

co
n

tr
o

l
m

o
d

u
le

Cache table Queues

IP packet

IP packet

for76042_ch08.fm Page 234 Friday, February 13, 2009 4:28 PM

CHAPTER 8 ADDRESS RESOLUTION PROTOCOL (ARP) 235

Queues
Our ARP package maintains a set of queues, one for each destination, to hold the IP pack-
ets while ARP tries to resolve the hardware address. The output module sends unresolved
packets into the corresponding queue. The input module removes a packet from a queue
and sends it, with the resolved physical address, to the data link layer for transmission.

Output Module
Table 8.2 shows the output module in pseudocode.

The output module waits for an IP packet from the IP software. The output module
checks the cache table to find an entry corresponding to the destination IP address of

Table 8.2 Output Module

1 ARP_Output_Module ()

2 {

3 Sleep until an IP packet is received from IP software.

4 Check cache table for an entry corresponding to the

5 destination of IP packet.

6 If (entry is found)

7 {

8 If (the state is RESOLVED)

9 {

10 Extract the value of the hardware address from the entry.

11 Send the packet and the hardware address to data

12 link layer.

13 Return

14 } // end if

15 If (the state is PENDING)

16 {

17 Enqueue the packet to the corresponding queue.

18 Return

19 }//end if

20 }//end if

21 If (entry is not found)

22 {

23 Create a cache entry with state set to PENDING and

24 ATTEMPTS set to 1.

25 Create a queue.

26 Enqueue the packet.

27 Send an ARP request.

28 Return

29 }//end if

30 } //end module

for76042_ch08.fm Page 235 Friday, February 13, 2009 4:28 PM

236 PART 2 NETWORK LAYER

this packet. The destination IP address of the IP packet must match the protocol address
of the entry.

If the entry is found and the state of the entry is RESOLVED, the packet along
with the destination hardware address is passed to the data link layer for transmission.

If the entry is found and the state of the entry is PENDING, the packet waits until
the destination hardware address is found. Because the state is PENDING, there is a
queue already created for this destination. The module sends the packet to this queue.

If no entry is found, the module creates a queue and enqueues the packet. A new
entry with the state of PENDING is created for this destination and the value of the
ATTEMPTS field is set to 1. An ARP request packet is then broadcast.

Input Module
Table 8.3 shows the input module in pseudocode.

Table 8.3 Input Module

1 ARP_Input_Module ()

2 {

3 Sleep until an ARP packet (request or reply) arrives.

4 Check the cache table to find the corresponding entry.

5 If (found)

6 {

7 Update the entry.

8 If (the state is PENDING)

9 {

10 While (the queue is not empty)

11 {

12 Dequeue one packet.

13 Send the packet and the hardware address.

14 }//end if

15 }//end if

16 }//end if

17 If (not found)

18 {

19 Create an entry.

20 Add the entry to the table.

21 }//end if

22 If (the packet is a request)

23 {

24 Send an ARP reply.

25 }//end if

26 Return

27 }//end module

for76042_ch08.fm Page 236 Friday, February 13, 2009 4:28 PM

CHAPTER 8 ADDRESS RESOLUTION PROTOCOL (ARP) 237

The input module waits until an ARP packet (request or reply) arrives. The input
module checks the cache table to find an entry corresponding to this ARP packet. The
target protocol address should match the protocol address of the entry.

If the entry is found and the state of the entry is PENDING, the module updates the
entry by copying the target hardware address in the packet to the hardware address field
of the entry and changing the state to RESOLVED. The module also sets the value of
the TIME-OUT for this entry. It then dequeues the packets from the corresponding
queue, one by one, and delivers them along with the hardware address to the data link
layer for transmission.

If the entry is found and the state is RESOLVED, the module still updates the
entry. This is because the target hardware address could have been changed. The value
of the TIME-OUT field is also reset.

If the entry is not found, the module creates a new entry and adds it to the table.
The protocol requires that any information received is added to the table for future use.
The state is set to RESOLVED and TIME-OUT is set.

Now the module checks to see if the arrived ARP packet is a request. If it is, the
module immediately creates an ARP reply message and sends it to the sender. The ARP
reply packet is created by changing the value of the operation field from request to
reply and filling in the target hardware address.

Cache-Control Module
The cache-control module is responsible for maintaining the cache table. It periodi-
cally (for example, every 5 s) checks the cache table, entry by entry. If the state of the
entry is FREE, it continues to the next entry. If the state is PENDING, the module
increments the value of the attempts field by 1. It then checks the value of the attempts
field. If this value is greater than the maximum number of attempts allowed, the state is
changed to FREE and the corresponding queue is destroyed. However, if the number of
attempts is less than the maximum, the module creates and sends another ARP request.

If the state of the entry is RESOLVED, the module decrements the value of the
time-out field by the amount of time elapsed since the last check. If this value is less
than or equal to zero, the state is changed to FREE and the queue is destroyed. Table 8.4
shows the cache-control module in pseudocode.

Table 8.4 Cache-Control Module

1 ARP_Cache_Control_Module ()

2 {

3 Sleep until the periodic timer matures.

4 Repeat for every entry in the cache table

5 {

6 If (the state is FREE)
 {7

8 Continue.

9 }//end if

10 If (the state is PENDING)

11 {

for76042_ch08.fm Page 237 Friday, February 13, 2009 4:28 PM

238

PART 2 NETWORK LAYER

More Examples

In this section we show some examples of the ARP operation and the changes in the
cache table. Table 8.5 shows some of the cache table fields at the start of our
examples.

12 Increment the value of attempts by 1.

13 If (attempts greater than maximum)

14 {

15 Change the state to FREE.

16 Destroy the corresponding queue.

17 }// end if

18 else

19 {

20 Send an ARP request.

21 }//end else

22 continue.

23 }//end if

24 If (the state is RESOLVED)

25 {

26 Decrement the value of time-out.

27 If (time-out less than or equal 0)

28 {

29 Change the state to FREE.

30 Destroy the corresponding queue.

31 }//end if

32 }//end if

33 }//end repeat

34 Return.

35 }//end module

Table 8.5

Original cache table used for examples

State Queue Attempt Time-Out Protocol Addr. Hardware Addr.

R 5 900 180.3.6.1 ACAE32457342
P 2 2 129.34.4.8
P 14 5 201.11.56.7
R 8 450 114.5.7.89 457342ACAE32
P 12 1 220.55.5.7
F
R 9 60 19.1.7.82 4573E3242ACA
P 18 3 188.11.8.71

Table 8.4

Cache-Control Module (continued)

for76042_ch08.fm Page 238 Monday, February 16, 2009 3:25 PM

CHAPTER 8 ADDRESS RESOLUTION PROTOCOL (ARP) 239

Example 8.2

The ARP output module receives an IP datagram (from the IP layer) with the destination address
114.5.7.89. It checks the cache table and finds that an entry exists for this destination with the
RESOLVED state (R in the table). It extracts the hardware address, which is 457342ACAE32,
and sends the packet and the address to the data link layer for transmission. The cache table
remains the same.

Example 8.3

Twenty seconds later, the ARP output module receives an IP datagram (from the IP layer) with the
destination address 116.1.7.22. It checks the cache table and does not find this destination in the
table. The module adds an entry to the table with the state PENDING and the Attempt value 1. It
creates a new queue for this destination and enqueues the packet. It then sends an ARP request to
the data link layer for this destination. The new cache table is shown in Table 8.6.

Example 8.4

Fifteen seconds later, the ARP input module receives an ARP packet with target protocol
(IP) address 188.11.8.71. The module checks the table and finds this address. It changes the state
of the entry to RESOLVED and sets the time-out value to 900. The module then adds the target
hardware address (E34573242ACA) to the entry. Now it accesses queue 18 and sends all the pack-
ets in this queue, one by one, to the data link layer. The new cache table is shown in Table 8.7.

Example 8.5

Twenty-five seconds later, the cache-control module updates every entry. The time-out values
for the first three resolved entries are decremented by 60. The time-out value for the last

Table 8.6 Updated cache table for Example 8.3

State Queue Attempt Time-Out Protocol Addr. Hardware Addr.
R 5 900 180.3.6.1 ACAE32457342
P 2 2 129.34.4.8
P 14 5 201.11.56.7
R 8 450 114.5.7.89 457342ACAE32
P 12 1 220.55.5.7
P 23 1 116.1.7.22
R 9 60 19.1.7.82 4573E3242ACA
P 18 3 188.11.8.71

Table 8.7 Updated cache table for Example 8.4

State Queue Attempt Time-Out Protocol Addr. Hardware Addr.
R 5 900 180.3.6.1 ACAE32457342
P 2 2 129.34.4.8
P 14 5 201.11.56.7
R 8 450 114.5.7.89 457342ACAE32
P 12 1 220.55.5.7
P 23 1 116.1.7.22
R 9 60 19.1.7.82 4573E3242ACA
R 18 900 188.11.8.71 E34573242ACA

for76042_ch08.fm Page 239 Friday, February 13, 2009 4:28 PM

240 PART 2 NETWORK LAYER

resolved entry is decremented by 25. The state of the next-to-the last entry is changed to FREE
because the time-out is zero. For each of the three pending entries, the value of the attempts
field is incremented by one. After incrementing, the attempts value for one entry (the one with
IP address 201.11.56.7) is more than the maximum; the state is changed to FREE, the queue
is deleted, and an ICMP message is sent to the original destination (see Chapter 9). See
Table 8.8.

8.5 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give thorough coverage of materials discussed in this chapter. We recom-
mend [Com 06], [Tan 03], and [Ste 94].

RFCs
Several RFCs in particular discuss ARP including RFC 826, RFC 1029, RFC 1166, and
RFC 1981.

8.6 KEY TERMS

Table 8.8 Updated cache table for Example 8.5

State Queue Attempt Time-Out Protocol Addr. Hardware Addr.
R 5 840 180.3.6.1 ACAE32457342
P 2 3 129.34.4.8
F
R 8 390 114.5.7.89 457342ACAE32
P 12 2 220.55.5.7
P 23 2 116.1.7.22
F
R 18 875 188.11.8.71 E34573242ACA

Address Resolution Protocol (ARP) logical IP subnet (LIS)
cache table physical address
cache-control module proxy ARP
dynamic mapping queue
encapsulation reserved field
inverse reply message
inverse request message

Reverse Address Resolution Protocol
(RARP)

IP addresses static mapping

for76042_ch08.fm Page 240 Friday, February 13, 2009 4:28 PM

CHAPTER 8 ADDRESS RESOLUTION PROTOCOL (ARP)

241

8.7 SUMMARY

❑

Delivery of a packet to a host or router requires two levels of addresses: logical and
physical. A logical address identifies a host or router at the network level. TCP/IP
calls this logical address an IP address. A physical address identifies a host or
router at the physical level.

❑

Mapping of a logical address to a physical address can be static or dynamic. Static
mapping involves a list of logical and physical addresses; maintenance of the list
requires high overhead.

❑

The address resolution protocol (ARP) is a dynamic mapping method that finds a
physical address given a logical address. An ARP request is broadcast to all devices
on the network. An ARP reply is unicast to the host requesting the mapping.

❑

In proxy ARP, a router represents a set of hosts. When an ARP request seeks the
physical address of any host in this set, the router sends its own physical address.
This creates a subnetting effect.

❑

ATMARP is a protocol used on ATM networks that binds a physical address to an
IP address. The ATMARP server’s mapping table is built through the use of the
inverse request and the inverse reply messages. An ATM network can be divided
into logical subnetworks to facilitate ATMARP and other protocol operations.

❑

The ARP software package consists of five components: a cache table, queues, an
output module, an input module, and a cache-control module. The cache table has
an array of entries used and updated by ARP messages. A queue contains packets
going to the same destination. The output module takes a packet from the IP layer
and sends it either to the data link layer or to a queue. The input module uses an
ARP packet to update the cache table. The input module can also send an ARP
reply. The cache-control module maintains the cache table by updating entry fields.

8.8 PRACTICE SET

Exercises

1.

Is the size of the ARP packet fixed? Explain.

2.

What is the size of an ARP packet when the protocol is IP and the hardware is
Ethernet?

3.

What is the size of an Ethernet frame carrying an ARP packet?

4.

What is the broadcast address for Ethernet?

5.

A router with IP address 125.45.23.12 and Ethernet physical address
23:45:AB:4F:67:CD has received a packet for a host destination with IP address
125.11.78.10 and Ethernet physical address AA:BB:A2:4F:67:CD.

a.

Show the entries in the ARP request packet sent by the router. Assume no
subnetting.

b.

Show the entries in the ARP packet sent in response to part a.

for76042_ch08.fm Page 241 Monday, February 23, 2009 12:36 PM

242 PART 2 NETWORK LAYER

c. Encapsulate the packet made in part a in a data link frame. Fill in all the fields.

d. Encapsulate the packet part b in a data link frame. Fill in all the fields.

6. A router with IP address 195.5.2.12 and Ethernet physical address
AA:25:AB:1F:67:CD has received a packet for a destination with IP address
185.11.78.10. When the router checks its routing table, it finds out the packet
should be delivered to a router with IP address 195.5.2.6 and Ethernet physical
address AD:34:5D:4F:67:CD.

a. Show the entries in the ARP request packet sent by the router. Assume no
subnetting.

b. Show the entries in the ARP packet sent in response to part a.

c. Encapsulate the packet made in part a in the data link layer. Fill in all the fields.

d. Encapsulate the packet made in part b in a data link frame. Fill in all the fields.

7. Show the contents of ATMARP inverse packets exchanged between two routers
that have a PVC connection. The IP addresses are 172.14.20.16/16 and
180.25.23.14/24. Choose two arbitrary 20-byte physical addresses. Use hexadeci-
mal values in filling the fields.

8. Show the contents of ATMARP packets (request and reply) exchanged between a
router and a server. The IP address of the router is 14.56.12.8/16 and the IP address
of the server is 200.23.54.8/24. Choose two arbitrary 20-byte physical addresses.
Use hexadecimal values in filling the fields.

9. Add IP addresses for the routers in Figure 8.12. Note that the prefix in each LIS
must be the same, but it must be different for the two LISs. Note also that the routers
that belong to two LISs must have two IP addresses.

10. An ATMARP packet must also be carried in cells. How many cells are needed to
carry an ATMARP packet discussed in this chapter?

for76042_ch08.fm Page 242 Friday, February 13, 2009 4:28 PM

for76042_ch08.fm Page 243 Friday, February 13, 2009 4:28 PM

C H A P T E R

9

244

9

Internet Control Message
Protocol Version 4 (ICMPv4)

s discussed in Chapter 7, the IPv4 provides unreliable and connection-
less datagram delivery. It was designed this way to make efficient use

of network resources. The IP protocol is a best-effort delivery service that
delivers a datagram from its original source to its final destination. How-
ever, it has two deficiencies: lack of error control and lack of assistance
mechanisms. ICMPv4 is designed to compensate for these deficiencies.

OBJECTIVES

The chapter has several objectives:

❑

To discuss the rationale for the existence of ICMP.

❑

To show how ICMP messages are divided into two categories: error-
reporting and query messages.

❑

To discuss the purpose and format of error-reporting messages.

❑

To discuss the purpose and format of query messages.

❑

To show how the checksum is calculated for an ICMP message.

❑

To show how debugging tools using the ICMP protocol.

❑

To show how a simple software package that implements ICMP is
organized.

A

for76042_ch09.fm Page 244 Monday, February 23, 2009 12:47 PM

245

9.1 INTRODUCTION

The IP protocol has no error-reporting or error-correcting mechanism. What happens if
something goes wrong? What happens if a router must discard a datagram because it
cannot find a router to the final destination, or because the time-to-live field has a zero
value? What happens if the final destination host must discard all fragments of a data-
gram because it has not received all fragments within a predetermined time limit?
These are examples of situations where an error has occurred and the IP protocol has no
built-in mechanism to notify the original host.

The IP protocol also lacks a mechanism for host and management queries. A host
sometimes needs to determine if a router or another host is alive. And sometimes a net-
work manager needs information from another host or router.

The

Internet Control Message Protocol (ICMP)

 has been designed to compen-
sate for the above two deficiencies. It is a companion to the IP protocol. Figure 9.1
shows the position of ICMP in relation to IP and other protocols in the network layer.

ICMP itself is a network layer protocol. However, its messages are not passed
directly to the data link layer as would be expected. Instead, the messages are first
encapsulated inside IP datagrams before going to the lower layer (see Figure 9.2).

The value of the protocol field in the IP datagram is 1 to indicate that the IP data is
an ICMP message.

Figure 9.1

Position of ICMP in the network layer

Figure 9.2

ICMP encapsulation

Network
layer IP

ICMPIGMP

ARP

ICMP
message

IP
header

IP
data

Frame
data

Frame
header

Trailer
(if any)

for76042_ch09.fm Page 245 Monday, February 16, 2009 9:33 AM

246

PART 2 NETWORK LAYER

9.2 MESSAGES

ICMP messages are divided into two broad categories:

error-reporting messages

 and

query messages.

 The error-reporting messages report problems that a router or a host
(destination) may encounter when it processes an IP packet. The query messages, which
occur in pairs, help a host or a network manager get specific information from a router or
another host. For example, nodes can discover their neighbors. Also, hosts can discover
and learn about routers on their network and routers can help a node redirect its messages.
Table 9.1 lists the ICMP messages in each category.

Message Format

An ICMP message has an 8-byte header and a variable-size data section. Although the
general format of the header is different for each message type, the first 4 bytes are
common to all. As Figure 9.3 shows, the first field, ICMP type, defines the type of the
message. The code field specifies the reason for the particular message type. The last
common field is the checksum field (to be discussed later in the chapter). The rest of the
header is specific for each message type.

The data section in error messages carries information for finding the original
packet that had the error. In query messages, the data section carries extra information
based on the type of the query.

Error Reporting Messages

One of the main responsibilities of ICMP is to report errors. Although technology has
produced increasingly reliable transmission media, errors still exist and must be han-
dled. IP, as discussed in Chapter 7, is an unreliable protocol. This means that error

Table 9.1

ICMP messages

Category Type Message

Error-reporting
messages

 3 Destination unreachable
 4 Source quench
11 Time exceeded
12 Parameter problem
 5 Redirection

Query
messages

 8 or 0 Echo request or reply
13 or 14 Timestamp request or reply

Figure 9.3

 General format of ICMP messages

Data section

Code ChecksumType

8 bits 8 bits 8 bits 8 bits

Rest of the header

for76042_ch09.fm Page 246 Monday, February 16, 2009 9:33 AM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4)

247

checking and error control are not a concern of IP. ICMP was designed, in part, to com-
pensate for this shortcoming. However, ICMP does not correct errors, it simply reports
them. Error correction is left to the higher-level protocols. Error messages are always
sent to the original source because the only information available in the datagram about
the route is the source and destination IP addresses. ICMP uses the source IP address to
send the error message to the source (originator) of the datagram.

 Five types of errors are handled: destination unreachable, source quench, time
exceeded, parameter problems, and redirection (see Figure 9.4).

The following are important points about ICMP error messages:

❑

No ICMP error message will be generated in response to a datagram carrying an
ICMP error message.

❑

No ICMP error message will be generated for a fragmented datagram that is not
the first fragment.

❑

No ICMP error message will be generated for a datagram having a multicast
address.

❑

No ICMP error message will be generated for a datagram having a special address
such as 127.0.0.0 or 0.0.0.0.

Note that all error messages contain a data section that includes the IP header of
the original datagram plus the first 8 bytes of data in that datagram. The original data-
gram header is added to give the original source, which receives the error message,
information about the datagram itself. The 8 bytes of data are included because, as we
will see in Chapters 14 and 15 on UDP and TCP protocols, the first 8 bytes provide
information about the port numbers (UDP and TCP) and sequence number (TCP). This
information is needed so the source can inform the protocols (TCP or UDP) about the
error. ICMP forms an error packet, which is then encapsulated in an IP datagram (see
Figure 9.5).

Destination Unreachable

When a router cannot route a datagram or a host cannot deliver a datagram, the data-
gram is discarded and the router or the host sends a

destination-unreachable message

back to the source host that initiated the datagram. Figure 9.6 shows the format of the

ICMP always reports error messages to the original source.

Figure 9.4

Error-reporting messages

Error
reporting

Source
 quench

Parameter
 problems

Time
exceeded RedirectionDestination

unreachable

for76042_ch09.fm Page 247 Monday, February 16, 2009 9:33 AM

248

PART 2 NETWORK LAYER

destination-unreachable message. The code field for this type specifies the reason for
discarding the datagram:

❑

Code 0.

 The network is unreachable, possibly due to hardware failure.

❑

Code 1.

 The host is unreachable. This can also be due to hardware failure.

❑

Code 2.

 The protocol is unreachable. An IP datagram can carry data belonging to
higher-level protocols such as UDP, TCP, and OSPF. If the destination host
receives a datagram that must be delivered, for example, to the TCP protocol, but
the TCP protocol is not running at the moment, a code 2 message is sent.

❑

Code 3.

 The port is unreachable. The application program (process) that the data-
gram is destined for is not running at the moment.

❑

Code 4.

 Fragmentation is required, but the DF (do not fragment) field of the data-
gram has been set. In other words, the sender of the datagram has specified that the
datagram not be fragmented, but routing is impossible without fragmentation.

❑

Code 5.

 Source routing cannot be accomplished. In other words, one or more rout-
ers defined in the source routing option cannot be visited.

❑

Code 6.

 The destination network is unknown. This is different from code 0. In
code 0, the router knows that the destination network exists, but it is unreachable
at the moment. For code 6, the router has no information about the destination
network.

❑

Code 7.

 The destination host is unknown. This is different from code 1. In code 1,
the router knows that the destination host exists, but it is unreachable at the
moment. For code 7, the router is unaware of the existence of the destination host.

Figure 9.5

Contents of data field for the error messages

Figure 9.6

Destination-unreachable format

IP
header

Received datagram

ICMP packet

Sent IP datagram

IP
data

ICMP
header

IP
header

IP
header

ICMP
header

IP
header

8
bytes

8
bytes

8
bytes

Part of the received IP datagram including IP header
plus the first 8 bytes of datagram data

Code: 0 to 15 ChecksumType: 3

Unused (All 0s)

for76042_ch09.fm Page 248 Monday, February 16, 2009 9:33 AM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4)

249

❑

Code 8.

 The source host is isolated.

❑

Code 9.

 Communication with the destination network is administratively
prohibited.

❑

Code 10.

Communication with the destination host is administratively prohibited.

❑

Code 11.

 The network is unreachable for the specified type of service. This is dif-
ferent from code 0. Here the router can route the datagram if the source had
requested an available type of service.

❑

Code 12.

 The host is unreachable for the specified type of service. This is different
from code 1. Here the router can route the datagram if the source had requested an
available type of service.

❑

Code 13.

 The host is unreachable because the administrator has put a filter on it.

❑

Code 14.

 The host is unreachable because the host precedence is violated. The
message is sent by a router to indicate that the requested precedence is not permit-
ted for the destination.

❑

Code 15.

 The host is unreachable because its precedence was cut off. This mes-
sage is generated when the network operators have imposed a minimum level of
precedence for the operation of the network, but the datagram was sent with a pre-
cedence below this level.

Note that destination-unreachable messages can be created either by a router or the des-
tination host. Code 2 and code 3 messages can only be created by the destination host;
the messages of the remaining codes can only be created by routers.

Note that even if a router does not report a destination-unreachable message, it
does not necessarily mean that the datagram has been delivered. For example, if a data-
gram is traveling through an Ethernet network, there is no way that a router knows that
the datagram has been delivered to the destination host or the next router because
Ethernet does not provide any acknowledgment mechanism.

Source Quench

The IP protocol is a connectionless protocol. There is no communication between the
source host, which produces the datagram, the routers, which forward it, and the des-
tination host, which processes it. One of the ramifications of this absence of commu-
nication is the lack of

flow control

 and

congestion control.

Destination-unreachable messages with codes 2 or 3 can be created only by the
destination host. Other destination-unreachable messages can be created only by

routers.

A router cannot detect all problems that prevent the delivery of a packet.

There is no flow-control or congestion-control mechanism in the IP protocol.

for76042_ch09.fm Page 249 Monday, February 23, 2009 7:06 PM

250

PART 2 NETWORK LAYER

The

source-quench message

 in ICMP was designed to add a kind of flow control
and congestion control to the IP. When a router or host discards a datagram due to con-
gestion, it sends a source-quench message to the sender of the datagram. This message
has two purposes. First, it informs the source that the datagram has been discarded.
Second, it warns the source that there is congestion somewhere in the path and that the
source should slow down (quench) the sending process. The source-quench format is
shown in Figure 9.7.

There are some points that deserve more explanation. First, the router or destina-
tion host that has experienced the congestion sends one source-quench message for
each discarded datagram to the source host. Second, there is no mechanism to tell the
source that the congestion has been relieved and the source can resume sending data-
grams at its previous rate. The source continues to lower the rate until no more
source-quench messages are received. Third, the congestion can be created either by
a one-to-one or many-to-one communication. In a one-to-one communication, a sin-
gle high-speed host could create datagrams faster than a router or the destination host
can handle. In this case, source-quench messages can be helpful. They tell the source
to slow down. In a many-to-one communication, many sources create datagrams that
must be handled by a router or the destination host. In this case, each source can be
sending datagrams at different speeds, some of them at a low rate, others at a high
rate. Here, the source-quench message may not be very useful. The router or the des-
tination host has no clue which source is responsible for the congestion. It may drop
a datagram from a very slow source instead of dropping the datagram from the source
that has actually created the congestion.

Figure 9.7

Source-quench format

A source-quench message informs the source that a datagram has been discarded due to
congestion in a router or the destination host. The source must slow down the sending of

datagrams until the congestion is relieved.

One source-quench message is sent for each datagram that is discarded due to
congestion.

Part of the received IP datagram including IP header
plus the first 8 bytes of datagram data

Code: 0 ChecksumType: 4
Unused (All 0s)

for76042_ch09.fm Page 250 Monday, February 16, 2009 9:33 AM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4)

251

Time Exceeded

The

time-exceeded message

 is generated in two cases:

❑

First, as we saw in Chapter 6, routers use routing tables to find the next hop (next
router) that must receive the packet. If there are errors in one or more routing
tables, a packet can travel in a loop or a cycle, going from one router to the next or
visiting a series of routers endlessly. As we saw in Chapter 7, each datagram con-
tains a field called

time to live

 that controls this situation. When a datagram visits a
router, the value of this field is decremented by 1. When the time-to-live value
reaches 0, after decrementing, the router discards the datagram. However, when
the datagram is discarded, a time-exceeded message must be sent by the router to
the original source.

❑

Second, a time-exceeded message is also generated when all fragments that make
up a message do not arrive at the destination host within a certain time limit. When
the first fragment arrives, the destination host starts a timer. If all the fragments
have not arrived when the time expires, the destination discards all the fragments
and sends a time-exceeded message to the original sender.

Figure 9.8 shows the format of the time-exceeded message. Code 0 is used when
the datagram is discarded by the router due to a time-to-live field value of zero. Code 1
is used when arrived fragments of a datagram are discarded because some fragments
have not arrived within the time limit.

Whenever a router decrements a datagram with a time-to-live value to zero, it discards
the datagram and sends a time-exceeded message to the original source.

When the final destination does not receive all of the fragments in a set time, it
discards the received fragments and sends a time-exceeded message to the original

source.

Figure 9.8

Time-exceeded message format

In a time-exceeded message, code 0 is used only by routers to show that the value of the
time-to-live field is zero. Code 1 is used only by the destination host to show that not all

of the fragments have arrived within a set time.

Part of the received IP datagram including IP header
plus the first 8 bytes of datagram data

Code: 0 or 1 ChecksumType: 11

Unused (All 0s)

for76042_ch09.fm Page 251 Monday, February 16, 2009 9:33 AM

252

PART 2 NETWORK LAYER

Parameter Problem

Any ambiguity in the header part of a datagram can create serious problems as the data-
gram travels through the Internet. If a router or the destination host discovers an ambig-
uous or missing value in any field of the datagram, it discards the datagram and sends a
parameter-problem message back to the source.

Figure 9.9 shows the format of the

parameter-problem message.

 The code field
in this case specifies the reason for discarding the datagram:

❑

Code 0.

 There is an error or ambiguity in one of the header fields. In this case, the
value in the pointer field points to the byte with the problem. For example, if the
value is zero, then the first byte is not a valid field.

❑

Code 1.

 The required part of an option is missing. In this case, the pointer is not
used.

Redirection

When a router needs to send a packet destined for another network, it must know the IP
address of the next appropriate router. The same is true if the sender is a host. Both
routers and hosts then must have a routing table to find the address of the router or the
next router. Routers take part in the routing update process as we will see in Chapter 11
and are supposed to be updated constantly. Routing is dynamic.

However, for efficiency, hosts do not take part in the routing update process
because there are many more hosts in an internet than routers. Updating the routing
tables of hosts dynamically produces unacceptable traffic. The hosts usually use
static routing. When a host comes up, its routing table has a limited number of
entries. It usually knows only the IP address of one router, the default router. For this
reason, the host may send a datagram, which is destined for another network, to the
wrong router. In this case, the router that receives the datagram will forward the data-
gram to the correct router. However, to update the routing table of the host, it sends a
redirection message to the host. This concept of redirection is shown in Figure 9.10.
Host A wants to send a datagram to host B. Router R2 is obviously the most efficient
routing choice, but host A did not choose router R2. The datagram goes to R1
instead. R1, after consulting its table, finds that the packet should have gone to R2. It
sends the packet to R2 and, at the same time, sends a redirection message to host A.
Host A’s routing table can now be updated.

A parameter-problem message can be created by a router or the destination host.

Figure 9.9

 Parameter-problem message format

Part of the received IP datagram including IP header
plus the first 8 bytes of datagram data

Code: 0 or 1 ChecksumType: 12
Pointer Unused (All 0s)

for76042_ch09.fm Page 252 Monday, February 16, 2009 4:18 PM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4)

253

The format of the

redirection message

 is shown in Figure 9.11. Note that the IP
address of the appropriate target is given in the second row.

Although the redirection message is considered an error-reporting message, it is
different from other error messages. The router does not discard the datagram in this
case; it is sent to the appropriate router. The code field for the redirection message nar-
rows down the redirection:

❑

Code 0.

 Redirection for a network-specific route.

❑

Code 1.

 Redirection for a host-specific route.

❑

Code 2.

Redirection for a network-specific route based on a specified type of
service.

❑

Code 3.

 Redirection for a host-specific route based on a specified type of service.

Query Messages

In addition to error reporting, ICMP can also diagnose some network problems. This is
accomplished through the query messages. A group of five different pairs of messages
have been designed for this purpose, but three of these pairs are deprecated today, as we
discuss later in the section. Only two pairs are used today: echo request and replay and
timestamp request and replay. In this type of ICMP message, a node sends a message
that is answered in a specific format by the destination node.

Figure 9.10

Redirection concept

A host usually starts with a small routing table that is gradually augmented and
updated. One of the tools to accomplish this is the redirection message.

Figure 9.11

 Redirection message format

 A redirection message is sent from a router to a host on the same local network.

A

R1 R2

LAN

RM

Redirection messageRM:

IP packet IP packet

BLAN2

3 4

IP packet 1

Part of the received IP datagram including IP header
plus the first 8 bytes of datagram data

Code: 0 to 3 ChecksumType: 5
IP address of the target router

for76042_ch09.fm Page 253 Monday, February 16, 2009 9:33 AM

254

PART 2 NETWORK LAYER

Echo Request and Reply

The

echo-request

and

 echo-reply messages

 are designed for diagnostic purposes. Net-
work managers and users utilize this pair of messages to identify network problems.
The combination of echo-request and echo-reply messages determines whether two
systems (hosts or routers) can communicate with each other.

A host or router can send an echo-request message to another host or router. The
host or router that receives an echo-request message creates an echo-reply message and
returns it to the original sender.

The echo-request and echo-reply messages can be used to determine if there is
communication at the IP level. Because ICMP messages are encapsulated in IP data-
grams, the receipt of an echo-reply message by the machine that sent the echo request
is proof that the IP protocols in the sender and receiver are communicating with each
other using the IP datagram. Also, it is proof that the intermediate routers are receiving,
processing, and forwarding IP datagrams.

The echo-request and echo-reply messages can also be used by a host to see if
another host is reachable. At the user level, this is done by invoking the packet Internet
groper (ping)

command. Today, most systems provide a version of the

ping

 command
that can create a series (instead of just one) of echo-request and echo-reply messages,
providing statistical information. We will see the use of this program at the end of the
chapter.

Echo request, together with echo reply, can determine whether or not a node is
functioning properly. The node to be tested is sent an echo-request message. The
optional data field contains a message that must be repeated exactly by the responding
node in its echo-reply message. Figure 9.12 shows the format of the echo-reply and
echo-request message. The identifier and sequence number fields are not formally
defined by the protocol and can be used arbitrarily by the sender. The identifier is often
the same as the process ID.

Timestamp Request and Reply

Two machines (hosts or routers) can use the

timestamp-request

and

 timestamp-reply
messages

 to determine the round-trip time needed for an IP datagram to travel between

An echo-request message can be sent by a host or router. An echo-reply message is sent
by the host or router that receives an echo-request message.

Echo-request and echo-reply messages can be used by network managers to check the
operation of the IP protocol.

Echo-request and echo-reply messages can test the reachability of a host. This is usually
done by invoking the ping command.

for76042_ch09.fm Page 254 Monday, February 16, 2009 9:33 AM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4) 255

them. It can also be used to synchronize the clocks in two machines. The format of
these two messages is shown in Figure 9.13.

The three timestamp fields are each 32 bits long. Each field can hold a number rep-
resenting time measured in milliseconds from midnight in Universal Time (formerly
called Greenwich Mean Time). (Note that 32 bits can represent a number between 0
and 4,294,967,295, but a timestamp in this case cannot exceed 86,400,000 = 24 × 60 ×
60 × 1000.)

The source creates a timestamp-request message. The source fills the original
timestamp field with the Universal Time shown by its clock at departure time. The other
two timestamp fields are filled with zeros.

The destination creates the timestamp-reply message. The destination copies the
original timestamp value from the request message into the same field in its reply
message. It then fills the receive timestamp field with the Universal Time shown by its
clock at the time the request was received. Finally, it fills the transmit timestamp field
with the Universal Time shown by its clock at the time the reply message departs.

The timestamp-request and timestamp-reply messages can be used to compute the
one-way or round-trip time required for a datagram to go from a source to a destination
and then back again. The formulas are

Note that the sending and receiving time calculations are accurate only if the
two clocks in the source and destination machines are synchronized. However, the
round-trip calculation is correct even if the two clocks are not synchronized because
each clock contributes twice to the round-trip calculation, thus canceling any difference
in synchronization.

Figure 9.12 Echo-request and echo-reply messages

Figure 9.13 Timestamp-request and timestamp-reply message format

sending time = receive timestamp − original timestamp
receiving time = returned time − transmit timestamp
round-trip time = sending time + receiving time

Optional data
Sent by the request message; repeated by the reply message

Code: 0 ChecksumType: 8 or 0
Sequence numberIdentifier

Type 8: Echo request
Type 0: Echo reply

Code: 0 ChecksumType: 13 or 14

Sequence numberIdentifier

Type 13: request
Type 14: reply

Original timestamp

Receive timestamp

Transmit timestamp

for76042_ch09.fm Page 255 Monday, February 16, 2009 9:33 AM

256

PART 2 NETWORK LAYER

For example, given the following information:

We can calculate the round-trip time to be 20 milliseconds:

Given the actual one-way time, the timestamp-request and timestamp-reply mes-
sages can also be used to synchronize the clocks in two machines using the following
formula:

The one-way time duration can be obtained either by dividing the round-trip time
duration by two (if we are sure that the sending time is the same as the receiving time)
or by other means. For example, we can tell that the two clocks in the previous example
are 3 milliseconds out of synchronization because

Deprecated Messages

Three pairs of messages are declared obsolete by IETF:

1.

Information request and replay

 messages are not used today because their duties
are done by Address Resolution Protocol (ARP) discussed in Chapter 8.

2.

Address mask request and reply

 messages are not used today because their duties are
done by Dynamic Host Configuration Protocol (DHCP), discussed in Chapter 8.

3.

Router solicitation and advertisment

 messages are not used today because their
duties are done by Dynamic Host Configuration Protocol (DHCP), discussed in
Chapter 18.

Checksum

In Chapter 7, we learned the concept and idea of the checksum. In ICMP the checksum
is calculated over the entire message (header and data).

Timestamp-request and timestamp-reply messages can be used to calculate the
round-trip time between a source and a destination machine even if their

clocks are not synchronized.

original timestamp: 46 receive timestamp: 59

transmit timestamp: 60 return time: 67

sending time

=

 59

−

 46

=

 13 milliseconds

receiving time

=

 67

−

 60

=

 7 milliseconds

round-trip time

=

 13

+

 7

=

 20 milliseconds

Time difference

=

 receive timestamp

−

(original timestamp field

+

 one-way time duration)

Time difference

=

 59

−

 (46

+

 10)

=

 3

The timestamp-request and timestamp-reply messages can be used to synchronize two
clocks in two machines if the exact one-way time duration is known.

for76042_ch09.fm Page 256 Monday, February 23, 2009 12:53 PM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4) 257

Checksum Calculation

The sender follows these steps using one’s complement arithmetic:

1. The checksum field is set to zero.

2. The sum of all the 16-bit words (header and data) is calculated.

3. The sum is complemented to get the checksum.

4. The checksum is stored in the checksum field.

Checksum Testing

The receiver follows these steps using one’s complement arithmetic:

1. The sum of all words (header and data) is calculated.

2. The sum is complemented.

3. If the result obtained in step 2 is 16 0s, the message is accepted; otherwise, it is
rejected.

Example 9.1

Figure 9.14 shows an example of checksum calculation for a simple echo-request message (see
Figure 9.12). We randomly chose the identifier to be 1 and the sequence number to be 9. The
message is divided into 16-bit (2-byte) words. The words are added together and the sum is com-
plemented. Now the sender can put this value in the checksum field.

9.3 DEBUGGING TOOLS
There are several tools that can be used in the Internet for debugging. We can find if a
host or router is alive and running. We can trace the route of a packet. We introduce two
tools that use ICMP for debugging: ping and traceroute.We will introduce more tools in
future chapters after we have discussed the corresponding protocols.

Ping
We can use the ping program to find if a host is alive and responding. We used the ping
program in Chapter 7 to simulate the record route option. We discuss ping in more
detail to see how it uses ICMP packets.

Figure 9.14 Example of checksum calculation

TEST

08
1 9

00001000
00000000
00000000
00000000
01010100
01010011
10101111
01010000

00000000
00000000
00000001
00001001
01000101
01010100
10100011
01011100

8 & 0
0
1
9

T & E
S & T

Sum
Checksum

0

for76042_ch09.fm Page 257 Monday, February 16, 2009 9:33 AM

258 PART 2 NETWORK LAYER

The source host sends ICMP echo request messages (type: 8, code: 0); the destina-
tion, if alive, responds with ICMP echo reply messages. The ping program sets the
identifier field in the echo request and reply message and starts the sequence number
from 0; this number is incremented by one each time a new message is sent. Note that
ping can calculate the round-trip time. It inserts the sending time in the data section of
the message. When the packet arrives it subtracts the arrival time from the departure
time to get the round-trip time (RTT).

Example 9.2

We use the ping program to test the server fhda.edu. The result is shown below:

The ping program sends messages with sequence numbers starting from 0. For each probe
it gives us the RTT time. The TTL (time to live) field in the IP datagram that encapsulates an
ICMP message has been set to 62, which means the packet cannot travel more than 62 hops. At
the beginning, ping defines the number of data bytes as 56 and the total number of bytes as 84.
It is obvious that if we add 8 bytes of ICMP header and 20 bytes of IP header to 56, the result
is 84. However, note that in each probe ping defines the number of bytes as 64. This is the total
number of bytes in the ICMP packet (56 + 8). The ping program continues to send messages if
we do not stop it using the interrupt key (ctrl + c, for example). After it is interrupted, it prints
the statistics of the probes. It tells us the number of packets sent, the number of packets
received, the total time, and the RTT minimum, maximum, and average. Some systems may
print more information.

Example 9.3

For the second example, we want to know if the adelphia.net mail server is alive and running. The
result is shown below: Note that in this case, we sent 14 packets, but only 13 have been returned.
We may have interrupted the program before the last packet, with sequence number 13, was
returned.

$ ping fhda.edu
PING fhda.edu (153.18.8.1) 56 (84) bytes of data.
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=0 ttl=62 time=1.91 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=1 ttl=62 time=2.04 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=2 ttl=62 time=1.90 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=3 ttl=62 time=1.97 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=4 ttl=62 time=1.93 ms

64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=5 ttl=62 time=2.00 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=6 ttl=62 time=1.94 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=7 ttl=62 time=1.94 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=8 ttl=62 time=1.97 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=9 ttl=62 time=1.89 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=10 ttl=62 time=1.98 ms

--- fhda.edu ping statistics ---
11 packets transmitted, 11 received, 0% packet loss, time 10103 ms
rtt min/avg/max = 1.899/1.955/2.041 ms

for76042_ch09.fm Page 258 Monday, February 16, 2009 9:33 AM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4) 259

Traceroute
The traceroute program in UNIX or tracert in Windows can be used to trace the route
of a packet from the source to the destination. Let us show the idea of the traceroute
program using Figure 9.15.

We have seen an application of the traceroute program to simulate the loose source
route and strict source route options of an IP datagram in the previous chapter. We use
this program in conjunction with ICMP packets in this chapter. The program elegantly
uses two ICMP messages, time exceeded and destination unreachable, to find the route
of a packet. This is a program at the application level that uses the services of UDP (see
Chapter 14).

Given the topology, we know that a packet from host A to host B travels through
routers R1 and R2. However, most of the time, we are not aware of this topology. There

$ ping mail.adelphia.net
PING mail.adelphia.net (68.168.78.100) 56(84) bytes of data.
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=0 ttl=48 time=85.4 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=1 ttl=48 time=84.6 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=2 ttl=48 time=84.9 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=3 ttl=48 time=84.3 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=4 ttl=48 time=84.5 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=5 ttl=48 time=84.7 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=6 ttl=48 time=84.6 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=7 ttl=48 time=84.7 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=8 ttl=48 time=84.4 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=9 ttl=48 time=84.2 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=10 ttl=48 time=84.9 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=11 ttl=48 time=84.6 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=12 ttl=48 time=84.5 ms

--- mail.adelphia.net ping statistics ---
14 packets transmitted, 13 received, 7% packet loss, time 13129 ms
rtt min/avg/max/mdev = 84.207/84.694/85.469

Figure 9.15 The traceroute program operation

R1 R2

R3

Host A LAN LAN

LAN

LAN

LAN

Host B

Host C

for76042_ch09.fm Page 259 Monday, February 16, 2009 9:33 AM

260 PART 2 NETWORK LAYER

could be several routes from A to B. The traceroute program uses the ICMP messages
and the TTL (time to live) field in the IP packet to find the route.

1. The traceroute program uses the following steps to find the address of the router
R1 and the round trip time between host A and router R1. The traceroute program
repeats steps a to c three times to get a better average round-trip time. The first trip
time may be much longer than the second or third because it takes time for the
ARP program to find the physical address of router R1. For the second and third
trip, ARP has the address in its cache.
a. The traceroute application at host A sends a packet to destination B using UDP;

the message is encapsulated in an IP packet with a TTL value of 1. The program
notes the time the packet is sent.

b. Router R1 receives the packet and decrements the value of TTL to 0. It then dis-
cards the packet (because TTL is 0). The router, however, sends a time-
exceeded ICMP message (type: 11, code: 0) to show that the TTL value is 0 and
the packet was discarded.

c. The traceroute program receives the ICMP messages and uses the source
address of the IP packet encapsulating ICMP to find the IP address of router R1.
The program also makes note of the time the packet has arrived. The difference
between this time and the time at step a is the round-trip time.

2. The traceroute program repeats the previous steps to find the address of router R2
and the round-trip time between host A and router R2. However, in this step, the
value of TTL is set to 2. So router R1 forwards the message, while router R2 dis-
cards it and sends a time-exceeded ICMP message.

3. The traceroute program repeats the previous step to find the address of host B and
the round-trip time between host A and host B. When host B receives the packet,
it decrements the value of TTL, but it does not discard the message since it has
reached its final destination. How can an ICMP message be sent back to host A?
The traceroute program uses a different strategy here. The destination port of the
UDP packet is set to one that is not supported by the UDP protocol. When host B
receives the packet, it cannot find an application program to accept the delivery. It
discards the packet and sends an ICMP destination-unreachable message (type: 3,
code: 3) to host A. Note that this situation does not happen at router R1 or R2
because a router does not check the UDP header. The traceroute program records the
destination address of the arrived IP datagram and makes note of the round-trip time.
Receiving the destination-unreachable message with a code value 3 is an indication
that the whole route has been found and there is no need to send more packets.

Example 9.4

We use the traceroute program to find the route from the computer voyager.deanza.edu to the
server fhda.edu. The following shows the result.

$ traceroute fhda.edu

traceroute to fhda.edu (153.18.8.1), 30 hops max, 38 byte packets

1 Dcore.fhda.edu (153.18.31.25) 0.995 ms 0.899 ms 0.878 ms

2 Dbackup.fhda.edu (153.18.251.4) 1.039 ms 1.064 ms 1.083 ms

3 tiptoe.fhda.edu (153.18.8.1) 1.797 ms 1.642 ms 1.757 ms

for76042_ch09.fm Page 260 Monday, February 16, 2009 9:33 AM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4) 261

The unnumbered line after the command shows that the destination is 153.18.8.1. The
TTL value is 30 hops. The packet contains 38 bytes: 20 bytes of IP header, 8 bytes of UDP
header, and 10 bytes of application data. The application data is used by traceroute to keep
track of the packets. The first line shows the first router visited. The router is named
Dcore.fhda.edu with IP address 153.18.31.254. The first round-trip time was 0.995 millisec-
onds, the second was 0.899 milliseconds, and the third was 0.878 milliseconds. The second line
shows the second router visited. The router is named Dbackup.fhda.edu with IP address
153.18.251.4. The three round-trip times are also shown. The third line shows the destination
host. We know that this is the destination host because there are no more lines. The destination
host is the server fhda.edu, but it is named tiptoe.fhda.edu with the IP address 153.18.8.1. The
three round-trip times are also shown.

Example 9.5

In this example, we trace a longer route, the route to xerox.com

Here there are 17 hops between source and destination. Note that some round-trip times
look unusual. It could be that a router is too busy to process the packet immediately.

Example 9.6

An interesting point is that a host can send a traceroute packet to itself. This can be done by
specifying the host as the destination. The packet goes to the loopback address as we expect.

 $ traceroute xerox.com

 traceroute to xerox.com (13.1.64.93), 30 hops max, 38 byte packets

1 Dcore.fhda.edu (153.18.31.254) 0.622 ms 0.891 ms 0.875 ms

2 Ddmz.fhda.edu (153.18.251.40) 2.132 ms 2.266 ms 2.094 ms

3 Cinic.fhda.edu (153.18.253.126) 2.110 ms 2.145 ms 1.763 ms

4 cenic.net (137.164.32.140) 3.069 ms 2.875 ms 2.930 ms

5 cenic.net (137.164.22.31) 4.205 ms 4.870 ms 4.197 ms

6 cenic.net (137.164.22.167) 4.250 ms 4.159 ms 4.078 ms

7 cogentco.com (38.112.6.225) 5.062 ms 4.825 ms 5.020 ms

8 cogentco.com (66.28.4.69) 6.070 ms 6.207 ms 5.653 ms

9 cogentco.com (66.28.4.94) 6.070 ms 5.928 ms 5.499 ms

10 cogentco.com (154.54.2.226) 6.545 ms 6.399 ms 6.535 ms

11 sbcglo (151.164.89.241) 6.379 ms 6.370 ms 6.379 ms

12 sbcglo (64.161.1.45) 6.908 ms 6.748 ms 7.359 ms

13 sbcglo (64.161.1.29) 7.023 ms 7.040 ms 6.734 ms

14 snfc21.pbi.net (151.164.191.49) 7.656 ms 7.129 ms 6.866 ms

15 sbcglobal.net (151.164.243.58) 7.844 ms 7.545 ms 7.353 ms

16 pacbell.net (209.232.138.114) 9.857 ms 9.535 ms 9.603 ms

17 209.233.48.223 (209.233.48.223) 10.634 ms 10.771 ms 10.592 ms

18 alpha.Xerox.COM (13.1.64.93) 10.922 ms 11.048 ms 10.922 ms

for76042_ch09.fm Page 261 Monday, February 16, 2009 9:33 AM

262 PART 2 NETWORK LAYER

Example 9.7

Finally, we use the traceroute program to find the route between fhda.edu and mhhe.com (McGraw-
Hill server). We notice that we cannot find the whole route. When traceroute does not receive a
response within 5 seconds, it prints an asterisk to signify a problem (not the case in this example),
and then tries the next hop.

9.4 ICMP PACKAGE
To give an idea of how ICMP can handle the sending and receiving of ICMP messages,
we present our version of an ICMP package made of two modules: an input module and
an output module. Figure 9.16 shows these two modules.

$ traceroute voyager.deanza.edu

traceroute to voyager.deanza.edu (127.0.0.1), 30 hops max, 38 byte packets

1 voyager (127.0.0.1) 0.178 ms 0.086 ms 0.055 ms

$ traceroute mhhe.com
traceroute to mhhe.com (198.45.24.104), 30 hops max, 38 byte packets

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Dcore.fhda.edu
Ddmz.fhda.edu
Cinic.fhda.edu
cenic.net
cenic.net
SanJose1.net
SanJose2.net
Denver1.Level3.net
Denver2.Level3.net
unknown
mcleodusa1.net
mcleodusa2.net
mcleodusa3.net
mcleodusa4.net
eppg.com
…

(153.18.31.254)
(153.18.251.40)
(153.18.253.126)
(137.164.32.140)
(137.164.22.59)
(209.247.159.109)
(64.159.2.1)
(64.159.1.114)
(4.68.112.162)
(64.156.40.134)
(64.198.100.2)
(64.198.101.202)
(64.198.101.142)
(209.253.101.178)
(198.45.24.246)
…

1.025 ms
2.141 ms
2.159 ms s
3.220 ms
3.217 ms

10.653 ms
 10.804 ms

43.404 ms
 43.533 ms

55.509 ms
 60.961 ms
55.692 ms
56.059 ms

297.199 ms
71.213 ms

 …

0.892 ms
2.159 ms
2.050 ms
2.929 ms

 2.998 ms
 10.639 ms
10.798 ms
43.367 ms
43.290 ms
55.462 ms
55.681 ms
55.617 ms
55.623 ms

192.790 ms
70.536 ms

 …

0.880 ms
2.103 ms
1.992 ms

 2.943 ms
 2.755 ms
 10.618 ms
10.634 ms
43.414 ms
43.347 ms
55.647 ms
55.461 ms
55.505 ms
56.333 ms

250.594 ms
70.663 ms

 …

Figure 9.16 ICMP package

Output moduleInput module

Requests
 (from applications)

to send queries

Results of error
messages

sent to protocols

Reply messages sent
to processes that
 requested them

Requests
(from UDP or TCP)

to send error messages

Requests
(from IP) to

send error messages

ICMP packet
(replies and

advertisement)

ICMP packet
 (all types)

ICMP packet
(requests, solicitation,

and errors)

IP

ICMP

Upper
layers

for76042_ch09.fm Page 262 Monday, February 16, 2009 9:33 AM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4) 263

Input Module
The input module handles all received ICMP messages. It is invoked when an ICMP
packet is delivered to it from the IP layer. If the received packet is a request, the module
creates a reply and sends it out. If the received packet is a redirection message, the
module uses the information to update the routing table. If the received packet is an
error message, the module informs the protocol about the situation that caused the
error. The pseudocode is shown below:

Output Module
The output module is responsible for creating request, solicitation, or error messages
requested by a higher level or the IP protocol. The module receives a demand from IP,
UDP, or TCP to send one of the ICMP error messages. If the demand is from IP, the
output module must first check that the request is allowed. Remember, an ICMP
message cannot be created for four situations: an IP packet carrying an ICMP error
message, a fragmented IP packet, a multicast IP packet, or an IP packet having IP
address 0.0.0.0 or 127.X.Y. Z. The output module may also receive a demand from an
application program to send one of the ICMP request messages. The pseudocode is
shown in Table 9.3.

Table 9.2 Input Module

1 ICMP_Input_module (ICMP_Packet)

2 {

3 If (the type is a request)

4 {

5 Create a reply

6 Send the reply

7 }

8 If (the type defines a redirection)

9 {

10 Modify the routing table

11 }

12 If (the type defines other error messages)

13 {

14 Inform the appropriate source protocol

15 }

16 Return

17 }

Table 9.3 Output Module

1 ICMP_Output_Module (demand)

2 {

3 If (the demand defines an error message)

4 {

for76042_ch09.fm Page 263 Monday, February 16, 2009 9:33 AM

264 PART 2 NETWORK LAYER

9.5 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give thorough coverage of materials discussed in this chapter. We recom-
mend [Com 06], [Tan 03], and [Ste 94].

RFCs
Several RFCs discuss ICMP including RFC 792, RFC 950, RFC 956, RFC 957, RFC
1016, RFC 1122, RFC 1256, RFC 1305, and RFC 1987.

9.6 KEY TERMS

5 If (demand comes from IP AND is forbidden)

6 {

7 Return

8 }

9 If (demand is a valid redirection message)

10 {

11 Return

12 }

13 Create an error message

14 If (demand defines a request)

15 {

16 Create a request message

17 }

18 Send the message

19 Return

20 }

destination-unreachable message redirection message
echo-reply messages round-trip time (RTT)
error-reporting message source-quench message
echo-request message time-exceeded message
Internet Control Message Protocol (ICMP) timestamp-reply message
parameter-problem message timestamp-request message
ping traceroute
query message

Table 9.3 Output Module (continued)

for76042_ch09.fm Page 264 Monday, February 16, 2009 9:33 AM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4) 265

9.7 SUMMARY
❑ The Internet Control Message Protocol (ICMP) supports the unreliable and con-

nectionless Internet Protocol (IP).

❑ ICMP messages are encapsulated in IP datagrams. There are two categories of
ICMP messages: error-reporting and query messages. The error-reporting mes-
sages report problems that a router or a host (destination) may encounter when it
processes an IP packet. The query messages, which occur in pairs, help a host or a
network manager get specific information from a router or another host.

❑ The checksum for ICMP is calculated using both the header and the data fields of
the ICMP message.

❑ There are several tools that can be used in the Internet for debugging. We can
find if a host or router is alive and running. Two of these tools are ping and
traceroute.

❑ A simple ICMP design can consist of an input module that handles incoming
ICMP packets and an output module that handles demands for ICMP services.

9.8 PRACTICE SET

Exercises
1. Host A sends a timestamp-request message to host B and never receives a reply.

Discuss three possible causes and the corresponding course of action.

2. Why is there a restriction on the generation of an ICMP message in response to a
failed ICMP error message?

3. Host A sends a datagram to host B. Host B never receives the datagram and host A
never receives notification of failure. Give two different explanations of what
might have happened.

4. What is the purpose of including the IP header and the first 8 bytes of datagram
data in the error reporting ICMP messages?

5. What is the maximum value of the pointer field in a parameter-problem message?

6. Give an example of a situation in which a host would never receive a redirection
message.

7. Make a table showing which ICMP messages are sent by routers, which are sent by
the nondestination hosts, and which are sent by the destination hosts.

8. Can the calculated sending time, receiving time, or round-trip time have a negative
value? Why or why not? Give examples.

9. Why isn’t the one-way time for a packet simply the round-trip time divided by two?

10. What is the minimum size of an ICMP packet? What is the maximum size of an
ICMP packet?

for76042_ch09.fm Page 265 Monday, February 16, 2009 9:33 AM

266 PART 2 NETWORK LAYER

11. What is the minimum size of an IP packet that carries an ICMP packet? What is the
maximum size?

12. What is the minimum size of an Ethernet frame that carries an IP packet which in
turn carries an ICMP packet? What is the maximum size?

13. How can we determine if an IP packet is carrying an ICMP packet?

14. Calculate the checksum for the following ICMP packet:
Type: Echo Request Identifier: 123 Sequence Number: 25 Message: Hello

15. A router receives an IP packet with source IP address 130.45.3.3 and destination IP
address 201.23.4.6. The router cannot find the destination IP address in its routing
table. Fill in the fields (as much as you can) for the ICMP message sent.

16. TCP receives a segment with destination port address 234. TCP checks and
cannot find an open port for this destination. Fill in the fields for the ICMP
message sent.

17. An ICMP message has arrived with the header (in hexadecimal):

What is the type of the message? What is the code? What is the purpose of the
message?

18. An ICMP message has arrived with the header (in hexadecimal):

What is the type of the message? What is the code? What is the purpose of the
message? What is the value of the last 4 bytes? What do the last bytes signify?

19. A computer sends a timestamp request. If its clock shows 5:20:30 A.M. (Universal
Time), show the entries for the message.

20. Repeat Exercise 19 for the time of 3:40:30 P.M. (Universal Time).

21. A computer receives a timestamp request from another computer at 2:34:20 P.M.
The value of the original timestamp is 52,453,000. If the sender clock is 5 ms slow,
what is the one-way time?

22. A computer sends a timestamp request to another computer. It receives the corre-
sponding timestamp reply at 3:46:07 A.M. The values of the original timestamp,
receive timestamp, and transmit timestamp are 13,560,000, 13,562,000, and
13,564,300, respectively. What is the sending trip time? What is the receiving trip
time? What is the round-trip time? What is the difference between the sender clock
and the receiver clock?

23. If two computers are 5000 miles apart, what is the minimum time for a message to
go from one to the other?

03 0310 20 00 00 00 00

05 00 11 12 11 0B 03 02

for76042_ch09.fm Page 266 Monday, February 16, 2009 9:33 AM

CHAPTER 9 INTERNET CONTROL MESSAGE PROTOCOL VERSION 4 (ICMPV4) 267

Research Activities
24. Use the ping program to test your own computer (loopback).

25. Use the ping program to test a host inside the United States.

26. Use the ping program to test a host outside the United States.

27. Use traceroute (or tracert) to find the route from your computer to a computer in a
college or university.

28. Show how you can find the RTT between two routers using Exercise 27.

for76042_ch09.fm Page 267 Monday, February 16, 2009 9:33 AM

C H A P T E R

10

268

10

Mobile IP

obile communication has received a lot of attention in the last
decade. The interest in mobile communication on the Internet

means that the IP protocol, originally designed for stationary devices, must
be enhanced to allow the use of mobile computers, computers that move
from one network to another.

OBJECTIVES

The chapter has several objectives:

❑

To discuss addressing issues related to a mobile host and the need for
a care-of address.

❑

To discuss two agents involved in mobile IP communication, the
home agent and the foreign agent, and how they communicate.

❑

To explain three phases of communication between a mobile host and
a remote host: agent discovery, registration, and data transfer.

❑

To mention inefficiency of mobile IP in two cases, double crossing
and triangular routing, and a possible solution.

M

for76042_ch10.fm Page 268 Monday, February 16, 2009 9:38 AM

269

10.1 ADDRESSING

The main problem that must be solved in providing mobile communication using the IP
protocol is addressing.

Stationary Hosts

The original IP addressing was based on the assumption that a host is stationary,
attached to one specific network. A router uses an IP address to route an IP datagram.
As we learned in Chapter 5, an IP address has two parts: a prefix and a suffix. The pre-
fix associates a host to a network. For example, the IP address 10.3.4.24/8 defines a
host attached to the network 10.0.0.0/8. This implies that a host in the Internet does not
have an address that it can carry with itself from one place to another. The address is
valid only when the host is attached to the network. If the network changes, the address
is no longer valid. Routers use this association to route a packet; they use the prefix to
deliver the packet to the network to which the host is attached. This scheme works per-
fectly with

stationary hosts.

Mobile Hosts

When a host moves from one network to another, the IP addressing structure needs to
be modified. Several solutions have been proposed.

Changing the Address

One simple solution is to let the

mobile host

 change its address as it goes to the new
network. The host can use DHCP (see Chapter 18) to obtain a new address to associate
it with the new network. This approach has several drawbacks. First, the configuration
files would need to be changed. Second, each time the computer moves from one net-
work to another, it must be rebooted. Third, the DNS tables (see Chapter 19) need to be
revised so that every other host in the Internet is aware of the change. Fourth, if the host
roams from one network to another during a transmission, the data exchange will be
interrupted. This is because the ports and IP addresses of the client and the server must
remain constant for the duration of the connection.

Two Addresses

The approach that is more feasible is the use of two addresses. The host has its original
address, called the

home address,

and a

temporary address, called the

care-of address.

The IP addresses are designed to work with stationary hosts because part of the address
defines the network to which the host is attached.

for76042_ch10.fm Page 269 Monday, February 16, 2009 9:38 AM

270

PART 2 NETWORK LAYER

The home address is permanent; it associates the host to its

home network,

the net-
work that is the permanent home of the host. The care-of address is temporary. When a
host moves from one network to another, the care-of address changes; it is associated
with the

foreign network,

the network to which the host moves. Figure 10.1 shows the
concept.

When a mobile host visits a foreign network, it receives its care-of address during
the agent discovery and registration phase described later.

10.2 AGENTS

To make the change of address transparent to the rest of the Internet requires a

home
agent

and a

foreign agent.

 Figure 10.2 shows the position of a home agent relative to
the home network and a foreign agent relative to the foreign network.

Figure 10.1

Home address and care-of address

Mobile IP has two addresses for a mobile host: one home address and one care-of
address. The home address is permanent; the care-of address changes as the

mobile host moves from one network to another.

Figure 10.2

Home agent and foreign agent

131.5.24.8/16

Mobile host
original home

Home
network

Foreign
network

14.13.16.9/ 8 Care-of address
131.5.24.8/16 Home address

Mobile
host

131.5.0.0/16 14.0.0.0/8

Internet

Home
agent

Foreign
agent

Mobile host
original home

Mobile
host

Internet

Home
network

Foreign
network

for76042_ch10.fm Page 270 Monday, February 16, 2009 9:38 AM

CHAPTER 10 MOBILE IP

271

We have shown the home and the foreign agents as routers, but we need to empha-
size that their specific function as an agent is performed in the application layer. In
other words, they are both routers and hosts.

Home Agent

The home agent is usually a router attached to the home network of the mobile host.
The home agent acts on behalf of the mobile host when a remote host sends a packet to
the mobile host. The home agent receives the packet and sends it to the foreign agent.

Foreign Agent

The foreign agent

is usually a router attached to the foreign network. The foreign agent
receives and delivers packets sent by the home agent to the mobile host.

The mobile host can also act as a foreign agent. In other words, the mobile host
and the foreign agent can be the same. However, to do this, a mobile host must be able
to receive a care-of address by itself, which can be done through the use of DHCP. In
addition, the mobile host needs the necessary software to allow it to communicate with
the home agent and to have two addresses: its home address and its care-of address.
This dual addressing must be transparent to the application programs.

When the mobile host acts as a foreign agent, the care-of address is called a

colocated care-of address.

The advantage of using a colocated care-of address is that the mobile host can move
to any network without worrying about the availability of a foreign agent. The disadvan-
tage is that the mobile host needs extra software to act as its own foreign agent.

10.3 THREE PHASES

To communicate with a remote host, a mobile host goes through three phases: agent
discovery, registration, and data transfer, as shown in Figure 10.3.

The first phase, agent discovery, involves the mobile host, the foreign agent, and
the home agent. The second phase, registration, also involves the mobile host and the
two agents. Finally, in the third phase, the remote host is also involved. We discuss each
phase separately.

Agent Discovery

The first phase in mobile communication,

agent discovery,

 consists of two subphases.
A mobile host must discover (learn the address of) a home agent before it leaves its
home network. A mobile host must also discover a foreign agent after it has moved to a
foreign network. This discovery consists of learning the care-of address as well as the
foreign agent’s address. The discovery involves two types of messages: advertisement
and solicitation.

When the mobile host and the foreign agent are the same, the care-of address is
called a colocated care-of address.

for76042_ch10.fm Page 271 Monday, February 16, 2009 9:38 AM

272

PART 2 NETWORK LAYER

Agent Advertisement

When a router advertises its presence on a network using an ICMP router advertisement,
it can append an

agent advertisement

 to the packet if it acts as an agent. Figure 10.4
shows how an agent advertisement is piggybacked to the router advertisement packet.

Figure 10.3

Remote host and mobile host communication

Mobile IP does not use a new packet type for agent advertisement; it uses the router
advertisement packet of ICMP, and appends an agent advertisement message.

Figure 10.4

Agent advertisement

Mobile host
after move Remote host

Time Time Time Time Time

Phase I:
Agent

discovery

Phase 2:
Registration

Phase 3:
Data transfer

Mobile host
when at home

Foreign agent

Registration Request

Registration Request

Agent advertisement

Registration Reply

Registration Reply

Agent solicitation

Home agent

1

2

3

4

5

6

7

8

9

Agent solicitation

Agent advertisement

Data transfer

ICMP
Advertisement message

Care-of addresses
(foreign agent only)

Type Length

Lifetime Code Reserved

Sequence number

for76042_ch10.fm Page 272 Monday, February 16, 2009 9:38 AM

CHAPTER 10 MOBILE IP

273

The field descriptions are as follows:

❑

Type.

 The 8-bit type field is set to 16.

❑

Length.

 The 8-bit length field defines the total length of the extension message
(not the length of the ICMP advertisement message).

❑

Sequence number.

 The 16-bit sequence number field holds the message number.
The recipient can use the sequence number to determine if a message is lost.

❑

Lifetime.

 The lifetime field defines the number of seconds that the agent will accept
requests. If the value is a string of 1s, the lifetime is infinite.

❑

Code.

 The code field is an 8-bit flag in which each bit is set (1) or unset (0). The
meanings of the bits are shown in Table 10.1.

❑

Care-of Addresses.

 This field contains a list of addresses available for use as care-
of addresses. The mobile host can choose one of these addresses. The selection of
this care-of address is announced in the registration request. Note that this field is
used only by a foreign agent.

Agent Solicitation

When a mobile host has moved to a new network and has not received agent advertise-
ments, it can initiate an

agent solicitation.

 It can use the ICMP solicitation message to
inform an agent that it needs assistance.

Registration

The second phase in mobile communication is

registration.

 After a mobile host has
moved to a foreign network and discovered the foreign agent, it must register. There are
four aspects of registration:

1.

The mobile host must register itself with the foreign agent.

2.

The mobile host must register itself with its home agent. This is normally done by
the foreign agent on behalf of the mobile host.

3.

The mobile host must renew registration if it has expired.

4.

The mobile host must cancel its registration (deregistration) when it returns home.

Table 10.1

Code Bits

Bit Meaning

0 Registration required. No colocated care-of address.
1 Agent is busy and does not accept registration at this moment.
2 Agent acts as a home agent.
3 Agent acts as a foreign agent.
4 Agent uses minimal encapsulation.
5 Agent uses generic routing encapsulation (GRE).
6 Agent supports header compression.
7 Unused (0).

Mobile IP does not use a new packet type for agent solicitation;
it uses the router solicitation packet of ICMP.

for76042_ch10.fm Page 273 Monday, February 16, 2009 9:38 AM

274

PART 2 NETWORK LAYER

Request and Reply

To register with the foreign agent and the home agent, the mobile host uses a

registra-
tion request

 and a

registration reply

 as shown in Figure 10.3.

Registration Request

A registration request is sent from the mobile host to the for-
eign agent to register its care-of address and also to announce its home address and
home agent address. The foreign agent, after receiving and registering the request,
relays the message to the home agent. Note that the home agent now knows the address
of the foreign agent because the IP packet that is used for relaying has the IP address
of the foreign agent as the source address. Figure 10.5 shows the format of the
registration request.

The field descriptions are as follows:

❑

Type.

 The 8-bit type field defines the type of the message. For a request message
the value of this field is 1.

❑

Flag.

 The 8-bit flag field defines forwarding information. The value of each bit can
be set or unset. The meaning of each bit is given in Table 10.2.

❑

Lifetime.

 This field defines the number of seconds the registration is valid. If the
field is a string of 0s, the request message is asking for deregistration. If the field is
a string of 1s, the lifetime is infinite.

❑

Home address.

 This field contains the permanent (first) address of the mobile host.

Figure 10.5

Registration request format

Table 10.2

Registration request flag field bits

Bit Meaning

0 Mobile host requests that home agent retain its prior care-of address.
1 Mobile host requests that home agent tunnel any broadcast message.
2 Mobile host is using colocated care-of address.
3 Mobile host requests that home agent use minimal encapsulation.
4 Mobile host requests generic routing encapsulation (GRE).
5 Mobile host requests header compression.

6–7 Reserved bits.

Type Flag Lifetime

Home address

Home agent address

Care-of address

Identification

Extensions ...

for76042_ch10.fm Page 274 Monday, February 16, 2009 9:38 AM

CHAPTER 10 MOBILE IP

275

❑

Home agent address.

 This field contains the address of the home agent.

❑

Care-of address.

 This field is the temporary (second) address of the mobile host.

❑

Identification.

 This field contains a 64-bit number that is inserted into the request
by the mobile host and repeated in the reply message. It matches a request with a
reply.

❑

Extensions.

 Variable length extensions are used for authentication. They allow
a home agent to authenticate the mobile agent. We discuss authentication in
Chapter 29.

Registration Reply

A registration reply is sent from the home agent to the foreign
agent and then relayed to the mobile host. The reply confirms or denies the registration
request. Figure 10.6 shows the format of the registration reply.

The fields are similar to those of the registration request with the following excep-
tions. The value of the type field is 3. The code field replaces the flag field and shows
the result of the registration request (acceptance or denial). The care-of address field is
not needed.

Encapsulation

Registration messages are encapsulated in a UDP user datagram. An agent uses the
well-known port 434; a mobile host uses an ephemeral port.

Data Transfer

After agent discovery and registration, a mobile host can communicate with a remote
host. Figure 10.7 shows the idea.

From Remote Host to Home Agent

When a remote host wants to send a packet to the mobile host, it uses its address as the
source address and the home address of the mobile host as the destination address. In
other words, the remote host sends a packet as though the mobile host is at its home
network. The packet, however, is intercepted by the home agent, which pretends it is

Figure 10.6

Registration reply format

A registration request or reply is sent by UDP using the well-known port 434.

Type Code Lifetime

Home address

Home agent address

Identification

Extensions ...

for76042_ch10.fm Page 275 Monday, February 16, 2009 4:23 PM

276

PART 2 NETWORK LAYER

the mobile host. This is done using the proxy ARP technique discussed in Chapter 8.
Path 1 of Figure 10.7 shows this step.

From Home Agent to Foreign Agent

After receiving the packet, the home agent sends the packet to the foreign agent using
the tunneling concept discussed in Chapter 30. The home agent encapsulates the whole
IP packet inside another IP packet using its address as the source and the foreign
agent’s address as the destination. Path 2 of Figure 10.7 shows this step.

From Foreign Agent to Mobile Host

When the foreign agent receives the packet, it removes the original packet. However,
since the destination address is the home address of the mobile host, the foreign agent
consults a registry table to find the care-of address of the mobile host. (Otherwise, the
packet would just be sent back to the home network.) The packet is then sent to the
care-of address. Path 3 of Figure 10.7 shows this step.

From Mobile Host to Remote Host

When a mobile host wants to send a packet to a remote host (for example, a response to
the packet it has received), it sends as it does normally. The mobile host prepares a
packet with its home address as the source, and the address of the remote host as the
destination. Although the packet comes from the foreign network, it has the home
address of the mobile host. Path 4 of Figure 10.7 shows this step.

Transparency

In this data transfer process, the remote host is unaware of any movement by the mobile
host. The remote host sends packets using the home address of the mobile host as the
destination address; it receives packets that have the home address of the mobile host as

Figure 10.7

Data transfer

2

Home
agent

Foreign
agent

Mobile host
original home

Remote
host

Mobile
host

Internet

Home network

Foreign network

Remote network

1

3

4

for76042_ch10.fm Page 276 Monday, February 16, 2009 9:38 AM

CHAPTER 10 MOBILE IP

277

the source address. The movement is totally transparent. The rest of the Internet is not
aware of the mobility of the moving host.

10.4 INEFFICIENCY IN MOBILE IP

Communication involving mobile IP can be inefficient. The inefficiency can be severe
or moderate. The severe case is called

double crossing

 or

2X

. The moderate case is
called

triangle routing

 or

dog-leg routing

.

Double Crossing

Double crossing

 occurs when a remote host communicates with a mobile host that has
moved to the same network (or site) as the remote host (see Figure 10.8).

When the mobile host sends a packet to the remote host, there is no inefficiency;
the communication is local. However, when the remote host sends a packet to the
mobile host, the packet crosses the Internet twice.

Since a computer usually communicates with other local computers (principle of
locality), the inefficiency from double crossing is significant.

Triangle Routing

Triangle routing,

 the less severe case, occurs when the remote host communicates
with a mobile host that is not attached to the same network (or site) as the mobile host.
When the mobile host sends a packet to the remote host, there is no inefficiency. How-
ever, when the remote host sends a packet to the mobile host, the packet goes from the
remote host to the home agent and then to the mobile host. The packet travels the two
sides of a triangle, instead of just one side (see Figure 10.9).

Solution

One solution to inefficiency is for the remote host to bind the care-of address to the
home address of a mobile host. For example, when a home agent receives the first

The movement of the mobile host is transparent to the rest of the Internet.

Figure 10.8 Double crossing

Home
agent

Foreign
agent

Remote
host

Could-be
path

Mobile
host

Internet

Home
network

Foreign network

1

2

for76042_ch10.fm Page 277 Monday, February 16, 2009 9:38 AM

278 PART 2 NETWORK LAYER

packet for a mobile host, it forwards the packet to the foreign agent; it could also send
an update binding packet to the remote host so that future packets to this host could
be sent to the care-of address. The remote host can keep this information in a cache.

The problem with this strategy is that the cache entry becomes outdated once the
mobile host moves. In this case the home agent needs to send a warning packet to the
remote host to inform it of the change.

10.5 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give thorough coverage of materials discussed in this chapter. We recom-
mend [Com 06], [Tan 03], [Kur & Ros 08], and [Gar & Vid 04], and [Pet & Dav 03].

RFCs
Several RFCs in particular discuss mobile IP: RFC 1701, RFC 2003, RFC 2004,
RFC 3024, RFC 3344, and RFC 3775.

10.6 KEY TERMS

Figure 10.9 Triangle routing

agent advertisement
agent discovery
agent solicitation
care-of address
colocated care-of address
double crossing

foreign agent
foreign network
home address
home agent
home network
mobile host

Home
agent

Foreign
agent

Remote
host

Could-be
path

Mobile
host

Internet

Home
network

Foreign network

Remote network2

1

for76042_ch10.fm Page 278 Monday, February 16, 2009 9:38 AM

CHAPTER 10 MOBILE IP 279

10.7 SUMMARY
❑ Mobile IP, designed for mobile communication, is an enhanced version of the

Internetworking Protocol (IP). A mobile host has a home address on its home net-
work and a care-of address on its foreign network. When the mobile host is on a
foreign network, a home agent relays messages (for the mobile host) to a foreign
agent. A foreign agent sends relayed messages to a mobile host.

❑ A mobile host on its home network learns the address of a home agent through a
process called agent discovery. A mobile host on a foreign network learns the
address of a foreign agent through agent discovery or agent solicitation.

❑ A mobile host on a foreign network must register itself with both the home and
foreign agents.

❑ A message from a remote host goes from the remote host to the home agent, to the
foreign agent, and then to the mobile host.

❑ Mobile communication can be inefficient due to the extra distance a message must
travel. Double crossing and triangle routing are two instances of inefficient
routing.

10.8 PRACTICE SET

Exercises
1. Is registration required if the mobile host acts as a foreign agent? Explain your

answer.

2. Redraw Figure 10.7 if the mobile host acts as a foreign agent.

3. Create a home agent advertisement message using 1456 as the sequence number
and a lifetime of 3 hours. Select your own values for the bits in the code field. Cal-
culate and insert the value for the length field.

4. Create a foreign agent advertisement message using 1672 as the sequence number
and a lifetime of 4 hours. Select your own values for the bits in the code field. Use
at least three care-of addresses of your choice. Calculate and insert the value for
the length field.

5. Discuss how the ICMP router solicitation message can also be used for agent solic-
itation. Why are there no extra fields?

6. Which protocol is the carrier of the agent advertisement and solicitation messages?

7. Show the encapsulation of the advertisement message in Exercise 3 in an IP data-
gram. What is the value for the protocol field?

registration
registration reply
registration request
stationary host

triangle routing
update binding packet
warning packet

for76042_ch10.fm Page 279 Monday, February 16, 2009 9:38 AM

280 PART 2 NETWORK LAYER

8. Explain why the registration request and reply are not directly encapsulated in an
IP datagram. Why is there a need for the UDP user datagram?

9. We have the following information shown below. Show the contents of the IP data-
gram header sent from the remote host to the home agent.

10. Using the information in Exercise 9, show the contents of the IP datagram sent by
the home agent to the foreign agent. Use tunneling.

11. Using the information in Exercise 9, show the contents of the IP datagram sent by
the foreign agent to the mobile host.

12. Using the information in Exercise 9, show the contents of the IP datagram sent by
the mobile host to the remote host.

13. What type of inefficiency do we have in Exercise 9? Explain your answer.

Research Activities
14. We mentioned that registration messages are encapsulated in UDP. Find why UDP

is chosen instead of TCP.

15. Find how frequently an agent advertisement is sent.

16. Find the different types of authentication needed in mobile IP.

17. Find the role of multicasting in mobile IP.

Mobile host home address: 130.45.6.7/16
Mobile host care-of address: 14.56.8.9/8
Remote host address: 200.4.7.14/24
Home agent address: 130.45.10.20/16
Foreign agent address: 14.67.34.6/8

for76042_ch10.fm Page 280 Monday, February 16, 2009 9:38 AM

for76042_ch10.fm Page 281 Monday, February 16, 2009 9:38 AM

C H A P T E R

11

282

11

Unicast Routing Protocols
(RIP, OSPF, and BGP)

s we have discussed in some previous chapters, unicast communica-
tion means communication between one sender and one receiver, a

one-to-one communication. In this chapter, we discuss how the routers
create their routing tables to support unicast communication. We show
how the Internet is divided into administrative areas known as autono-
mous systems to efficiently handle the exchange of routing information.
We then explain two dominant routing protocols used inside an autono-
mous system and one routing protocol used for exchange of routing infor-
mation between autonomous systems.

OBJECTIVES

The chapter has several objectives:

❑

To introduce the idea of autonomous systems (ASs) that divide the
Internet into smaller administrative regions for the purpose of
exchanging routing information.

❑

To discuss the idea of distance vector routing as the first intra-AS
routing method and how it uses the Bellman-Ford algorithm to
update routing tables.

❑

To discuss how the Routing Information Protocol (RIP) is used to
implement the idea of distance vector routing in the Internet.

❑

To discuss the idea of link state routing as the second intra-AS rout-
ing method and how it uses Dijkstra algorithm to update the routing
tables.

❑

To discuss how Open Shortest Path First (OSPF) is used to imple-
ment the idea of link state routing in the Internet.

❑

To discuss the idea of path vector routing as the dominant inter-AS
routing method and explain the concept of policy routing.

❑

To discuss how Border Gateway Protocol (BGP) is used to imple-
ment the idea of path vector routing in the Internet.

A

for76042_ch11.fm Page 282 Monday, February 16, 2009 3:33 PM

283

11.1 INTRODUCTION

An internet is a combination of networks connected by routers. When a datagram goes
from a source to a destination, it will probably pass through many routers until it
reaches the router attached to the destination network.

Cost or Metric

A router receives a packet from a network and passes it to another network. A router is
usually attached to several networks. When it receives a packet, to which network
should it pass the packet? The decision is based on optimization: Which of the available
pathways is the optimum pathway? What is the definition of the term

optimum

?
One approach is to assign a

cost

 for passing through a network. We call this cost a

metric.

 High cost can be thought of as something

bad

; low cost can be thought of
something

 good

. For example, if we want to maximize the throughput in a network,
the high throughput means low cost and the low throughput means high cost. As
another example, if we want to minimize the delay, low delay is low cost and high
delay is high cost.

Static versus Dynamic Routing Tables

A routing table can be either static or dynamic.

A

 static table

 is one with manual
entries. A

dynamic table,

 on the other hand, is one that is updated automatically when
there is a change somewhere in the internet. Today, an internet needs dynamic routing
tables. The tables need to be updated as soon as there is a change in the internet. For
instance, they need to be updated when a link is down, and they need to be updated
whenever a better route has been found.

Routing Protocol

Routing protocols have been created in response to the demand for dynamic routing
tables. A routing protocol is a combination of rules and procedures that lets routers in
the internet inform each other of changes. It allows routers to share whatever they
know about the internet or their neighborhood. The sharing of information allows a
router in San Francisco to know about the failure of a network in Texas. The routing
protocols also include procedures for combining information received from other
routers.

 Routing protocols can be either an

interior protocol

 or an

exterior protocol

. An
interior protocol handles

intradomain routing

; an exterior protocol handles

inter-
domain routing

. We start the next section with defining these terms.

for76042_ch11.fm Page 283 Monday, February 16, 2009 3:33 PM

284

PART 2 NETWORK LAYER

11.2 INTRA- AND INTER-DOMAIN ROUTING

Today, an internet can be so large that one routing protocol cannot handle the task of
updating the routing tables of all routers. For this reason, an internet is divided into
autonomous systems. An

autonomous system (AS)

 is a group of networks and routers
under the authority of a single administration. Routing inside an autonomous system
is referred to as

intra-domain routing.

 Routing between autonomous systems is
referred to as

inter-domain routing

. Each autonomous system can choose one or more
intradomain routing protocols to handle routing inside the autonomous system. How-
ever, only one interdomain routing protocol handles routing between autonomous
systems. See Figure 11.1.

Several intra-domain and inter-domain routing protocols are in use. In this chapter,
we cover only the most popular ones. We discuss two intra-domain routing protocols:
distance vector and link state. We also introduce one inter-domain routing protocol:
path vector (see Figure 11.2).

Routing Information Protocol (RIP) is the implementation of the distance vector
protocol. Open Shortest Path First (OSPF) is the implementation of the link state pro-
tocol. Border Gateway Protocol (BGP) is the implementation of the path vector
protocol. RIP and OSPF are interior routing protocols; BGP is an exterior routing
protocol.

Figure 11.1

Autonomous systems

AS

AS

AS

R2

R3

R1

Legend

Autonomous System

Ethernet switch

Point-to-point WAN

Inter-system connection

AS

for76042_ch11.fm Page 284 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP)

285

11.3 DISTANCE VECTOR ROUTING

We first discuss

distance vector routing.

 This method sees an AS, with all routers and
networks, as a

graph

, a set of nodes and lines (edges) connecting the nodes. A router
can normally be represented by a node and a network by a link connecting two nodes,
although other representations are also possible. The graph theory used an algorithm
called Bellman-Ford (also called Ford-Fulkerson) for a while to find the shortest path
between nodes in a graph given the distance between nodes. We first discuss this algo-
rithm before we see how it can be modified to be used for updating routing tables in a
distance vector routing.

Bellman-Ford Algorithm

Let us briefly discuss the

Bellman-Ford algorithm.

 The algorithm can be used in many
applications in graph theory. If we know the cost between each pair of nodes, we can use
the algorithm to find the least cost (shortest path) between any two nodes. Figure 11.3
shows a map with nodes and lines. The cost of each line is given over the line; the algo-
rithm can find the least cost between any two nodes. For example, if the nodes repre-
sent cities and the lines represent roads connecting them, the graph can find the shortest
distance between any two cities.

The algorithm is based on the fact that if all neighbors of node

i

 know the shortest
distance to node

j

, then the shortest distance between node

i

 and

j

 can be found by add-
ing the distance between node

i

and each neighbor to the neighbor’s shortest distance to
node

j

 and then select the minimum, as shown in Figure 11.4.

Figure 11.2

Popular routing protocols

Figure 11.3

A graph for the Bellman-Ford algorithm

Routing protocols

Interdomain

RIP OSPF BGP

Path
vector

Distance
vector

Link
state

Intradomain

A B

C

D E

45

3

7

4

for76042_ch11.fm Page 285 Monday, February 16, 2009 3:33 PM

286

PART 2 NETWORK LAYER

Although the principle of the Bellman-Ford algorithm is very simple and intuitive,
the algorithm itself looks circular. How have the neighbors calculated the shortest path
to the destination? To solve the problem, we use iteration. We create a shortest distance
table (vector) for each node using the following steps:

1.

The shortest distance and the cost between a node and itself is initialized to 0.

2.

The shortest distance between a node and any other node is set to infinity. The cost
between a node and any other node should be given (can be infinity if the nodes are
not connected).

3.

The algorithm repeat as shown in Figure 11.4 until there is no more change in the
shortest distance vector.

Table 11.1 shows the algorithm in pseudocode.

Figure 11.4

The fact behind Bellman-Ford algorithm

Table 11.1

Bellman-Ford Algorithm

1 Bellman_Ford ()

2 {

3 // Initialization

4 for (

i

 = 1 to

N

; for

j

 = 1 to

N

)

5 {

6 if(

i

==

j

)

D

ij

=

0

c

ij

=

0

7 else

D

ij

=

∞∞∞∞

c

ij

=

cost between

i

 and

j

8 }

9 // Updating

10 repeat

11 {

12 for (

i

 = 1 to

N

; for

j

 = 1 to

N

)

13 {

14

D

ij ← minimum [(ci1 + D1j) ... (ciN + DNj)]

15 } // end for

16 } until (there was no change in previous iteration)

17 } // end Bellman-Ford

Dij = minimum {(ci1 + D1j) , (ci2 + D2j), . . . (ciN + DNj)

Dij Shortest distance between i and j
cij Cost between i and j
N Number of nodes

Legend ci1

ci2

ciN

D1j

D2j

DNj

i

1

N

2

j

for76042_ch11.fm Page 286 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP)

287

Distance Vector Routing Algorithm

The Bellman-Ford algorithm can be very well applied to a map of roads between cities
because we can have all of the initial information about each node at the same place.
We can enter this information into the computer and let the computer hold the interme-
diate results and create the final vectors for each node to be printed. In other words, the
algorithm is designed to create the result

synchronously

. If we want to use the algorithm
for creating the routing table for routers in an AS, we need to change the algorithm:

1.

In distance vector routing, the cost is normally hop counts (how many networks are
passed before reaching the destination). So the cost between any two neighbors is set to 1.

2.

Each router needs to update its routing table

asynchronously,

 whenever it has received
some information from its neighbors. In other words, each router executes part of the
whole algorithm in the Bellman-Ford algorithm. Processing is

distributive

.

3.

After a router has updated its routing table, it should send the result to its neigh-
bors so that they can also update their routing table.

4.

Each router should keep at least three pieces of information for each route: destina-
tion network, the cost, and the next hop. We refer to the whole routing table as
Table, to the row

i

 in the table as Table

i

,

to the three columns in row

i

 as
Table

i

.dest, Table

i

.cost, and Table

i

.next.

5.

We refer to information about each route received from a neighbor as R (record),
which has only two pieces of information: R.dest and R.cost. The next hop is not
included in the received record because it is the source address of the sender.

Table 11.2 shows the algorithm in pseudocode.

Table 11.2

Distance Vector Algorithm Used by Each Router

1 Distance_Vector_Algorithm ()

2 {

3 // At startup

4 for (

i

 = 1 to

N

)

//

N

 is number of ports

5

{

6

Table

i

.dest = address of the attached network

7

Table

i

.cost = 1

8

Table

i

.next =



// Means at home

9

Send a record

R

 about each row to each neighbor

10

}

// end for loop

11

12 // Updating

13 repeat (forever)

14

{

15 Wait for arrival of a record

R

 from a neighbor

16 Update (

R

,

T

) // Call update module

17 for (

i

 = 1 to

N

) //

N

 is the current table size

for76042_ch11.fm Page 287 Tuesday, February 17, 2009 12:09 PM

288

PART 2 NETWORK LAYER

Lines 4 to 10 show the initialization at the start-up. The router creates a prelimi-
nary routing table that can only be used to route packets to the networks directly
attached to its interfaces. For each entry in the routing table, it sends a record with only
two fields: destination address and the cost to each neighbor.

The router updates itself whenever it receives a record from a neighbor. After each
update, the route sends a record for each entry in the routing table to its neighbors to let
them also update themselves.

18

 {

19 Send a record

R

 about each row to each neighbor

20 }

21

 } // end repeat

22

23 } // end Distance_Vector

24 Update (

R

,

T

)

// Update module

25 {

26

 Search

T

 for a destination matching the one in

R

27

 if (destination is found in row

i

)

28

 {

29

 if (

R

.cost + 1 <

T

i

.cost or

R.

next ==

T

i

.next)

30

 {

31

T

i

.cost =

R.

cost + 1

32

 T

i

.next = Address of sending router

33

 }

34

 else discard the record // No change is needed

35

 }

36

 else

37

 // Insert the new router

38

 {

39

T

N

 +1

.dest =

R.

dest

40

T

N

 +1

.cost =

R.

cost + 1

41

T

N

 +1

.next = Address of sending router

42 Sort the table according to destination address

43 }

44 } // end of Update module

Table 11.2

Distance Vector Algorithm Used by Each Router (continued)

for76042_ch11.fm Page 288 Monday, February 23, 2009 6:56 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 289

Lines 23 to 47 give the details of updating process. When a record arrives, the
router searches for the destination address in the routing table.

1. If the corresponding entry is found, two cases need to be checked and the route
information should be changed.

a. If the record cost plus 1 is smaller than the corresponding cost in the table, it
means the neighbors have found a better route to that destination.

b. If the next hop is the same, it means some change has happened in some part of
the network. For example, suppose a neighbor has previously advertised a route
to a destination with cost 3, but now there is no path between this neighbor and
that destination. The neighbor advertises this destination with cost value infin-
ity. The receiving router must not ignore this value even though its old entry is
smaller. The old route does not exist any more.

2. If the entry is not in the table, the router adds it to the table and sorts the table
according to the destination address.

Example 11.1

Figure 11.5 shows the initial routing table for an AS. Note that the figure does not mean that all
routing tables have been created at the same time; each router creates its own routing table when
it is booted.

Example 11.2

Now assume router A sends four records to its neighbors, routers B, D, and C. Figure 11.6 shows
the changes in B’s routing table when it receives these records. We leave the changes in the rout-
ing tables of other neighbors as exercise.

Figure 11.5 Example 11.1

C

BA

Net2

Net6

Net7

Net3Net1

Net4
Net5

ED

Net1
Net2

Net5
Net4

1
1
1
1

—
—
—
—

Dest Cost Next

Net5
Net6
Net7

1
1
1

—
—
—

Dest Cost Next

Net2
Net3
Net6

1
1
1

—
—
—

Dest Cost Next

To other
AS’s

AS

To other
AS’s

Dest Cost Next
Net7 1 —

Dest Cost Next
Net4 1 —

for76042_ch11.fm Page 289 Monday, February 16, 2009 3:33 PM

290

PART 2 NETWORK LAYER

a.

When router B receives record 1, it searches its routing table for the route to net1, and
since it is not found there, it adds one hop to the cost (distance between B and A) and
adds it to the table with the next hop to be A.

b.

When router B receives record 2, it searches its routing table and finds the destination
net2 there. However, since the announced cost plus 1 is larger than the cost in the table,
the record is discarded.

c.

When router B receives record 3, it searches its router, and since Net4 is not found, it is
added to the table.

d.

When router B receives record 4, it searches its router, and since Net5 is not found, it is
added to the table.

Now router B has more information, but it is not complete. Router B does not even know
that net7 exists. More updating is required.

Example 11.3

Figure 11.7 shows the final routing tables for routers in Figure 11.5.

Figure 11.6

 Example 11.2

Figure 11.7

 Example 11.3

BA

Net1
Net2

Net5
Net4

1
1
1
1

—
—
—
—

Dest Cost Next

Net2
Net3
Net6

1
1
1

—
—
—

Dest Cost Next

Net2 , 1Net4 , 1Net5 , 1

After receiving
record 1

After receiving
record 2 After receiving

record 3

Routing Table B Routing Table B Routing Table B Routing Table B

After receiving
record 4

Net1, 1

1

1
1

Dest Cost Next

Net2
Net3
Net6

Net1 2

—
—

—
A

1

1
1

Dest Cost Next

Net2
Net3
Net6

Net1 2

—
—

—
A

1

2
1

1

Dest Cost Next

Net2
Net3
Net4
Net6

Net1 2

—

—

—
A

A

1

2
2

1

1

Dest Cost Next

Net2
Net3
Net4

Net6
Net5

Net1 2

—

—

—
A

A
A

1234

CBA ED

Net1 1 —
Net2 1 —
Net3 2 B

Net6 2 C
Net7 2 C

Net4 1 —
Net5 1 —

Dest Cost Next

Net1 2 A
Net2 1 —

—

—

Net3 1

Net6 1
Net7 2 C

Net4 2 A
Net5 2 A

Dest Cost Next

Net1 2 A
Net2 2 A

B

—
—

—

Net3 2

Net6 1
Net7 1

Net4 2 A
Net5 1

Dest Cost Next

Net1 2 A
Net2 2 A

A

A
A
A

—
Net3 3

Net6 3
3Net7

Net4 1
Net5 1

Dest Cost Next

Net1 3 C

C

Net2 3 C
C
C
C

—

Net3 3

Net6 2
1Net7

Net4 3
Net5 2

Dest Cost Next

for76042_ch11.fm Page 290 Tuesday, February 17, 2009 12:13 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP)

291

Count to Infinity

A problem with distance vector routing is that any decrease in cost (good news) propa-
gates quickly, but any increase in cost (bad news) propagates slowly. For a routing pro-
tocol to work properly, if a link is broken (cost becomes infinity), every other router
should be aware of it immediately, but in distance vector routing, this takes some time.
The problem is referred to as

count to infinity.

 It takes several updates before the cost
for a broken link is recorded as infinity by all routers.

Two-Node Loop

One example of count to infinity is the two-node loop problem. To understand the prob-
lem, let us look at the scenario depicted in Figure 11.8.

The figure shows a system with three nodes. We have shown only the portions of
the routing table needed for our discussion. At the beginning, both nodes A and B know
how to reach node X. But suddenly, the link between A and X fails. Node A changes its
table. If A can send its table to B immediately, everything is fine. However, the system
becomes unstable if B sends its routing table to A before receiving A’s routing table.
Node A receives the update and, assuming that B has found a way to reach X, immedi-
ately updates its routing table. Now A sends its new update to B. Now B thinks that
something has been changed around A and updates its routing table. The cost of reach-
ing X increases gradually until it reaches infinity. At this moment, both A and B know
that X cannot be reached. However, during this time the system is not stable. Node A
thinks that the route to X is via B; node B thinks that the route to X is via A. If A

Figure 11.8

Two-node instability

Before failure

After failure

After A receives
update from B

After B receives
update from A

Finally

1 1

A

A

A

A

A

B

B

B

B

B

X 1 — X 2 A

1
X

X X 2 A

1

X

X

X

X

X

X 3 B X 2 A

1

X 3 B X 4 A

1

X -X

8
8 8

for76042_ch11.fm Page 291 Tuesday, February 17, 2009 12:13 PM

292 PART 2 NETWORK LAYER

receives a packet destined for X, it goes to B and then comes back to A. Similarly, if
B receives a packet destined for X, it goes to A and comes back to B. Packets bounce
between A and B, creating a two-node loop problem. A few solutions have been pro-
posed for instability of this kind.

Defining Infinity The first obvious solution is to redefine infinity to a smaller num-
ber, such as 16. For our previous scenario, the system will be stable in fewer updates.
As a matter of fact, most implementations of the Distance Vector Protocol define 16 as
infinity. However, this means that distance vector cannot be used in large systems. The
size of the network, in each direction, can not exceed 15 hops.

Split Horizon Another solution is called split horizon. In this strategy, instead of
flooding the table through each interface, each node sends only part of its table through
each interface. If, according to its table, node B thinks that the optimum route to reach
X is via A, it does not need to advertise this piece of information to A; the information
has come from A (A already knows). Taking information from node A, modifying it,
and sending it back to node A is what creates the confusion. In our scenario, node B
eliminates the last line of its routing table before it sends it to A. In this case, node A
keeps the value of infinity as the distance to X. Later, when node A sends its routing
table to B, node B also corrects its routing table. The system becomes stable after the
first update: both node A and B know that X is not reachable.

Split Horizon and Poison Reverse Using the split horizon strategy has one draw-
back. Normally, the Distance Vector Protocol uses a timer, and if there is no news about
a route, the node deletes the route from its table. When node B in the previous scenario
eliminates the route to X from its advertisement to A, node A cannot guess that this is
due to the split horizon strategy (the source of information was A) or because B has not
received any news about X recently. The split horizon strategy can be combined with
the poison reverse strategy. Node B can still advertise the value for X, but if the source
of information is A, it can replace the distance with infinity as a warning: “Do not use
this value; what I know about this route comes from you.”

Three-Node Instability

The two-node instability can be avoided using split horizon combined with poison
reverse. However, if the instability is between three nodes, stability cannot be guaran-
teed. Figure 11.9 shows the scenario.

Suppose, after finding that X is not reachable, node A sends a packet to B and C to
inform them of the situation. Node B immediately updates its table, but the packet to C
is lost in the network and never reaches C. Node C remains in the dark and still thinks
that there is a route to X via A with a distance of 2. After a while, node C sends its rout-
ing table to B, which includes the route to X. Node B is totally fooled here. It receives
information on the route to X from C, and according to the algorithm, it updates its
table showing the route to X via C with a cost of 3. This information has come from C,
not from A, so after awhile node B may advertise this route to A. Now A is fooled and
updates its table to show that A can reach X via B with a cost of 4. Of course, the loop
continues; now A advertises the route to X to C, with increased cost, but not to B. C
then advertises the route to B with an increased cost. B does the same to A. And so on.
The loop stops when the cost in each node reaches infinity.

for76042_ch11.fm Page 292 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 293

11.4 RIP
The Routing Information Protocol (RIP) is an intradomain (interior) routing protocol
used inside an autonomous system. It is a very simple protocol based on distance vector
routing. RIP implements distance vector routing directly with some considerations:

1. In an autonomous system, we are dealing with routers and networks (links), what
was described as a node.

2. The destination in a routing table is a network, which means the first column
defines a network address.

3. The metric used by RIP is very simple; the distance is defined as the number of
links (networks) that have to be used to reach the destination. For this reason, the
metric in RIP is called a hop count.

4. Infinity is defined as 16, which means that any route in an autonomous system
using RIP cannot have more than 15 hops.

5. The next node column defines the address of the router to which the packet is to be
sent to reach its destination.

Figure 11.10 shows an autonomous system with seven networks and four routers. The
table of each router is also shown. Let us look at the routing table for R1. The table has
seven entries to show how to reach each network in the autonomous system. Router R1 is

Figure 11.9 Three-node instability

Before failure

After A sends
the route to B
and C, but the
packet to C is
lost

After C sends
the route to B

After B sends
the route to A

X 1 X 2 A

X 2 A

X -X

X 2 A

8 8

X -X

X 2 A

8 C

X B -X

X 2

34

A

C

1 1

1 1
A

B

C
X

1

1 1
A

B

C
X

1

1 1
A

B

C
X

1

1 1
A

B

C
X

—

—

—

A

3

for76042_ch11.fm Page 293 Monday, February 16, 2009 3:33 PM

294

PART 2 NETWORK LAYER

directly connected to networks 130.10.0.0 and 130.11.0.0, which means that there are
no next hop entries for these two networks. To send a packet to one of the three net-
works at the far left, router R1 needs to deliver the packet to R2. The next node entry
for these three networks is the interface of router R2 with IP address 130.10.0.1. To
send a packet to the two networks at the far right, router R1 needs to send the packet to
the interface of router R4 with IP address 130.11.0.1. The other tables can be explained
similarly.

RIP Message Format

The format of the RIP message is shown in Figure 11.11.

Figure 11.10

Example of a domain using RIP

Figure 11.11

RIP message format

195.2.4.0/24

195.2.4.1

130.10.0.0/16

13
0.

10
.0

.1

13
0.

10
.0

.2

205.5.5.0/24

205.5.5.1

205.5.6.0

205.5.6.1130.11.0.0/16

Legend
13

0.
11

.0
.2

13
0.

11
.0

.1

195.2.5.0/24
195.2.5.2

195.2.6.1

195.2.5.1

195.2.6.0/24

R1

R
Ethernet switch

Network
Router

N

R2

N1

N3

N4

N5

N6

N7N2

R4

R3

Next

195.2.4.0/24

195.2.6.0/24
205.5.5.0/24
205.5.6.0/24

195.2.5.0/24

130.10.0.0/16
130.11.0.0/16

R4 Table

Dest.

130.11.0.2

130.11.0.2
130.11.0.2
130.11.0.2

3

4
1
1

3

2
1

Cost Next

195.2.4.0/24

195.2.6.0/24
205.5.5.0/24
205.5.6.0/24

195.2.5.0/24

130.10.0.0/16
130.11.0.0/16

R3 Table

Dest.

195.2.5.1
195.2.5.1
195.2.5.1

195.2.5.1
195.2.5.1

2

1
4
4

1

2
3

Cost

R1 Table

Dest.

195.2.4.0/24

195.2.6.0/24
205.5.5.0/24
205.5.6.0/24

195.2.5.0/24

130.10.0.0/16
130.11.0.0/16

130.10.0.1
130.10.0.1
130.10.0.1
130.11.0.1
130.11.0.1

2

3
2
2

2

1
1

Cost Next

195.2.4.0/24

195.2.6.0/24
205.5.5.0/24
205.5.6.0/24

195.2.5.0/24

130.10.0.0/16
130.11.0.0/16

R2 Table

Dest.

195.2.5.2

1

2
3
3

1

1
2

Cost Next

130.10.0.2

130.10.0.2
130.10.0.2

Network address

Distance

Command Version Reserved

Family All 0s

All 0s

All 0sR
ep

ea
te

d

for76042_ch11.fm Page 294 Tuesday, February 17, 2009 12:56 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP)

295

❑

Command.

 This 8-bit field specifies the type of message: request (1) or response (2).

❑

Version.

 This 8-bit field defines the version. In this book we use version 1, but at
the end of this section, we give some new features of version 2.

❑

Family.

 This 16-bit field defines the family of the protocol used. For TCP/IP the
value is 2.

❑

Network address.

 The address field defines the address of the destination net-
work. RIP has allocated 14 bytes for this field to be applicable to any protocol.
However, IP currently uses only 4 bytes. The rest of the address is filled with 0s.

❑

Distance.

 This 32-bit field defines the hop count (cost) from the advertising router
to the destination network.

Note that part of the message is repeated for each destination network. We refer to this
as an

entry

.

Requests and Responses

RIP has two types of messages: request and response.

Request

A request message is sent by a router that has just come up or by a router that has some
time-out entries. A request can ask about specific entries or all entries (see Figure 11.12).

Response

A response can be either solicited or unsolicited. A

 solicited response

 is sent only in
answer to a request. It contains information about the destination specified in the corre-
sponding request. An

unsolicited response,

 on the other hand, is sent periodically, every
30 seconds or when there is a change in the routing table. The response is sometimes
called an update packet. Figure 11.11 shows the response message format.

Example 11.4

Figure 11.13 shows the update message sent from router R1 to router R2 in Figure 11.10. The
message is sent out of interface 130.10.0.2.

The message is prepared with the combination of split horizon and poison reverse strategy in
mind. Router R1 has obtained information about networks 195.2.4.0, 195.2.5.0, and 195.2.6.0
from router R2. When R1 sends an update message to R2, it replaces the actual value of the hop
counts for these three networks with 16 (infinity) to prevent any confusion for R2. The figure also
shows the table extracted from the message. Router R2 uses the source address of the IP datagram

Figure 11.12

Request messages

Network address

All 0s

Version Reserved
Family All 0s

All 0s
All 0sR

ep
ea

te
d

Com: 1

a. Request for some

All 0s

All 0s

Com: 1 Version Reserved
Family All 0s

All 0s
All 0s

b. Request for all

for76042_ch11.fm Page 295 Tuesday, February 17, 2009 12:10 PM

296 PART 2 NETWORK LAYER

carrying the RIP message from R1 (130.10.02) as the next hop address. Router R2 also incre-
ments each hop count by 1 because the values in the message are relative to R1, not R2.

Timers in RIP
RIP uses three timers to support its operation (see Figure 11.14). The periodic timer
controls the sending of messages, the expiration timer governs the validity of a route,
and the garbage collection timer advertises the failure of a route.

Periodic Timer

The periodic timer controls the advertising of regular update messages. Although the
protocol specifies that this timer must be set to 30 s, the working model uses a random
number between 25 and 35 s. This is to prevent any possible synchronization and there-
fore overload on an internet if routers update simultaneously.

Each router has one periodic timer that is randomly set to a number between 25
and 35. It counts down; when zero is reached, the update message is sent, and the timer
is randomly set once again.

Figure 11.13 Solution to Example 11.4

Figure 11.14 RIP timers

1

130.10.0.0

1

1

2

130.11.0.0

2

2

2

2

2

16

195.2.4.0
2

16

195.2.5.0

16

195.2.6.0

2

205.5.5.0

2

205.5.6.0

2

RIP message

Information extracted
from message

Dest.

195.2.4.0

195.2.6.0
205.5.5.0
205.5.6.0

195.2.5.0

130.10.0.0
130.11.0.0

16

16
2
2

16

1
1

Cost

Periodic
25–35 s

Expiration
180 s

Timers

Garbage collection
120 s

for76042_ch11.fm Page 296 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 297

Expiration Timer

The expiration timer governs the validity of a route. When a router receives update
information for a route, the expiration timer is set to 180 s for that particular route.
Every time a new update for the route is received, the timer is reset. In normal situa-
tions this occurs every 30 s. However, if there is a problem on an internet and no update
is received within the allotted 180 s, the route is considered expired and the hop count
of the route is set to 16, which means the destination is unreachable. Every route has its
own expiration timer.

Garbage Collection Timer

When the information about a route becomes invalid, the router does not immediately
purge that route from its table. Instead, it continues to advertise the route with a metric
value of 16. At the same time, a timer called the garbage collection timer is set to 120 s
for that route. When the count reaches zero, the route is purged from the table. This
timer allows neighbors to become aware of the invalidity of a route prior to purging.

Example 11.5

A routing table has 20 entries. It does not receive information about five routes for 200 s. How
many timers are running at this time?

Solution
The 21 timers are listed below:

Periodic timer: 1

Expiration timer: 20 − 5 = 15

Garbage collection timer: 5

RIP Version 2
RIP version 2 was designed to overcome some of the shortcomings of version 1. The
designers of version 2 have not augmented the length of the message for each entry.
They have only replaced those fields in version 1 that were filled with 0s for the TCP/IP
protocol with some new fields.

Message Format

Figure 11.15 shows the format of a RIP version 2 message. The new fields of this mes-
sage are as follows:

❑ Route tag. This field carries information such as the autonomous system number. It
can be used to enable RIP to receive information from an interdomain routing protocol.

❑ Subnet mask. This is a 4-byte field that carries the subnet mask (or prefix). This
means that RIP2 supports classless addressing and CIDR.

❑ Next-hop address. This field shows the address of the next hop. This is particu-
larly useful if two autonomous systems share a network (a backbone, for example).
Then the message can define the router, in the same autonomous system or another
autonomous system, to which the packet next goes.

for76042_ch11.fm Page 297 Monday, February 16, 2009 3:33 PM

298

PART 2 NETWORK LAYER

Classless Addressing

Probably the most important difference between the two versions of RIP is classful
versus classless addressing. RIPv1 uses classful addressing. The only entry in the mes-
sage format is the network address (with a default mask). RIPv2 adds one field for the
subnet mask, which can be used to define a network prefix length. This means that in
this version, we can use classless addressing. A group of networks can be combined
into one prefix and advertised collectively, as we saw in Chapters 5 and 6.

Authentication

Authentication is added to protect the message against unauthorized advertisement. No
new fields are added to the packet; instead, the first entry of the message is set aside for
authentication information. To indicate that the entry is authentication information and not
routing information, the value of FFFF

16

is entered in the family field (see Figure 11.16).
The second field, the authentication type, defines the protocol used for authentication,
and the third field contains the actual authentication data.

Multicasting

Version 1 of RIP uses broadcasting to send RIP messages to every neighbor. In this
way, all the routers on the network receive the packets, as well as the hosts. RIP version 2,
on the other hand, uses the all-router multicast address to send the RIP messages only
to RIP routers in the network.

Figure 11.15

RIP version 2 format

Figure 11.16

Authentication

Network address

Distance

Command Version Reserved

Family Route tag

Subnet mask

Next-hop addressR
ep

ea
te

d

Authentication data
16 bytes

Command Version Reserved

0xFFFF Authentication type

for76042_ch11.fm Page 298 Monday, February 23, 2009 7:00 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP)

299

Encapsulation

RIP messages are encapsulated in UDP user datagrams. A RIP message does not
include a field that indicates the length of the message. This can be determined from the
UDP packet. The well-known port assigned to RIP in UDP is port 520.

11.5 LINK STATE ROUTING

Link state routing has a different philosophy from that of distance vector routing. In
link state routing, if each node in the domain has the entire topology of the domain—
the list of nodes and links, how they are connected including the type, cost (metric), and
the condition of the links (up or down)—the node can use the

Dijkstra algorithm

to
build a routing table. Figure 11.17 shows the concept.

The figure shows a simple domain with five nodes. Each node uses the same topol-
ogy to create a routing table, but the routing table for each node is unique because the
calculations are based on different interpretations of the topology. This is analogous to
a city map. Two persons in two different cities may have the same map, but each needs
to take a different route to reach his destination.

RIP uses the services of UDP on well-known port 520.

Figure 11.17

Concept of link state routing

3 3

2

5

4

System seen by A System seen by B

System seen by E
System seen by D

System seen by C

4

BA

E

C

D

3 32

5

4
4

B

E

C

D

3 3
2

5

4
4

A

E

C

D

3 3
2

5

4
4

BA

C

D

3 3
2

5

4
4

BA

ED

3 3
2

5

4
4

BA

E

C

for76042_ch11.fm Page 299 Monday, February 23, 2009 1:12 PM

300 PART 2 NETWORK LAYER

The topology must be dynamic, representing the latest situation of each node and
each link. If there are changes in any point in the network (a link is down, for example),
the topology must be updated for each node.

How can a common topology be dynamic and stored in each node? No node can
know the topology at the beginning or after a change somewhere in the network. Link
state routing is based on the assumption that, although the global knowledge about the
topology is not clear, each node has partial knowledge: it knows the state (type, condi-
tion, and cost) of its links. In other words, the whole topology can be compiled from the
partial knowledge of each node. Figure 11.18 shows the same domain as in the previous
figure, indicating the part of the knowledge belonging to each node.

Node A knows that it is connected to node B with metric 5, to node C with metric 2,
and to node D with metric 3. Node C knows that it is connected to node A with metric 2,
to node B with metric 4, and to node E with metric 4. Node D knows that it is con-
nected only to node A with metric 3. And so on. Although there is an overlap in the
knowledge, the overlap guarantees the creation of a common topology: a picture of the
whole domain for each node.

Building Routing Tables
In link state routing, four sets of actions are required to ensure that each node has the
routing table showing the least-cost node to every other node.

1. Creation of the states of the links by each node, called the link state packet or LSP.

2. Dissemination of LSPs to every other router, called flooding, in an efficient and
reliable way.

3. Formation of a shortest path tree for each node.

4. Calculation of a routing table based on the shortest path tree.

Creation of Link State Packet (LSP)

A link state packet (LSP) can carry a large amount of information. For the moment,
however, we assume that it carries a minimum amount of data: the node identity, the list
of links, a sequence number, and age. The first two, node identity and the list of links,
are needed to make the topology. The third, sequence number, facilitates flooding and

Figure 11.18 Link state knowledge

3

3

3

3

2
2

5 5

4

4

4
4

B's States
of links

A's States
of links

D's States
of links

E's States
of links

C's States
of links

BA

E

C

D

for76042_ch11.fm Page 300 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 301

distinguishes new LSPs from old ones. The fourth, age, prevents old LSPs from
remaining in the domain for a long time. LSPs are generated on two occasions:

1. When there is a change in the topology of the domain. Triggering of LSP dissemi-
nation is the main way of quickly informing any node in the domain to update its
topology.

2. On a periodic basis. The period in this case is much longer compared to distance
vector routing. As a matter of fact, there is no actual need for this type of LSP dis-
semination. It is done to ensure that old information is removed from the domain.
The timer set for periodic dissemination is normally in the range of 60 minutes or
2 hours based on the implementation. A longer period ensures that flooding does
not create too much traffic on the network.

Flooding of LSPs

After a node has prepared an LSP, it must be disseminated to all other nodes, not only
to its neighbors. The process is called flooding and based on the following:

1. The creating node sends a copy of the LSP out of each interface.

2. A node that receives an LSP compares it with the copy it may already have. If the
newly arrived LSP is older than the one it has (found by checking the sequence
number), it discards the LSP. If it is newer, the node does the following:

a. It discards the old LSP and keeps the new one.

b. It sends a copy of it out of each interface except the one from which the packet
arrived. This guarantees that flooding stops somewhere in the domain (where a
node has only one interface).

Formation of Shortest Path Tree: Dijkstra Algorithm

After receiving all LSPs, each node will have a copy of the whole topology. However,
the topology is not sufficient to find the shortest path to every other node; a shortest
path tree is needed.

A tree is a graph of nodes and links; one node is called the root. All other nodes
can be reached from the root through only one single route. A shortest path tree is a tree
in which the path between the root and every other node is the shortest. What we need
for each node is a shortest path tree with that node as the root. The Dijkstra algorithm
is used to create a shortest path tree from a given graph. The algorithm uses the follow-
ing steps:

1. Initialization: Select the node as the root of the tree and add it to the path. Set the
shortest distances for all the root’s neighbors to the cost between the root and those
neighbors. Set the shortest distance of the root to zero.

2. Iteration: Repeat the following two steps until all nodes are added to the path:

a. Adding the next node to the path: Search the nodes not in the path. Select the
one with minimum shortest distance and add it to the path.

b. Updating: Update the shortest distance for all remaining nodes using the short-
est distance of the node just moved to the path in step 2.

Dj = minimum (Dj, Di + cij) for all remaining nodes

for76042_ch11.fm Page 301 Monday, February 16, 2009 3:33 PM

302

PART 2 NETWORK LAYER

Table 11.3 shows the simple version of this algorithm.

Figure 11.19 shows the formation of the shortest path tree for the graph of seven
nodes. All the nodes in the graph have the same topology, but each node creates a dif-
ferent shortest path tree with itself as the root of the tree.We show the tree created by
node A. We need to go through an initialization step and six iterations to find the
shortest tree.

In the initialization step, node A selects itself as the root. It then assigns shortest
path distances to each node on the topology. The nodes that are not neighbors of A
receive a shortest path distance value of infinity.

Table 11.3

Dijkstra’s Algorithm

1 Dijkstra ()

2 {

3

// Initialization

4 Path = {

s

} //

s

 means self

5 for (

i

 = 1 to

N

)

6 {

7 if(

i

 is a neighbor of

s

 and

i

≠≠≠≠

s

)

D

i

====

c

si

8 if (

i

 is not a neighbor of

s

)

D

i

====

∞∞∞∞

9 }

10

D

s

= 0

11

12 } // Dijkstra

13

 // Iteration

14

Repeat

15

{

16

 // Finding the next node to be added

17 Path = Path

∪∪∪∪

i

 if

D

i

 is minimum among all remaining nodes

18

19

 // Update the shortest distance for the rest

20 for (

j

 = 1 to

M

) //

M

number of remaining nodes

21 {

22

D

j

 = minimum (

D

j

,

D

j

+

c

ij

)

23 }

24 } until (all nodes included in the path,

M

 = 0)

25

for76042_ch11.fm Page 302 Monday, February 23, 2009 12:34 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 303

In each iteration, the next node with minimum distance is selected and added to the
path. Then all shortest distances are updated with respect to the last node selected. For
example, in the first iteration, node B is selected and added to the path and the shortest
distances are updated with respect to node B (The shortest distances for C and E are
changed, but for the others remain the same). After six iterations, the shortest path tree
is found for node A. Note that in iteration 4, the shortest path to G is found via C, but in
iteration 5, a new shortest route is discovered (via G); the previous path is erased and
the new one is added.

Figure 11.19 Forming shortest path three for router A in a graph

Legend

Root node

Node in the path

Node not in the path

Path
Topology

2

2

3

3

1

5

5

4 4 G

A B C

E FD

Initialization

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Iteration 5 Iteration 6

20

3 8 8
8

8G

A B C

E FD

2 7

6

0

3 8

8G

A B C

E FD

2 7

6

0

3 8

8G

A B C

E FD

2 7

6 8

0

3

8G

A B C

E FD

2 7

10

6 8

0

3

G

A B C

E FD

2 7

6 8

9

0

3

G

A B C

E FD

2 7

6 8

9

0

3

G

A B C

E FD

for76042_ch11.fm Page 303 Monday, February 16, 2009 3:33 PM

304 PART 2 NETWORK LAYER

Example 11.6

To show that the shortest path tree for each node is different, we found the shortest path tree as
seen by node C (Figure 11.20). We leave the detail as an exercise.

Calculation of Routing Table from Shortest Path Tree

Each node uses the shortest path tree found in the previous discussion to construct its
routing table. The routing table shows the cost of reaching each node from the root.
Table 11.4 shows the routing table for node A using the shortest path tree found in
Figure 11.19.

11.6 OSPF
The Open Shortest Path First (OSPF) protocol is an intradomain routing protocol
based on link state routing. Its domain is also an autonomous system.

Areas
To handle routing efficiently and in a timely manner, OSPF divides an autonomous sys-
tem into areas. An area is a collection of networks, hosts, and routers all contained
within an autonomous system. An autonomous system can be divided into many differ-
ent areas. All networks inside an area must be connected.

Routers inside an area flood the area with routing information. At the border of an
area, special routers called area border routers summarize the information about the
area and send it to other areas. Among the areas inside an autonomous system is a spe-
cial area called the backbone; all of the areas inside an autonomous system must be

Figure 11.20 Example 11.6

Table 11.4 Routing Table for Node A

Destination Cost Next Router
A 0 —
B 2 —
C 7 B
D 3 —
E 6 B
F 8 B
G 9 B

4

57

4610

3

0

G

A B C

E FD

for76042_ch11.fm Page 304 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 305

connected to the backbone. In other words, the backbone serves as a primary area and
the other areas as secondary areas. This does not mean that the routers within areas
cannot be connected to each other, however. The routers inside the backbone are
called the backbone routers. Note that a backbone router can also be an area border
router.

If, because of some problem, the connectivity between a backbone and an area is
broken, a virtual link between routers must be created by the administration to allow
continuity of the functions of the backbone as the primary area.

Each area has an area identification. The area identification of the backbone is
zero. Figure 11.21 shows an autonomous system and its areas.

Metric
The OSPF protocol allows the administrator to assign a cost, called the metric, to each
route. The metric can be based on a type of service (minimum delay, maximum
throughput, and so on). As a matter of fact, a router can have multiple routing tables,
each based on a different type of service.

Types of Links
In OSPF terminology, a connection is called a link. Four types of links have been
defined: point-to-point, transient, stub, and virtual (see Figure 11.22).

Figure 11.21 Areas in an autonomous system

Figure 11.22 Types of links

Area 1

Area 0 (backbone)

Area 2

Autonomous System (AS)

AS boundary
router

Backbone
 router

WAN

WAN

LAN LAN

LAN

LAN LANLAN

LAN

WAN

Backbone
router

Area border
 router

Area border
 router

To other
ASs

Types of links

Point-to-point Transient Stub Virtual

for76042_ch11.fm Page 305 Monday, February 16, 2009 3:33 PM

306 PART 2 NETWORK LAYER

Point-to-Point Link

A point-to-point link connects two routers without any other host or router in
between. In other words, the purpose of the link (network) is just to connect the two
routers. An example of this type of link is two routers connected by a telephone line or
a T-line. There is no need to assign a network address to this type of link. Graphically,
the routers are represented by nodes, and the link is represented by a bidirectional edge
connecting the nodes. The metrics, which are usually the same, are shown at the two
ends, one for each direction. In other words, each router has only one neighbor at the
other side of the link (see Figure 11.23).

Transient Link

A transient link is a network with several routers attached to it. The data can enter
through any of the routers and leave through any router. All LANs and some WANs with
two or more routers are of this type. In this case, each router has many neighbors. For
example, consider the Ethernet in Figure 11.24a. Router A has routers B, C, D, and E as
neighbors. Router B has routers A, C, D, and E as neighbors. If we want to show the
neighborhood relationship in this situation, we have the graph shown in Figure 11.24b.

This is neither efficient nor realistic. It is not efficient because each router needs to
advertise the neighborhood to four other routers, for a total of 20 advertisements. It is
not realistic, because there is no single network (link) between each pair of routers;
there is only one network that serves as a crossroad between all five routers.

To show that each router is connected to every other router through one single net-
work, the network itself is represented by a node. However, because a network is not a
machine, it cannot function as a router. One of the routers in the network takes this respon-
sibility. It is assigned a dual purpose; it is a true router and a designated router. We can use
the topology shown in Figure 11.24c to show the connections of a transient network.

Figure 11.23 Point-to-point link

Figure 11.24 Transient link

4 444

a. Point-to-point network b. Representation

A B
A B

a. Transient network

A B

C D E

b. Unrealistic c. Realistic

Designated
routerEthernet

A A

C CD DE E

B B

for76042_ch11.fm Page 306 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 307

Now each router has only one neighbor, the designated router (network). On the
other hand, the designated router (the network) has five neighbors. We see that the
number of neighbor announcements is reduced from 20 to 10. Still, the link is repre-
sented as a bidirectional edge between the nodes. However, while there is a metric from
each node to the designated router, there is no metric from the designated router to any
other node. The reason is that the designated router represents the network. We can
only assign a cost to a packet that is passing through the network. We cannot charge for
this twice. When a packet enters a network, we assign a cost; when a packet leaves the
network to go to the router, there is no charge.

Stub Link

A stub link is a network that is connected to only one router. The data packets enter the
network through this single router and leave the network through this same router. This
is a special case of the transient network. We can show this situation using the router as
a node and using the designated router for the network. However, the link is only one-
directional, from the router to the network (see Figure 11.25).

Virtual Link

When the link between two routers is broken, the administration may create a virtual
link between them using a longer path that probably goes through several routers.

Graphical Representation
Let us now examine how an AS can be represented graphically. Figure 11.26 shows a
small AS with seven networks and six routers. Two of the networks are point-to-point
networks. We use symbols such as N1 and N2 for transient and stub networks. There is
no need to assign an identity to a point-to-point network. The figure also shows the
graphical representation of the AS as seen by OSPF.

We have used color nodes for the routers and shaded nodes for the networks (rep-
resented by designated routers). However, OSPF sees both as nodes. Note that we have
three stub networks.

OSPF Packets
OSPF uses five different types of packets: hello, database description, link state
request, link state update, and link state acknowledgment (see Figure 11.27). The most
important one is the link state update that itself has five different kinds.

Figure 11.25 Stub link

b. Representationa. Stub network

Designated
router

A

Ethernet

A

for76042_ch11.fm Page 307 Monday, February 16, 2009 3:33 PM

308 PART 2 NETWORK LAYER

Common Header

All OSPF packets have the same common header (see Figure 11.28). Before studying
the different types of packets, let us talk about this common header.

❑ Version. This 8-bit field defines the version of the OSPF protocol. It is currently
version 2.

❑ Type. This 8-bit field defines the type of the packet. As we said before, we have
five types, with values 1 to 5 defining the types.

❑ Message length. This 16-bit field defines the length of the total message including
the header.

Figure 11.26 Example of an AS and its graphical representation in OSPF

Figure 11.27 Types of OSPF packets

A

B

C

E

F

N4

N5

N1

N2 T-1 line

T-3 line

a. Autonomous System

b. Graphical Representation

D

N3

8 8

4 4

2

5

5

9 9
2
2

5

5

3 32 2

7

7

A D

E

FC

B

N1 N5N3

N4

N2

OSPF
packets

Database
description

Link state
 request

Link state
 update

Hello
Link state

acknowledgment

1. Router link
2. Network link
3. Summary link to network
4. Summary link to AS boundary router
5. External link

for76042_ch11.fm Page 308 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 309

❑ Source router IP address. This 32-bit field defines the IP address of the router
that sends the packet.

❑ Area identification. This 32-bit field defines the area within which the routing
takes place.

❑ Checksum. This field is used for error detection on the entire packet excluding the
authentication type and authentication data field.

❑ Authentication type. This 16-bit field defines the authentication protocol used in
this area. At this time, two types of authentication are defined: 0 for none and 1 for
password.

❑ Authentication. This 64-bit field is the actual value of the authentication data. In
the future, when more authentication types are defined, this field will contain the
result of the authentication calculation. For now, if the authentication type is 0, this
field is filled with 0s. If the type is 1, this field carries an eight-character password.

Link State Update Packet
We first discuss the link state update packet, the heart of the OSPF operation. It is
used by a router to advertise the states of its links. The general format of the link state
update packet is shown in Figure 11.29.

Each update packet may contain several different LSAs. All five kinds have the
same general header. This general header is shown in Figure 11.30 and described below:

❑ Link state age. This field indicates the number of seconds elapsed since this mes-
sage was first generated. Recall that this type of message goes from router to router
(flooding). When a router creates the message, the value of this field is 0. When

Figure 11.28 OSPF common header

Figure 11.29 Link state update packet

Source router IP address

Area Identification

Version Type Message length

Authentication
(32 bits)

Checksum Authentication type

0 7 8 15 16 31

R
ep

ea
te

d

Number of link state advertisements

Link state advertisement
Any combination of five different kinds

(network link, router link, summary link to network, summary to
 boundary router, or external link)

OSPF common header
24 bytes Type: 4

for76042_ch11.fm Page 309 Monday, February 16, 2009 3:33 PM

310 PART 2 NETWORK LAYER

each successive router forwards this message, it estimates the transit time and adds
it to the cumulative value of this field.

❑ E flag. If this 1-bit flag is set to 1, it means that the area is a stub area. A stub area
is an area that is connected to the backbone area by only one path.

❑ T flag. If this 1-bit flag is set to 1, it means that the router can handle multiple
types of service.

❑ Link state type. This field defines the LSA type. As we discussed before, there are
five different advertisement types: router link (1), network link (2), summary link
to network (3), summary link to AS boundary router (4), and external link (5).

❑ Link state ID. The value of this field depends on the type of link. For type 1
(router link), it is the IP address of the router. For type 2 (network link), it is the IP
address of the designated router. For type 3 (summary link to network), it is the
address of the network. For type 4 (summary link to AS boundary router), it is
the IP address of the AS boundary router. For type 5 (external link), it is the
address of the external network.

❑ Advertising router. This is the IP address of the router advertising this message.

❑ Link state sequence number. This is a sequence number assigned to each link
state update message.

❑ Link state checksum. This is not the usual checksum. Instead, the value of this
field is calculated using Fletcher’s checksum (see Appendix C), which is based on
the whole packet except for the age field.

❑ Length. This defines the length of the whole packet in bytes.

Router Link LSA

A router link defines the links of a true router. A true router uses this advertisement to
announce information about all of its links and what is at the other side of the link
(neighbors). See Figure 11.31 for a depiction of a router link.

The router link LSA advertises all of the links of a router (true router). The format
of the router link packet is shown in Figure 11.32.

The fields of the router link LSA are as follows:

❑ Link ID. The value of this field depends on the type of link. Table 11.5 shows the
different link identifications based on link type.

❑ Link data. This field gives additional information about the link. Again, the value
depends on the type of the link (see Table 11.5).

Figure 11.30 LSA general header

Link state ID

Link state sequence number

Link state checksum Length

Advertising router

Link state age Reserved TE Link state type

for76042_ch11.fm Page 310 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 311

❑ Link type. Four different types of links are defined based on the type of network to
which the router is connected (see Table 11.5).

❑ Number of types of service (TOS). This field defines the number of types of
services announced for each link.

❑ Metric for TOS 0. This field defines the metric for the default type of service
(TOS 0).

❑ TOS. This field defines the type of service.

❑ Metric. This field defines the metric for the corresponding TOS.

Figure 11.31 Router link

Figure 11.32 Router link LSA

Table 11.5 Link Types, Link Identification, and Link Data

Link Type Link Identification Link Data
Type 1: Point-to-point Address of neighbor router Interface number
Type 2: Transient Address of designated router Router address
Type 3: Stub Network address Network mask
Type 4: Virtual Address of neighbor router Router address

Advertising router
with four links

Point-to-point

To transient network

Virtual

To stub network

R
ep

ea
te

d

Repeated

Link ID

Metric for TOS 0

Metric

Link type # of TOS

TOS Reserved

Link data

Reserved BE Reserved Number of router links

OSPF common header
24 bytes Type: 4

Number of advertisements

LSA general header
20 bytes Type: 1

for76042_ch11.fm Page 311 Monday, February 16, 2009 3:33 PM

312 PART 2 NETWORK LAYER

Example 11.7

Give the router link LSA sent by router 10.24.7.9 in Figure 11.33.

Solution
This router has three links: two of type 1 (point-to-point) and one of type 3 (stub network).
Figure 11.34 shows the router link LSA.

Network Link LSA

A network link defines the links of a network. A designated router, on behalf of the
transient network, distributes this type of LSP packet. The packet announces the exist-
ence of all of the routers connected to the network (see Figure 11.35). The format of the

Figure 11.33 Example 11.7

Figure 11.34 Solution to Example 11.8

1 23

metric: 6metric: 2

m
et

ri
c:

 4

10
.2

4.
7.

9

10.24.7.0/24

10
.2

4.
9.

11

10.24.8.10

point-to-point

po
in

t-
to

-p
oi

nt

Number of links: 3

10.24.8.10

10.24.7.0

255.255.255.0

1

1

10.24.9.11

2

4

1

6

3

2

OSPF common header Type: 4

LSA general header Type: 1

O
ne

 r
ou

te
r

li
nk

 a
dv

er
ti

se
m

en
t

Number of advertisements: 1

1 23

10.24.7.9

for76042_ch11.fm Page 312 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 313

network link advertisement is shown in Figure 11.36. The fields of the network link
LSA are as follows:

❑ Network mask. This field defines the network mask.

❑ Attached router. This repeated field defines the IP addresses of all attached
routers.

Example 11.8

Give the network link LSA in Figure 11.37.

Solution
The network for which the network link advertises has three routers attached. The LSA shows the
mask and the router addresses. Figure 11.38 shows the network link LSA.

Figure 11.35 Network link

Figure 11.36 Network link advertisement format

Figure 11.37 Example 4

Network with
five links

Designated router
advertises the links

R
ep

ea
te

d Network mask

Attached router

OSPF common header
24 bytes Type: 4

Number of advertisements

LSA general header
20 bytes Type: 2

10.24.7.14 10.24.7.1610.24.7.15

10.24.7.15/24

for76042_ch11.fm Page 313 Monday, February 16, 2009 3:33 PM

314

PART 2 NETWORK LAYER

Example 11.9

In Figure 11.39, which router(s) sends out router link LSAs?

Solution

All routers advertise router link LSAs.

a.

R1 has two links, N1 and N2.

b.

R2 has one link, N1.

c.

R3 has two links, N2 and N3.

Example 11.10

In Figure 11.39, which router(s) sends out the network link LSAs?

Solution

All three networks must advertise network links:

a.

Advertisement for N1 is done by R1 because it is the only attached router and therefore
the designated router.

b.

Advertisement for N2 can be done by either R1, R2, or R3, depending on which one is
chosen as the designated router.

c.

Advertisement for N3 is done by R3 because it is the only attached router and therefore
the designated router.

Summary Link to Network LSA

Router link and network link advertisements flood the area with information about the
router links and network links inside an area. But a router must also know about the
networks outside its area; the area border routers can provide this information. An area
border router is active in more than one area. It receives router link and network link

Figure 11.38

Solution to Example 4

Figure 11.39

Example 11.9 and Example 11.10

255.255.255.0

10.24.7.16

OSPF common header Type: 4
Number of advertisements: 1

LSA general header Type: 2

10.24.7.14

10.24.7.15

R2
To next AS

N1

N2

N3
R3R1

for76042_ch11.fm Page 314 Tuesday, February 17, 2009 12:10 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 315

advertisements, and, as we will see, creates a routing table for each area. For example,
in Figure 11.40, router R1 is an area border router. It has two routing tables, one for
area 1 and one for area 0. R1 floods area 1 with information about how to reach a net-
work located in area 0. In the same way, router R2 floods area 2 with information about
how to reach the same network in area 0.

The summary link to network LSA is used by the area border router to announce
the existence of other networks outside the area. The summary link to network adver-
tisement is very simple. It consists of the network mask and the metric for each type of
service. Note that each advertisement announces only one single network. If there is
more than one network, a separate advertisement must be issued for each. The reader
may ask why only the mask of the network is advertised. What about the network
address itself? The IP address of the advertising router is announced in the header of
the link state advertisement. From this information and the mask, one can deduce the
network address. The format of this advertisement is shown in Figure 11.41. The fields
of the summary link to network LSA are as follows:

❑ Network mask. This field defines the network mask.

❑ TOS. This field defines the type of service.

❑ Metric. This field defines the metric for the type of service defined in the TOS field.

Figure 11.40 Summary link to network

Figure 11.41 Summary link to network LSA

Summary link
to network

Summary link
to network

Flooded by the area
border router into

the area

Flooded by the area
border router into

the area

Area 1

Area 0

Area 2

Autonomous system

N1

R1 R2

MetricTOS

R
ep

ea
te

d Network mask

OSPF common header
24 bytes Type: 4

Number of advertisements

LSA general header
20 bytes Type: 3

for76042_ch11.fm Page 315 Monday, February 16, 2009 3:33 PM

316 PART 2 NETWORK LAYER

Summary Link to AS Boundary Router LSA

The previous advertisement lets every router know the cost to reach all of the networks
inside the autonomous system. But what about a network outside the autonomous sys-
tem? If a router inside an area wants to send a packet outside the autonomous system, it
should first know the route to an autonomous boundary router; the summary link to AS
boundary router provides this information. The area border routers flood their areas with
this information (see Figure 11.42). This packet is used to announce the route to an AS
boundary router. Its format is the same as the previous summary link. The packet just
defines the network to which the AS boundary router is attached. If a message can
reach the network, it can be picked up by the AS boundary router. The format of the
packet is shown in Figure 11.43. The fields are the same as the fields in the summary
link to network advertisement message.

External Link LSA

Although the previous advertisement lets each router know the route to an AS bound-
ary router, this information is not enough. A router inside an autonomous system
wants to know which networks are available outside the autonomous system; the
external link advertisement provides this information. The AS boundary router floods
the autonomous system with the cost of each network outside the autonomous system

Figure 11.42 Summary link to AS boundary router

Figure 11.43 Summary link to AS boundary router LSA

Summary link to AS boundary router

Flooded by the area
border router into

the area

Flooded by the area
border router into

the area

Area 1

Area 0

Area 2

Autonomous system

AS boundary
router

MetricTOS

R
ep

ea
te

d All 0s

OSPF common header
24 bytes Type: 4

Number of advertisements

LSA general header
20 bytes Type: 4

for76042_ch11.fm Page 316 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 317

using a routing table created by an interdomain routing protocol. Each advertisement
announces one single network. If there is more than one network, separate announce-
ments are made. Figure 11.44 depicts an external link. This is used to announce all the
networks outside the AS. The format of the LSA is similar to the summary link to the
AS boundary router LSA, with the addition of two fields. The AS boundary router may
define a forwarding router that can provide a better route to the destination. The packet
also can include an external route tag, used by other protocols, but not by OSPF. The
format of the packet is shown in Figure 11.45.

Other Packets
Now we discuss four other packet types (See Figure 11.27). They are not used as LSAs,
but are essential to the operation of OSPF.

Hello Message

OSPF uses the hello message to create neighborhood relationships and to test the reach-
ability of neighbors. This is the first step in link state routing. Before a router can flood all
of the other routers with information about its neighbors, it must first greet its neighbors.
It must know if they are alive, and it must know if they are reachable (see Figure 11.46).

Figure 11.44 External link

Figure 11.45 External link LSA

External link

NetworkArea 1

Area 0

Area 2

Autonomous system

Flooded by the AS
boundary router

into the AS

MetricTOS

R
ep

ea
te

d

Network mask

Forwarding address

External route tag

OSPF common header
24 bytes Type: 4

Number of advertisements

LSA general header
20 bytes Type: 5

for76042_ch11.fm Page 317 Monday, February 16, 2009 3:33 PM

318 PART 2 NETWORK LAYER

❑ Network mask. This 32-bit field defines the network mask of the network over
which the hello message is sent.

❑ Hello interval. This 16-bit field defines the number of seconds between hello
messages.

❑ E flag. This is a 1-bit flag. When it is set, it means that the area is a stub area.

❑ T flag. This is a 1-bit flag. When it is set, it means that the router supports multiple
metrics.

❑ Priority. This field defines the priority of the router. The priority determines the
selection of the designated router. After all neighbors declare their priorities,
the router with the highest priority is chosen as the designated router. The one with
the second highest priority is chosen as the backup designated router. If the value
of this field is 0, it means that the router never wants to be a designated or a backup
designated router.

❑ Dead interval. This 32-bit field defines the number of seconds that must pass
before a router assumes that a neighbor is dead.

❑ Designated router IP address. This 32-bit field is the IP address of the designated
router for the network over which the message is sent.

❑ Backup designated router IP address. This 32-bit field is the IP address of the
backup designated router for the network over which the message is sent.

❑ Neighbor IP address. This is a repeated 32-bit field that defines the routers that
have agreed to be the neighbors of the sending router. In other words, it is a current
list of all the neighbors from which the sending router has received the hello
message.

Database Description Message

When a router is connected to the system for the first time or after a failure, it needs the
complete link state database immediately. It cannot wait for all link state update packets
to come from every other router before making its own database and calculating its
routing table. Therefore, after a router is connected to the system, it sends hello packets
to greet its neighbors. If this is the first time that the neighbors hear from the router,
they send a database description message. The database description packet does not

Figure 11.46 Hello packet

R
ep

ea
te

d

Dead interval

Backup designated router IP address

Neighbor IP address

Designated router IP address

All 0sHello interval TE

Network mask

OSPF common header
24 bytes Type: 1

Priority

for76042_ch11.fm Page 318 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 319

contain complete database information; it only gives an outline, the title of each line in
the database. The newly connected router examines the outline and finds out which
lines of information it does not have. It then sends one or more link state request pack-
ets to get full information about that particular link. When two routers want to
exchange database description packets, one of them takes the role of master and the
other the role of slave. Because the message can be very long, the contents of the data-
base can be divided into several messages. The format of the database description
packet is shown in Figure 11.47. The fields are as follows:

❑ E flag. This 1-bit flag is set to 1 if the advertising router is an autonomous bound-
ary router (E stands for external).

❑ B flag. This 1-bit flag is set to 1 if the advertising router is an area border router.

❑ I flag. This 1-bit field, the initialization flag, is set to 1 if the message is the first
message.

❑ M flag. This 1-bit field, the more flag, is set to 1 if this is not the last message.

❑ M/S flag. This 1-bit field, the master/slave bit, indicates the origin of the packet:
master (M/S = 1) or slave (M/S = 0).

❑ Message sequence number. This 32-bit field contains the sequence number of the
message. It is used to match a request with the response.

❑ LSA header. This 20-byte field is used in each LSA. The format of this header
is discussed in the link state update message section. This header gives the out-
line of each link, without details. It is repeated for each link in the link state
database.

Link State Request Packet

The format of the link state request packet is shown in Figure 11.48. This is a packet
that is sent by a router that needs information about a specific route or routes. It is
answered with a link state update packet. It can be used by a newly connected router to
request more information about some routes after receiving the database description
packet. The three fields here are part of the LSA header, which has already been dis-
cussed. Each set of the three fields is a request for one single LSA. The set is repeated if
more than one advertisement is desired.

Figure 11.47 Database description packet
R

ep
ea

te
d

All 0s MI M
SAll 0s All 0sBE

OSPF common header
24 bytes Type: 2

Message sequence number

LSA header
(20 bytes)

for76042_ch11.fm Page 319 Monday, February 16, 2009 3:33 PM

320 PART 2 NETWORK LAYER

Link State Acknowledgment Packet

OSPF makes routing more reliable by forcing every router to acknowledge the receipt
of every link state update packet. The format of the link state acknowledgment packet
is shown in Figure 11.49. It has the common OSPF header and the general LSA header.
These two sections are sufficient to acknowledge a packet.

Encapsulation
OSPF packets are encapsulated in IP datagrams. They contain the acknowledgment
mechanism for flow and error control. They do not need a transport layer protocol to
provide these services.

11.7 PATH VECTOR ROUTING
Distance vector and link state routing are both interior routing protocols. They can be
used inside an autonomous system as intra-domain or intra-AS (as sometimes are
called), but not between autonomous systems. Both of these routing protocols become
intractable when the domain of operation becomes large. Distance vector routing is
subject to instability if there is more than a few hops in the domain of operation. Link
state routing needs a huge amount of resources to calculate routing tables. It also cre-
ates heavy traffic because of flooding. There is a need for a third routing protocol which
we call path vector routing.

Path vector routing is exterior routing protocol proved to be useful for inter-
domain or inter-AS routing as it is sometimes called. In distance vector routing, a

Figure 11.48 Link state request packet

Figure 11.49 Link state acknowledgment packet

OSPF packets are encapsulated in IP datagrams.

R
ep

ea
te

d Link state type

Advertising router

Link state ID

OSPF common header
24 bytes Type: 3

LSA general header
20 bytes Corresponding type

OSPF common header
24 bytes Type: 5

for76042_ch11.fm Page 320 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 321

router has a list of networks that can be reached in the same AS with the corresponding
cost (number of hops). In path vector routing, a router has a list of networks that can be
reached with the path (list of ASs to pass) to reach each one. In other words, the domain
of operation of the distance vector routing is a single AS; the domain of operation of the
path vector routing is the whole Internet. The distance vector routing tells us the dis-
tance to each network; the path vector routing tells us the path.

Example 11.11

The difference between the distance vector routing and path vector routing can be compared to
the difference between a national map and an international map. A national map can tell us the
road to each city and the distance to be travelled if we choose a particular route; an international
map can tell us which cities exist in each country and which countries should be passed before
reaching that city.

Reachability
To be able to provide information to other ASs, each AS must have at least one path
vector routing that collects reachability information about each network in that AS. The
information collected in this case only means which network, identified by its network
address (CIDR prefix), exists (can be reached in this AS). In other words, the AS needs
to have a list of existing networks in its territory. Figure 11.50 shows three ASs. Each
distance vector (exterior router) has created a list which shows which network is reach-
able in that AS.

Figure 11.50 Reachability

201.2.0.0/24

201.2.2.0/24
130.12.0.0/16

130.12.0.0/16

130.13.0.0/16

130.13.0.0/16

130.14.0.0/16

130.14.0.0/16

AS1

AS2

AS3

WAN

WAN

Ethernet switch

Reachability
Reachability

Reachability

R1

R2

Legend

R3

Interior router

Exterior router

130.15.0.0/16

130.15.0.0/16

16.0.0.0/8
17.0.0.0/8
18.0.0.0/8

16.0.0.0/8 17.0.0.0/8 18.0.0.0/8

201.2.1.0/24
201.2.2.0/24

201.2.0.0/24

201.2.1.0/24

for76042_ch11.fm Page 321 Monday, February 16, 2009 3:33 PM

322 PART 2 NETWORK LAYER

Routing Tables
A path vector routing table for each router can be created if ASs share their reachability
list with each other. In Figure 11.50, router R1 in AS1 can send its reachability list to
router R2. Router R2, after combining its reachability list, can send the result to both
R1 and R3. Router R3 can send its reachability list to R2, which in turn improves its
routing table, and so on. Figure 11.51 shows the routing table for each router after all
three routers have updated their routing table. Router R1 knows that if a packet arrives
for the network 201.2.2.0/24, this network is in AS1 (at home), but if a packet arrives
for the network 130.14.0.0/16, the packet should travel from AS1 to AS2 to reach its
destination network. On the other hand, if router R2 receives a packet destined for the
network 22.0.0.0.8, the router knows that it should travel from AS2 to AS3 to reach its
destination. We can compare these routing tables with the distance vector routing table
to see the differences.

Loop Prevention

The instability of distance vector routing and the creation of loops can be avoided in
path vector routing. When a router receives a reachability information, it checks to see
if its autonomous system is in the path list to any destination. If it is, looping is involved
and that network-path pair is discarded.

Aggregation

The path vector routing protocols normally support CIDR notation and the aggregation
of addresses (if possible). This helps to make the path vector routing table simpler and
exchange between routers faster. For example, the path vector routing table of Figure 11.51
can be aggregated to create shorter routing tables (Figure 11.52). Note that a range may
also include a block that may not be in the corresponding AS. For example, the range
201.2.0.0/22 also includes the range 201.2.0.3/24, which is not the network address of
any network in AS1. However, if this network exists in some other ASs, it eventually
becomes part of the routing table. Based on the longest prefix principle we discussed in
Chapter 6, this network address is above 201.2.0.0/22 and is searched first, which
results in correct routing.

Figure 11.51 Stabilized tables for three autonomous systems

Path-Vector Routing Table

R3

AS3, AS2, AS1
AS3, AS2, AS1
AS3, AS2, AS1
AS3, AS2
AS3, AS2
AS3, AS2
AS3, AS2
AS3
AS3
AS3

Network Path

Path-Vector Routing Table

R2

AS2, AS1
AS2, AS1
AS2, AS1
AS2
AS2
AS2

AS2, AS3
AS2, AS3
AS2, AS3

AS2

Network Path

Path-Vector Routing Table

R1

AS1
AS1
AS1
AS1, AS2
AS1, AS2
AS1, AS2
AS1, AS2
AS1, AS2, AS3
AS1, AS2, AS3
AS1, AS2, AS3

Network

201.2.1.0/24
201.2.2.0/24

201.2.0.0/24

130.12.0.0/16
130.13.0.0/16
130.14.0.0/16
130.15.0.0/16
16.0.0.0/8
17.0.0.0/8
18.0.0.0/8

201.2.1.0/24
201.2.2.0/24

201.2.0.0/24

130.12.0.0/16
130.13.0.0/16
130.14.0.0/16
130.15.0.0/16
16.0.0.0/8
17.0.0.0/8
18.0.0.0/8

201.2.1.0/24
201.2.2.0/24

201.2.0.0/24

130.12.0.0/16
130.13.0.0/16
130.14.0.0/16
130.15.0.0/16
16.0.0.0/8
17.0.0.0/8
18.0.0.0/8

Path
(This AS)

(This AS)

(This AS)
(This AS)
(This AS)

(This AS)

(This AS)
(This AS)

(This AS)

(This AS)

for76042_ch11.fm Page 322 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 323

Policy Routing

Policy routing can be easily implemented through path vector routing. When a router
receives a message, it can check the path. If one of the autonomous systems listed in the
path is against its policy, it can ignore that path and that destination. It does not update
its routing table with this path, and it does not send this message to its neighbors.

11.8 BGP
Border Gateway Protocol (BGP) is an interdomain routing protocol using path vector
routing. It first appeared in 1989 and has gone through four versions.

Types of Autonomous Systems
As we said before, the Internet is divided into hierarchical domains called autonomous
systems (ASs). For example, a large corporation that manages its own network and has
full control over it is an autonomous system. A local ISP that provides services to local
customers is an autonomous system. Note that a single organization may choose to
have multiple ASs because of geographical spread, different providers (ISPs), or even
some local obstacles.

We can divide autonomous systems into three categories: stub, multihomed, and
transit.

Stub AS

A stub AS has only one connection to another AS. The interdomain data traffic in a stub
AS can be either created or terminated in the AS. The hosts in the AS can send data
traffic to other ASs. The hosts in the AS can receive data coming from hosts in other
ASs. Data traffic, however, cannot pass through a stub AS. A stub AS is either a source
or a sink. A good example of a stub AS is a small corporation or a small local ISP.

Multihomed AS

A multihomed AS has more than one connection to other ASs, but it is still only a
source or sink for data traffic. It can receive data traffic from more than one AS. It can
send data traffic to more than one AS, but there is no transient traffic. It does not allow
data coming from one AS and going to another AS to pass through. A good example of
a multihomed AS is a large corporation that is connected to more than one regional or
national AS that does not allow transient traffic.

Figure 11.52 Routing table after aggregation

Path-Vector Routing Table

R3

AS3, AS2, AS1
AS3, AS2

AS3

Network Path

Path-Vector Routing Table

R2

AS2, AS1
AS2
AS2, AS3

Network Path

Path-Vector Routing Table

R1

AS1
AS1, AS2
AS1, AS2, AS3

Network
201.2.0.0/22
130.12.0.0/18
16.0.0.0/6

201.2.0.0/22
130.12.0.0/18
16.0.0.0/6

201.2.0.0/22
130.12.0.0/18
16.0.0.0/6

Path
(This AS)

(This AS)

(This AS)

for76042_ch11.fm Page 323 Monday, February 16, 2009 3:33 PM

324 PART 2 NETWORK LAYER

Transit AS

A transit AS is a multihomed AS that also allows transient traffic. Good examples of
transit ASs are national and international ISPs (Internet backbones).

CIDR

BGP uses classless interdomain routing addresses. In other words, BGP uses a prefix,
as discussed in Chapter 5, to define a destination address. The address and the number
of bits (prefix length) are used in updating messages.

Path Attributes
In our previous example, we discussed a path for a destination network. The path was
presented as a list of autonomous systems, but is, in fact, a list of attributes. Each
attribute gives some information about the path. The list of attributes helps the receiv-
ing router make a better decision when applying its policy.

Attributes are divided into two broad categories: well-known and optional. A well-
known attribute is one that every BGP router must recognize. An optional attribute
is one that needs not be recognized by every router.

Well-known attributes are themselves divided into two categories: mandatory and dis-
cretionary. A well-known mandatory attribute is one that must appear in the description of
a route. A well-known discretionary attribute is one that must be recognized by each
router, but is not required to be included in every update message. One well-known
mandatory attribute is ORIGIN. This defines the source of the routing information
(RIP, OSPF, and so on). Another well-known mandatory attribute is AS_PATH. This
defines the list of autonomous systems through which the destination can be reached.
Still another well-known mandatory attribute is NEXT-HOP, which defines the next
router to which the data packet should be sent.

The optional attributes can also be subdivided into two categories: transitive and
nontransitive. An optional transitive attribute is one that must be passed to the next
router by the router that has not implemented this attribute. An optional nontransitive
attribute is one that must be discarded if the receiving router has not implemented it.

BGP Sessions
The exchange of routing information between two routers using BGP takes place in a
session. A session is a connection that is established between two BGP routers only for
the sake of exchanging routing information. To create a reliable environment, BGP uses
the services of TCP. In other words, a session at the BGP level, as an application pro-
gram, is a connection at the TCP level. However, there is a subtle difference between a
connection in TCP made for BGP and other application programs. When a TCP con-
nection is created for BGP, it can last for a long time, until something unusual happens.
For this reason, BGP sessions are sometimes referred to as semipermanent connections.

External and Internal BGP
If we want to be precise, BGP can have two types of sessions: external BGP (E-BGP)
and internal BGP (I-BGP) sessions. The E-BGP session is used to exchange information

for76042_ch11.fm Page 324 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP)

325

between two speaker nodes belonging to two different autonomous systems. The I-
BGP session, on the other hand, is used to exchange routing information between two
routers inside an autonomous system. Figure 11.53 shows the idea.

The session established between AS1 and AS2 is an E-BGP session. The two
speaker routers exchange information they know about networks in the Internet. How-
ever, these two routers need to collect information from other routers in the autono-
mous systems. This is done using I-BGP sessions.

Types of Packets

BGP uses four different types of messages:

open,

update,

keepalive,

 and

notification

(see Figure 11.54).

Packet Format

All BGP packets share the same common header. Before studying the different types of
packets, let us talk about this common header (see Figure 11.55). The fields of this
header are as follows:

❑

Marker.

 The 16-byte marker field is reserved for authentication.

❑

Length.

 This 2-byte field defines the length of the total message including the
header.

❑

Type.

 This 1-byte field defines the type of the packet. As we said before, we have
four types, and the values 1 to 4 define those types.

Figure 11.53

Internal and external BGP sessions

Figure 11.54

Types of BGP messages

AS 1

B1

E-BGP session I-BGP sessions

A1

A 2

A4

A5

A3

B4

B3

B2 AS 2

BGP
messages

Update Keepalive NotificationOpen

for76042_ch11.fm Page 325 Monday, February 23, 2009 2:35 PM

326

PART 2 NETWORK LAYER

Open Message

To create a neighborhood relationship, a router running BGP opens a TCP connection
with a neighbor and sends an

open message.

 If the neighbor accepts the neighborhood
relationship, it responds with a

keepalive message,

 which means that a relationship has
been established between the two routers. See Figure 11.56 for a depiction of the open
message format.

The fields of the open message are as follows:

❑

Version.

 This 1-byte field defines the version of BGP. The current version is 4.

❑

My autonomous system.

 This 2-byte field defines the autonomous system
number.

❑

Hold time.

 This 2-byte field defines the maximum number of seconds that can
elapse until one of the parties receives a keepalive or update message from the
other. If a router does not receive one of these messages during the hold time
period, it considers the other party dead.

Figure 11.55

BGP packet header

Figure 11.56

Open message

Length
(16 bits)

Type
(8 bits)

(32 bits)

Marker

My autonomous system Hold time

BGP identifier

Option length

Common header
19 bytes Type: 1

Version

Option
(Variable length)

for76042_ch11.fm Page 326 Tuesday, February 17, 2009 12:11 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 327

❑ BGP identifier. This 4-byte field defines the router that sends the open message.
The router usually uses one of its IP addresses (because it is unique) for this
purpose.

❑ Option length. The open message may contain some option parameters. In this
case, this 1-byte field defines the length of the total option parameters. If there are
no option parameters, the value of this field is zero.

❑ Option parameters. If the value of the option parameter length is not zero, it
means that there are some option parameters. Each option parameter itself has two
subfields: the length of the parameter and the parameter value. The only option
parameter defined so far is authentication.

Update Message

The update message is the heart of the BGP protocol. It is used by a router to withdraw
destinations that have been advertised previously, announce a route to a new destina-
tion, or both. Note that BGP can withdraw several destinations that were advertised
before, but it can only advertise one new destination in a single update message. The
format of the update message is shown in Figure 11.57.

The update message fields are listed below:

❑ Unfeasible routes length. This 2-byte field defines the length of the next field.

❑ Withdrawn routes. This field lists all the routes that must be deleted from the pre-
viously advertised list.

Figure 11.57 Update message

Path attributes length

Unfeasible routes length

Common header
19 bytes Type: 2

Withdrawn routes
(Variable length)

Path attributes
(Variable length)

Network layer reachability information
(Variable length)

Unfeasible routes length

for76042_ch11.fm Page 327 Monday, February 16, 2009 3:33 PM

328 PART 2 NETWORK LAYER

❑ Path attributes length. This 2-byte field defines the length of the next field.

❑ Path attributes. This field defines the attributes of the path (route) to the network
whose reachability is being announced in this message.

❑ Network layer reachability information (NLRI). This field defines the network
that is actually advertised by this message. It has a length field and an IP address
prefix. The length defines the number of bits in the prefix. The prefix defines the
common part of the network address. For example, if the network is 153.18.7.0/24,
the length of the prefix is 24 and the prefix is 153.18.7. BGP4 supports classless
addressing and CIDR.

Keepalive Message

The routers (called peers in BGP parlance) running the BGP protocols exchange
keepalive messages regularly (before their hold time expires) to tell each other that
they are alive. The keepalive message consists of only the common header shown in
Figure 11.58.

Notification Message

A notification message is sent by a router whenever an error condition is detected
or a router wants to close the connection. The format of the message is shown in
Figure 11.59.The fields making up the notification message follow:

BGP supports classless addressing and CIDR.

Figure 11.58 Keepalive message

Figure 11.59 Notification message

Common header
19 bytes Type: 3

Error subcode

Common header
19 bytes Type: 4

Error code

Error data
(Variable length)

for76042_ch11.fm Page 328 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 329

❑ Error code. This 1-byte field defines the category of the error. See Table 11.6.

❑ Error subcode. This 1-byte field further defines the type of error in each category.

❑ Error data. This field can be used to give more diagnostic information about the
error.

Encapsulation
BGP messages are encapsulated in TCP segments using the well-known port 179. This
means that there is no need for error control and flow control. When a TCP connection
is opened, the exchange of update, keepalive, and notification messages is continued
until a notification message of type cease is sent.

11.9 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give more information about unicast routing. In particular, we recom-
mend [Com 06], [Pet & Dav 03], [Kur & Ros 08], [Per 00], [Gar & Vid 04], [Tan 03],
[Sta 04], and [Moy 98].

Table 11.6 Error Codes

Error
Code

Error Code
Description

Error Subcode
Description

1 Message header error Three different subcodes are defined for this type of
error: synchronization problem (1), bad message length
(2), and bad message type (3).

2 Open message error Six different subcodes are defined for this type of error:
unsupported version number (1), bad peer AS (2), bad
BGP identifier (3), unsupported optional parameter (4),
authentication failure (5), and unacceptable hold time (6).

3 Update message error Eleven different subcodes are defined for this type of
error: malformed attribute list (1), unrecognized well-
known attribute (2), missing well-known attribute (3),
attribute flag error (4), attribute length error (5), invalid
origin attribute (6), AS routing loop (7), invalid next hop
attribute (8), optional attribute error (9), invalid network
field (10), malformed AS_PATH (11).

4 Hold timer expired No subcode defined.
5 Finite state machine

error
This defines the procedural error. No subcode defined.

6 Cease No subcode defined.

BGP uses the services of TCP on port 179.

for76042_ch11.fm Page 329 Monday, February 16, 2009 3:33 PM

330 PART 2 NETWORK LAYER

RFCs
Several RFCs are related to the protocols we discussed in this chapter. RIP is discussed
in RFC1058 and RFC 2453. OSPF is discussed in RFC 1583 and RFC 2328. BGP is
discussed in RFC 1654, RFC 1771, RFC 1773, RFC 1997, RFC 2439, RFC 2918, and
RFC 3392.

11.10 KEY TERMS

11.11 SUMMARY
❑ A metric is the cost assigned for passage of a packet through a network. A router

consults its routing table to determine the best path for a packet.

❑ An autonomous system (AS) is a group of networks and routers under the author-
ity of a single administration. RIP and OSPF are popular intradomain or intra-AS
routing protocols (also called interior routing protocols) used to update routing
tables in an AS. RIP is based on distance vector routing, in which each router
shares, at regular intervals, its knowledge about the entire AS with its neighbors.
OSPF divides an AS into areas, defined as collections of networks, hosts, and
routers. OSPF is based on link state routing, in which each router sends the state of
its neighborhood to every other router in the area.

❑ BGP is an interdomain or inter-AS routing protocol (also called exterior routing
protocol) used to update routing tables. BGP is based on a routing protocol called
path vector routing. In this protocol, the ASs through which a packet must pass are

area link state request packet
area border router link state routing
autonomous system (AS) link state update packet
autonomous system boundary router metric
backbone router notification message
Bellman-Ford algorithm open message
Border Gateway Protocol (BGP) Open Shortest Path First (OSPF)
cost optional attribute
count to infinity path vector routing
Dijkstra algorithm periodic timer
distance vector routing point-to-point link
expiration timer poison reverse
flooding Routing Information Protocol (RIP)
garbage collection timer split horizon
hello interval stub link
hello message transient link
hop count update message
inter-domain routing virtual link
intra-domain routing well-known attribute
keepalive message

for76042_ch11.fm Page 330 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 331

explicitly listed. Path vector routing does not have the instability nor looping
problems of distance vector routing. There are four types of BGP messages: open,
update, keepalive, and notification.

11.12 PRACTICE SET

Exercises
1. In RIP, why is the expiration timer value six times that of the periodic timer value?

2. How does the hop count limit alleviate RIP’s problems?

3. Contrast and compare distance vector routing with link state routing.

4. Why do OSPF messages propagate faster than RIP messages?

5. What is the size of a RIP message that advertises only one network? What is the size
of a RIP message that advertises N packets? Devise a formula that shows the rela-
tionship between the number of networks advertised and the size of a RIP message.

6. A router running RIP has a routing table with 20 entries. How many periodic tim-
ers are needed to handle this table? How many expiration timers are needed to han-
dle this table? How many garbage collection timers are needed to handle this table
if five routes are invalid?

7. A router using RIP has the routing table shown in Table 11.7.

Show the RIP response message sent by this router.
8. The router in Exercise 7 receives a RIP message with four records from router C as

shown below:

Show the updated routing table.
9. How many bytes are empty in a RIP message that advertises N networks?

10. Using Figure 11.26, do the following:

a. Show the link state update/router link advertisement for router A.

b. Show the link state update/router link advertisement for router D.

c. Show the link state update/router link advertisement for router E.

d. Show the link state update/network link advertisement for network N2.

e. Show the link state update/network link advertisement for network N4.

f. Show the link state update/network link advertisement for network N5.

Table 11.7 Routing Table for Exercise 7

Destination Cost Next Router
Net1 4 B
Net2 2 C
Net3 1 F
Net4 5 G

(Net1, 2), (Net2, 1), (Net3, 3), (Net4, 7)

for76042_ch11.fm Page 331 Monday, February 16, 2009 3:33 PM

332 PART 2 NETWORK LAYER

11. In Figure 11.26,

a. Assume that the designated router for network N1 is router A. Show the link
state update/network link advertisement for this network.

b. Assume that the designated router for network N3 is router D. Show the link
state update/network link advertisement for this network.

12. Assign IP addresses to networks and routers in Figure 11.26. Now do the
following:

a. Show the OSPF hello message sent by router C.

b. Show the OSPF database description message sent by router C.

c. Show the OSPF link state request message sent by router C.

13. Show the autonomous system with the following specifications:

a. There are eight networks (N1 to N8)

b. There are eight routers (R1 to R8)

c. N1, N2, N3, N4, N5, and N6 are Ethernet LANs

d. N7 and N8 are point-to-point WANs

e. R1 connects N1 and N2

f. R2 connects N1 and N7

g. R3 connects N2 and N8

h. R4 connects N7 and N6

i. R5 connects N6 and N3

j. R6 connects N6 and N4

k. R7 connects N6 and N5

l. R8 connects N8 and N5

Now draw the graphical representation of the autonomous system of Exercise 29
as seen by OSPF. Which of the networks is a transient network? Which is a stub
network?

14. In Figure 11.50,

a. Show the BGP open message for router R1.

b. Show the BGP update message for router R1.

c. Show the BGP keepalive message for router R1.

d. Show the BGP notification message for router R1.

15. In Figure 11.5, assume that the link between router A and router B fails (breaks).
Show the changes in the routing table for routers in Figure 11.7.

16. In Figure 11.5, assume that the link between router C and router D fails (breaks).
Show the changes in the routing table for routers in Figure 11.7.

17. Use the Bellman-Ford algorithm (Table 11.1) to find the shortest distance for all
nodes in the graph of Figure 11.60.

18. Use the Dijkstra algorithm (Table 11.3) to find the shortest paths for all nodes in
the graph of Figure 11.61.

19. Find the shortest path tree for node B in Figure 11.19.

for76042_ch11.fm Page 332 Monday, February 16, 2009 3:33 PM

CHAPTER 11 UNICAST ROUTING PROTOCOLS (RIP, OSPF, AND BGP) 333

20. Find the shortest path tree for node E in Figure 11.19.

21. Find the shortest path tree for node G in Figure 11.19.

Research Activities
22. Before BGP, there was a protocol called EGP. Find some information about this

protocol. Find out why this protocol has not survived.

23. In UNIX, there are some programs under the general name daemon. Find the dae-
mons that can handle routing protocols.

24. If you have access to a UNIX system, find some information about the routed pro-
gram. How can this program help to trace the messages exchanged in RIP? Does
routed support the other routing protocols we discussed in the chapter?

25. If you have access to a UNIX system, find some information about the gated
program. Which routing protocols discussed in this chapter can be supported by
gated?

26. There is a routing protocol called HELLO, which we did not discuss in this chapter.
Find some information about this protocol.

Figure 11.60 Exercise 17

Figure 11.61 Exercise 18

2

2

3

5

4
A B

E

DC

2 1

5

4

3

A B

DC

for76042_ch11.fm Page 333 Monday, February 16, 2009 3:33 PM

C H A P T E R

12

334

12

Multicasting and Multicast
Routing Protocols

n this chapter, we define multicasting and discuss multicast routing
protocols. Multicast applications are in more and more demand every-

day, but as we will see multicast routing is more difficult than unicast
routing discussed in Chapter 11; a multicast router is response to send a
copy of a multicast packet to all members of the corresponding group.

OBJECTIVES

The chapter has several objectives:

❑

To compare and contrast unicasting, multicasting, and broadcasting
communication.

❑

To define multicast addressing space in IPv4 and show the division of
the space into several blocks.

❑

To discuss the IGMP protocol, which is responsible for collecting
group membership information in a network.

❑

To discuss the general idea behind multicast routing protocols and
their division into two categories based on the creation of the shortest
path trees.

❑

To discuss

multicast link state routing

 in general and its implementa-
tion in the Internet: a protocol named MOSPF.

❑

To discuss

multicast distance vector routing

 in general and its imple-
mentation in the Internet: a protocol named DVMRP.

❑

To discuss core-based protocol (CBT) and briefly discuss two inde-
pendent multicast protocols PIM-DM and PIM-SM.

❑

To discuss multicast backbone (MBONE) that shows how to create a
tunnel when the multicast messages need to pass through an area
with no multicast routers.

I

for76042_ch12.fm Page 334 Tuesday, February 17, 2009 10:47 AM

335

12.1 INTRODUCTION

From the previous chapters in this part of the book, we have learned that forwarding a
datagram by a router is normally based on the prefix of the destination address in the
datagram, which defines the network to which the destination host is connected. Of
course, address aggregation mechanism may combine several datagrams to be deliv-
ered to an ISP (which can be thought of as a large network holding some networks
together) and then separate them to be delivered to their final destination networks, but
the principle does not change. Aggregation just decreases the size of the prefix; separa-
tion just increases the size of the prefix.

Understanding the above forwarding principle, we can now define unicasting, mul-
ticasting, and broadcasting. Let us clarify these terms as they relate to the Internet.

Unicasting

In

unicasting,

 there is one source and one destination network. The relationship
between the source and the destination network is one to one. Each router in the path of
the datagram tries to forward the packet to one and only one of its interfaces. Figure 12.1
shows a small internet in which a unicast packet needs to be delivered from a source
computer to a destination computer attached to N6. Router R1 is responsible to forward
the packet only through interface 3; router R4 is responsible to forward the packet only
through interface 2. When the packet arrives to N6, the delivery to the destination host
is the responsibility of the network; it is either broadcast to all hosts or the smart Ether-
net switch delivers it only to the destination host.

Figure 12.1

Unicasting

R2

R1

N1 N2 N3 N4

1

1

2

2

3

3

4

N5 N6

R3 R4

Recipient
is here

Source

Ethernet switch

Point-to-point WAN

Unicast router

Legend

for76042_ch12.fm Page 335 Tuesday, February 17, 2009 10:47 AM

336

PART

2

NETWORK LAYER

In unicasting, the routing table that defines the only output port for each datagram,
is based on the optimum path as we saw in Chapter 11.

Multicasting

In

multicasting,

 there is one source and a group of destinations. The relationship is one
to many. In this type of communication, the source address is a unicast address, but the
destination address is a group address, a group of one or more destination networks in
which there is at least one member of the group that is interested in receiving the multi-
cast datagram. The group address defines the members of the group. Figure 12.2 shows
the same small internet in Figure 12.1, but the routers have been changed to multicast
routers (or previous routers have been configured to do both types of job).

In multicasting, a multicast router may have to send out copies of the same data-
gram through more than one interface. In Figure 12.2, router R1 needs to send out the
datagram through interfaces 2 and 3. Similarly, router R4 needs to send out the data-
gram through both its interfaces. Router R3, however, knows that there is no member
belonging to this group in the area reached by interface 2; it only sends out the data-
gram through interface 1.

In unicasting, the router forwards the received datagram through
only one of its interfaces.

Figure 12.2

Multicasting

In multicasting, the router may forward the received datagram
through several of its interfaces.

R1

R2 R3 R4

No
member

No
member

No
member

At leasts
one member

At leasts
one member

At leasts
one member

Source

1

1 1

2

22

3

33

4

Ethernet switch

Point-to-point WAN

Multicast router

Legend

for76042_ch12.fm Page 336 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS

337

Multicasting versus Multiple Unicasting

We need to distinguish between multicasting and multiple unicasting. Figure 12.3 illus-
trates both concepts.

Multicasting starts with one single packet from the source that is duplicated by the
routers. The destination address in each packet is the same for all duplicates. Note that
only one single copy of the packet travels between any two routers.

In

multiple unicasting

, several packets start from the source. If there are four
destinations, for example, the source sends four packets, each with a different unicast
destination address. Note that there may be multiple copies traveling between two rout-
ers. For example, when a person sends an e-mail message to a group of people, this is
multiple unicasting. The e-mail software creates replicas of the message, each with a
different destination address, and sends them one by one.

Emulation of Multicasting with Unicasting

You might wonder why we have a separate mechanism for multicasting, when it can be
emulated with unicasting. There are several reasons for this; two are obvious:

1.

Multicasting is more efficient than multiple unicasting. In Figure 12.3, we can see
how multicasting requires less bandwidth than multiple unicasting. In multiple
unicasting, some of the links must handle several copies.

2.

In multiple unicasting, the packets are created by the source with a relative delay
between packets. If there are 1,000 destinations, the delay between the first and the
last packet may be unacceptable. In multicasting, there is no delay because only
one packet is created by the source.

Figure 12.3

Multicasting versus multiple unicasting

Emulation of multicasting through multiple unicasting is not efficient and may create
long delays, particularly with a large group.

D4D1 D2 D3

b. Multiple unicasting

S1

Di
Gi

Multicast router

Unicast destination
Group member

Unicast router

Legend

S1

G1 G1 G1G1

a. Multicasting

for76042_ch12.fm Page 337 Tuesday, February 17, 2009 10:47 AM

338

PART

2

NETWORK LAYER

Multicast Applications

Multicasting has many applications today such as access to distributed databases, infor-
mation dissemination, teleconferencing, and distance learning.

Access to Distributed Databases

Most of the large databases today are distributed.
That is, the information is stored in more than one location, usually at the time of pro-
duction. The user who needs to access the database does not know the location of the
information. A user’s request is multicast to all the database locations, and the location
that has the information responds.

Information Dissemination

Businesses often need to send information to their cus-
tomers. If the nature of the information is the same for each customer, it can be multi-
cast. In this way a business can send one message that can reach many customers. For
example, a software update can be sent to all purchasers of a particular software
package.

Dissemination of News

In a similar manner news can be easily disseminated through
multicasting. One single message can be sent to those interested in a particular topic.
For example, the statistics of the championship high school basketball tournament can
be sent to the sports editors of many newspapers.

Teleconferencing

Teleconferencing

 involves multicasting. The individuals attending
a teleconference all need to receive the same information at the same time. Temporary
or permanent groups can be formed for this purpose. For example, an engineering
group that holds meetings every Monday morning could have a permanent group while
the group that plans the holiday party could form a temporary group.

Distance Learning

One growing area in the use of multicasting is

distance learning.

Lessons taught by one single professor can be received by a specific group of students.
This is especially convenient for those students who find it difficult to attend classes on
campus.

Broadcasting

In broadcast communication, the relationship between the source and the destination is
one to all. There is only one source, but all of the other hosts are the destinations. The
Internet does not explicitly support

broadcasting

 because of the huge amount of traffic
it would create and because of the bandwidth it would need. Imagine the traffic gener-
ated in the Internet if one person wanted to send a message to everyone else connected
to the Internet.

12.2 MULTICAST ADDRESSES

A multicast address is a destination address for a group of hosts that have joined a mul-
ticast group. A packet that uses a multicast address as a destination can reach all mem-
bers of the group unless there are some filtering restriction by the receiver.

for76042_ch12.fm Page 338 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS

339

Multicast Addresses in IPv4

Although we have multicast addresses in both data link and network layers, in this
section, we discuss the multicast addresses in the network layer, in particular the mul-
ticast addresses used in the IPv4 protocol. Multicast addresses for IPv6 are discussed
in Chapter 26. In classful addressing, multicast addresses occupied the only single
block in class D. In classless addressing the same block has been used for this pur-
pose. In other words, the block assigned for multicasting is 224.0.0.0/4. This means
that the block has 2

28

=

 268,435,456 addresses (224.0.0.0 to 239,255.255.255). This
large block, or the multicast address space as sometimes it is referred to, is divided
into some smaller ranges, as shown in Table 12.1, based on RFC 3171. They may
change in the future. However, we cannot assign CIDR (slash notation) to every desig-
nated range because the division of the main block to small blocks (or subblocks) is
not done according to the rules we defined in Chapter 5. These ranges may be subdi-
vided in the future to follow the rules.

Local Network Control Block

The first block is called local network control block (224.0.0.1/24). The addresses in
this block are used for protocol control traffic. In other words, they are not used for
general multicast communication. Some multicast or multicast-related protocols use
these addresses. The IP packet with the destination address in this range needs to have
the value of TTL set to 1, which means that the routers are not allowed to forward these
packets. The packet remains in the network, which means two or more networks can
use the same address at the same time, a sense of privacy. Table 12.2 shows the assign-
ment of some of these addresses.

Internetwork Control Block

The block 224.0.1/24 is called the Internetwork Control Block. The addresses in this
block are also used for protocol control traffic, but the IP packets with one of these
addresses as destination can be forwarded by router thought the whole Internet. For
example, the address 224.0.1.1 is used by the NTP protocol.

Table 12.1

Multicast Address Ranges

CIDR Range Assignment

224.0.0.0/24 224.0.0.0

→

224.0.0.255 Local Network Control Block

224.0.1.0/24 224.0.1.0

→

224.0.1.255 Internetwork Control Block

224.0.2.0

→

224.0.255.255 AD HOC Block

224.1.0.0/16 224.1.0.0

→

224.1.255.255 ST Multicast Group Block

224.2.0.0/16 224.2.0.0

→

224.2.255.255 SDP/SAP Block

224.3.0.0

→

231.255.255.255 Reserved

232.0.0.0/8 232.0.0.0

→

224.255.255.255 Source Specific Multicast (SSM)

233.0.0.0/8 233.0.0.0

→

233.255.255.255 GLOP Block

234.0.0.0

→

238.255.255.255 Reserved

239.0.0.0/8 239.0.0.0

→

239.255.255.255 Administratively Scoped Block

for76042_ch12.fm Page 339 Tuesday, February 17, 2009 10:47 AM

340

PART

2

NETWORK LAYER

AD-HOC Block

The block 224.0.2.0 to 224.0.255.0 is called AD-HOC Block by IANA. This block was
traditionally assigned to some applications that do not fit in the first or second block
discussed above. For example, the block 224.0.18/24 is assigned to Dow Jones. Note
that the range of this block has two unusual features. First, the last address should be
224.2.255.255. Second, the whole block cannot be represented in CIDR notation (the
block allocation does not follow the rules of classless addressing we discussed in
Chapter 5).

Stream Multicast Group Block

The block 224.1.0.0/16 is called Stream Multicast Group Block and is allocated for
stream multimedia.

SAP/SDP Block

The block 224.2.0.0/16 is used for Session Announcement Protocol and Session Direc-
tory Protocol (RFC 2974).

SSM Block

The block 232.0.0.0/8 is used for Source Specific Multicasting. We discuss SSS later in
the chapter, when we introduce IGMPv3.

GLOP Block

The block 233.0.0.0/8 is called the GLOP block (not an acronym nor an abbreviation).
This block defines a range of globally assigned addresses that can be use inside an

Table 12.2

Some addresses in Network Control Block

Address Assignment

224.0.0.0 Base address (reserved)

224.0.0.1 All systems (hosts or routers) on this network

224.0.0.2 All routers on this network

224.0.0.4 DMVRP routers

224.0.0.5 OSPF routers

224.0.0.7 ST (stream) routers

224.0.0.8 ST (stream) hosts

224.0.0.9 RIP2 routers

224.0.0.10 IGRP routers

224.0.0.11 Mobile Agents

224.0.0.12 DHCP servers

224.0.0.13 PIM routers

224.0.0.14 RSVP encapsulation

224.0.0.15 CBT routers

224.0.0.22 IGMPv3

for76042_ch12.fm Page 340 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS

341

autonomous system (AS). As we learned in Chapter 11, each autonomous system is
assigned a 16-bit number. One can insert the AS number as the two middle octet in the
block to create a range of 256 multicast addresses (233.x.y.0 to 233.x.y.255), in which
x.y is the AS number.

Administratively Scoped Block

The block 239.0.0.0/8 is called the Administratively Scoped Block. The addresses in
this block are used in a particular area of the Internet. The packet whose destination
address belongs to this range is not supposed to leave the area. In other words, an
address in this block is restricted to an organization.

Netstat Utility

The

netstat utility

can be used to find the multicast addresses supported by an interface.

Example 12.1

We use

netstat

 with three options, -n, -r, and -a. The -n option gives the numeric versions of IP
addresses, the -r option gives the routing table, and the -a option gives all addresses (unicast and
multicast). Note that we show only the fields relative to our discussion.

Note that the multicast address is shown in color. Any packet with a multicast address from
224.0.0.0 to 239.255.255.255 is masked and delivered to the Ethernet interface.

Selecting Multicast Address

To select a multicast address to be assigned to a group is not an easy task. The selection
of address depends on the type of application. Let us discuss some cases.

Limited Group

The administrator can use the AS number (x.y) and choose an address between 239.x.y.0
and 239.x.y.255 (Administratively Scoped Block) that is not used by any other group as
the multicast address for that particular group. For example, assume a college professor
needs to create a group address to communicate with her students. If the AS number that
the college belongs to is 23452, which can be written as (91.156)

256

,

this gives the college
a range of 256 addresses: 233.91.156.0 to 233.91.156.255. The college administration
can grant the professor one of the addresses that is not used in this range, for example,
233.91.156.47. This can become the group address for the professor to use to send multi-
cast addresses to the students. However, the packets cannot go beyond the college AS
territory.

$netstat -nra

Kernel IP routing table

Destination Gateway Mask Flags Iface

153.18.16.0 0.0.0.0 255.255.240.0 U eth0

169.254.0.0 0.0.0.0 255.255.0.0 U eth0

127.0.0.0 0.0.0.0 255.0.0.0 U l0

224.0.0.0 0.0.0.0 224.0.0.0 U eth0

0.0.0.0 153.18.31 0.0.0.0 UG eth0

for76042_ch12.fm Page 341 Tuesday, February 17, 2009 10:47 AM

342

PART

2

NETWORK LAYER

Larger Group

If the group is spread beyond an AS territory, the previous solution does not work. The
group needs to choose an address from the SSM block (232.0.0.0/8). There is no need
to get permission to use an address in this block, because the packets in source-specific
multicasting are routed based on the group and the source address; they are unique.

Delivery of Multicast Packets at Data Link Layer

Because the IP packet has a multicast IP address, the ARP protocol cannot find the cor-
responding MAC (physical) address to forward the packet at the data link layer. What
happens next depends on whether or not the underlying data link layer supports physi-
cal multicast addresses.

Network with Multicast Support

Most LANs support physical multicast addressing. Ethernet is one of them. An Ether-
net physical address (MAC address) is six octets (48 bits) long. If the first 25 bits in an
Ethernet address are 00000001 00000000 01011110 0, this identifies a physical multi-
cast address for the TCP/IP protocol. The remaining 23 bits can be used to define a
group. To convert an IP multicast address into an Ethernet address, the multicast router
extracts the least significant 23 bits of a multicast IP address and inserts them into a
multicast Ethernet physical address (see Figure 12.4).

However, the group identifier of a multicast address block in IPv

4

 address is 28 bits
long, which implies that 5 bits are not used. This means that 32 (2

5

) multicast addresses
at the IP level are mapped to a single multicast address. In other words, the mapping is
many to one instead of one to one. If the 5 leftmost bits of the group identifier of a mul-
ticast address are not all zeros, a host may receive packets that do not really belong to
the group in which it is involved. For this reason, the host must check the IP address
and discard any packets that do not belong to it.

Example 12.2

Change the multicast IP address 232.43.14.7 to an Ethernet multicast physical address.

Figure 12.4

Mapping class D to Ethernet physical address

An Ethernet multicast physical address is in the range
01:00:5E:00:00:00 to 01:00:5E:7F:FF:FF.

0000000100000000010111100

1110 23 bits of multicast address

23 bits of physical address

32-bit multicast address

48-bit Ethernet address

5 bits
unused

for76042_ch12.fm Page 342 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS

343

Solution

We can do this in two steps:

a.

We write the rightmost 23 bits of the IP address in hexadecimal. This can be done by
changing the rightmost 3 bytes to hexadecimal and then subtracting 8 from the leftmost
digit if it is greater than or equal to 8. In our example, the result is 2B:0E:07.

b.

We add the result of part a to the starting Ethernet multicast address, which is
01:00:5E:00:00:00. The result is

Example 12.3

Change the multicast IP address 238.212.24.9 to an Ethernet multicast address.

Solution

a.

The rightmost 3 bytes in hexadecimal are D4:18:09. We need to subtract 8 from the left-
most digit, resulting in 54:18:09.

b.

We add the result of part a to the Ethernet multicast starting address. The result is

Network with No Multicast Support

Most WANs do not support physical multicast addressing. To send a multicast packet
through these networks, a process called

tunneling

 is used. In

tunneling,

 the multicast
packet is encapsulated in a unicast packet and sent through the network, where it
emerges from the other side as a multicast packet (see Figure 12.5).

12.3 IGMP

Multicast communication means that a sender sends a message to a group of recipients
that are members of the same group. Since one copy of the message is sent by the
sender, but copied and forwarded by routers, each multicast router needs to know the
list of groups that have at least one loyal member related to each interface. This means
that the multicast routers need to collect information about members and share it with
other multicast routers. Collection of this type of information is done at two levels:

01:00:5E:2B:0E:07

01:00:5E:54:18:09

Figure 12.5

Tunneling

Header Data

Header Data

Multicast IP datagram

Unicast IP datagram

for76042_ch12.fm Page 343 Tuesday, February 17, 2009 10:47 AM

344

PART 2 NETWORK LAYER

locally and globally. A multicast router connected to a network is responsible to collect
this type of information locally; the information collected can be globally propagated to
other routers. The first task is done by the IGMP protocol; the second task is done by
the multicast routing protocols. We first discuss IGMP in this section.

The Internet Group Management Protocol (IGMP) is responsible for correcting
and interpreting information about group members in a network. It is one of the proto-
cols designed at the IP layer for this purpose. Figure 12.6 shows the position of the
IGMP protocol in relation to other protocols in the network layer.

Group Management
IGMP is not a multicasting routing protocol; it is a protocol that manages group mem-
bership. In any network, there are one or more multicast routers that distribute multicast
packets to hosts or other routers. The IGMP protocol gives the multicast routers informa-
tion about the membership status of hosts (routers) connected to the network.

A multicast router may receive thousands of multicast packets every day for differ-
ent groups. If a router has no knowledge about the membership status of the hosts, it
must forward all of these packets. This creates a lot of traffic and consumes bandwidth.
A better solution is to keep a list of groups in the network for which there is at least one
loyal member. IGMP helps the multicast router create and update this list.

IGMP has gone through three versions. Versions 1 and 2 provide what is called any-
source multicast (ASM), which means that the group members receive a multicast message
no matter where it comes from. The IGMP version 3 provides what is called source-
specific multicast (SSM), which means that the recipient can choose to receive multicast
messages coming from a list of predefined sources. In this section we discuss only
IGMPv3.

IGMP Messages
IGMPv3 has two types of messages: membership query message and membership
report message. The first type can be used in three different formats: general, group-
specific, and group-and-source-specific, as shown in Figure 12.7.

Membership Query Message Format

A membership query message is sent by a router to find active group members in the
network. Figure 12.8 shows the format of this message.

Figure 12.6 Position of IGMP in the network layer

IGMP is a group management protocol. It helps a multicast router create and update a
list of loyal members related to each router interface.

Network
layer IP

ICMPIGMP

ARP

for76042_ch12.fm Page 344 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 345

A brief description of each field follows:

❑ Type. This 8-bit field defines the type of the message. The value is 0X11 for a
membership query message.

❑ Maximum Response Code. This 8-bit field is used to define the response time of a
recipient of the query as we will show shortly.

❑ Checksum. This is a 16-bit field holding the checksum. The checksum is calcu-
lated over the whole IGMP message.

❑ Group Address. This 32-bit field is set to 0 in a general query message; it is set to
IP multicast being queried when sending a group-specific or group-and-source-
specific query message.

❑ Resv. This 4-bit field is reserved for the future and it is not used.

❑ S. This is a 1-bit suppress flag. When this field is set to 1, it means that the receiv-
ers of the query message should suppress the normal timer updates.

❑ QRV. This 3-bit field is called querier’s robustness variable. It is used to monitor
the robustness in the network.

❑ QQIC. This 8-bit field is called querier’s query interval code. This is used to cal-
culate the querier’s query interval (QQI), as we will show shortly.

❑ Number of sources (N). This 16-bit field defines the number of 32-bit unicast source
addresses attached to the query. The value of this field is zero for the general query
and the group-specific query, and nonzero in the group-and-source-specific query.

❑ Source Addresses. These multiple 32-bit fields list the N source addresses, the ori-
gin of multicast messages. The value of N is defined in the previous field.

Figure 12.7 IGMP messages

Figure 12.8 Membership query message format

Membership
report

IGMP
messages

Membership
query

General
Group-specific

Group-and-source-specific

Type: 0x11

QQIC Resv QRV S

Response code

Group address

Number or sources (N)

Source Address (1)
Source Address (2)

Source Address (N)

Checksum
0 8 16 31

for76042_ch12.fm Page 345 Tuesday, February 17, 2009 10:47 AM

346 PART 2 NETWORK LAYER

Three Formats of Query Messages

As mentioned in the previous sections, there are three formats for query messages: gen-
eral query, group-specific query, and group-and-source-specific query. Each format is
used for a different purpose. Figure 12.9 shows one example of these three types of
messages to be compared.

a. In a general query message, the querier router probes each neighbor to report
the whole list of its group membership (interest in any multicast group).

b. In a group-specific query message, the querier router probes each neighbor to
report if it is still interested in a specific multicast group. The multicast group
address is defined as x.y.z.t in the group address field of the query.

c. In a group-and-source-specific query message, the querier router probes each
neighbor to report if it is still in a specific multicast group, x.y.z.t, coming from
any of the N sources whose unicast addresses are defined in this packet.

Membership Report Message Format

Figure 12.10 shows the format of an IGMP membership report message format.

Figure 12.9 Three formats of query messages

Figure 12.10 Membership report message format

All 0’s
All 0’s

Group address: : x.y.z.t
N

Source Address (1)
Source Address (2)

Source Address (N)

Group address: x.y.z.t
All 0’s

a. General b. Group-specific

c. Group-and-source-specific

Type = 0x22

Reserved

Reserved
Number or group records (M)

Group Record (1)

Group Record (M)

Checksum
0 8 16 31

Record type Aux Data Len

Multicast address

Number or sources (N)

Source Address (1)
Source Address (2)

Source Address (N)

E
ac

h
gr

ou
p

re
co

rd

Auxiliary Data

for76042_ch12.fm Page 346 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 347

❑ Type. This 8-bit field with the value 0x22 defines the type of the message.

❑ Checksum. This is a 16-bit field carrying the checksum. The checksum is calcu-
lated over the entire IGMP message.

❑ Number of Group Records (M). This 16-bit field defines the number of group
records carried by the packet.

❑ Number of Group Records. There can be zero or more group records of variable
length. The fields of each group record will be explained below.

Each group record includes the information related to the responder’s membership in a
single multicast group. The following briefly describes each field:

❑ Record Type. Currently there are six record types as shown in Table 12.3. We
learn about their applications shortly.

❑ Aux Data Len. This 8-bit field defines the length of the auxiliary data included in
each group record. If the value of this field is zero, it means there is no auxiliary
data included in the packet. If the value is nonzero, it specifies the length of auxil-
iary data in words of 32 bits.

❑ Number of Sources (N). This 16-bit field defines the number of 32-bit multicast
source addresses attached to the report.

❑ Source Addresses. These multiple 32-bit fields list the M source addresses. The
value of M is defined in the previous field.

❑ Aux Data. This field contains any auxiliary data that may be included in the report
message. The IGMP has not yet defined any auxiliary data, but it may be added to
the protocol in the future.

IGMP Protocol Applied to Host
In this section, we discuss how a host implements the protocol.

Socket State

The management of groups starts with the processes (running application programs) on
a host connected to an interface. Each process, which is associated with a socket as we
will see in Chapter 17, has a record for each multicast group from which the socket
wishes to receive a multicast message. The record also shows one of the two modes:
include mode or exclude mode. If the record is in include mode, it lists the unicast
source addresses from which the socket accepts the group messages. If the record is in

Table 12.3 Record Type

Category Type Type Value

Current-State-Record Mode_Is_Include 1

Mode_Is_Exclude 2

Filter-Mode-Change-Record Change_To_Include_Mode 3

Change_To_Exclude_Mode 4

Source-List-Change-Record Allow_New_Sources 5

Block_Old_Sources 6

for76042_ch12.fm Page 347 Tuesday, February 17, 2009 10:47 AM

348 PART 2 NETWORK LAYER

exclude mode, it lists the unicast source addresses that the socket will not accept the
group messages. In other words, the include mode means "only … ," the exclude mode
means "all, but … ." The state can be organized in a table, in which a row defines one
single record. A socket may have more than one record if it expects to receive multicast
messages destined for more than one group.

Example 12.4

Figure 12.11 shows a host with three processes: S1, S2, and S3. The first process has only one
record; the second and the third processes each have two records. We have used lowercase alpha-
bet to show the source address.

Interface State

As Figure 12.11, shows there can be overlap information in the socket records. Two or
more sockets may have a record with the same multicast groups. To be efficient, group
management requires that the interface connecting the host to the network also keep an
interface state. The interface state is originally empty, but it will build up when socket
records are changed (creation in this sense also means change). However, the interface
state keeps only one record for each multicast group. If new socket records are created
for the same multicast group, the corresponding interface will changed to reflect the
new change. For example, the interface state corresponding to socket state in Figure
12.11 needs to have only two records, instead of five, because only two multicast
groups are involved. The interface state, however, needs to keep an interface timer for
the whole state and one timer for each record. We discuss the application of these tim-
ers shortly. The only problem in combining records is the list of resources. If a record
with the same multicast group has two or more different lists of resources, the follow-
ing two rules need to be followed to combine the list of resources.

1. If any of the records to be combined has the exclusive filter mode, then the result-
ing interface record will have the exclusive filter mode and the list of the source
addresses is made as shown below:

a. Apply the set intersection operation on all the address lists with exclusive filters.

b. Apply the set difference operation on the result of part a and all the address lists
with inclusive filters.

Figure 12.11 Socket states

States Table
Legend

S1 S2 S3

Socket Multicast group

226.14.5.2

226.14.5.2

Filter

Include

Exclude

Source addresses

a, b, d, eS1

S: Socket
a, b, ...: Source addresses

226.14.5.2 ExcludeS2

228.24.21.4 IncludeS2

S3

228.24.21.4 IncludeS3

a, b, c

b, c, g

d, e, f

b, c, f

for76042_ch12.fm Page 348 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 349

2. If all the records to be combined have the inclusive filter mode, then the resulting
interface record will have the inclusive filter mode and the list of the source
addresses is found by applying the set union operations on all the address lists.

Example 12.5

We use the two rules described above to create the interface state for the host in Example 12.4.
First we found the list of source address for each multicast group.

a. Multicast group 226.14.5.2 has two exclude lists and one include list. The result is an
exclude list as calculated below. We use the dot sign for intersection operation and minus
sign for the difference operation.

b. Multicast group: 228.24.21.4 has two include lists. The result is an include list as calcu-
lated below. We use the plus sign for the union operation.

Figure 12.12 shows the interface state. The figure shows that there is one timer for the
interface, but each state related to each multicast group has its own timer.

Sending Change-State Reports

If there is any change in the interface state, the host needs to immediately send a member-
ship report message for that group, using the appropriate group record(s). As Figure 12.13
shows, four different cases may occur in the change, based on the old-state filter and
the new state filter. We have shown only the group records, not the whole report.

As the figure shows, in the first two cases, the report contains two group records; in
the last two cases, the report contains only one group record.

Receiving Query Reports

When a host receives a query, it does not respond immediately; it delays the response
by a random amount of time calculated from the value of the Max Resp Code field as

Each time there is a change in any socket record, the interface state
will change using the above-mentioned rules.

exclude source list = {a, b, c} . {b, c, g} − {a, b, d, e} = {c}

include source list = {b, c, f} + {d, e, f} = {b, c, d, e, f}

Figure 12.12 Interface state

Interface
timer

Interface state

Source addressesMulticast group Filter

226.14.5.2 Exclude

Include

Group timer

b, c, d, e, f

c

228.24.21.4

for76042_ch12.fm Page 349 Tuesday, February 17, 2009 10:47 AM

350 PART 2 NETWORK LAYER

described later. The action of the host depends on the type of the query received as
shown below:

1. If the received query is a general query, the host reset the interface timer (see
Figure 12.12) to the calculated delay value. This means if there is any previous
delayed response, it is cancelled.

2. If the received query is a group-specific query, then the corresponding group time
(see Figure 12.12) is reset to the shorter value of the remaining time for the timer
or the calculated delay. If a timer is not running, its remaining time is considered to
be infinity.

3. If the received query is a group-and-source-specific query, then the action is the
same as the previous case. In addition, the list of sources is recorded for the
delayed response.

Timer Expiration

Membership report messages are sent by a host when a timer expires. However, the
types and number of group records contained in the message depends on the timer.

1. If the expired timer is the interface timer set after a general query received, then the
host sends one membership report that contains one Current-State-Record for each
group in the interface state. The type of each record is either Mode-Is-Include
(type 1) or Mode-Is-Exclude (type 2) depending on the filtering mode of the group.
However, if all records to be sent do not fit in one report, they can be split into
several reports.

2. If the expired timer is the group timer set after a group-specific query received
(which means that the interface has recorded no source list for this group), then the
host sends one membership report that contains only one Current-State-Record for
that particular group if, and only if, the group is still active. The single record con-
tained in the report is of type Mode-Is-Include (type 1) or Mode-Is-Exclude (type 2).

Figure 12.13 Sending change state reports

Legend

A: Old-state source list
B: New-state source list
_: Difference operation

Allow_New_Source

Allow_New_Source

Block_Old_Source

Block_Old_Source

Change_To_Include_Mode

Change_To_Exclude_Mode

Old-state
filter

Include

Exclude

Exclude

Include

New-state
filter

Include

Exclude

Include

Exclude

5

B _ A

6

A _ B

5

A _ B

6

B _ A

4

B

3

B

for76042_ch12.fm Page 350 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 351

3. If the expired timer is the group timer set after a group-and-source-specific query
received (which means that the interface has a recorded source list for this group), then
the host sends one membership report that contains only one Current-State-Record for
that particular group if, and only if, the group is still active. The type of the single
record contained in the report and source list depends on the filter mode of the group:

a. If the group filter is include, the record type is Mode_Is_Include (type 1) and
the source list is (A . B) in which A is the group source list and B is the received
source list. The dot sign means the intersection operation.

b. If the group filter is exclude, the record type is Mode_Is_Exclude (type 2) and
the source list is (B − A) in which A is the group source list and B is the
received source list. The minus sign means the difference operation.

Report Suppression

In previous versions of IGMP, if a host receives a report sent by another host, it can-
celled the corresponding timer in its interface state, which means suppressing the pend-
ing report. In IGMPv3, this mechanism has been removed from the protocol for some
practical reasons described in RFC 3376.

IGMP Protocol Applied to Router
In this section, we try to discuss how a router implements the protocol. The duty of a
multicast router, which is often called a querier in IGMPv3, is much more complex
than the one for previous versions. A querier needs to handle six types of group records
contained in a membership report.

Querier’s State

The multicast router needs to maintain the state information for each multicast group
associated with each network interface. The state information for each network inter-
face is a table with each row related to a multicast group. The information for each mul-
ticast group consists of the multicast address, group timer, filter mode, and source
records. However, each source code includes the address of the source and a corre-
sponding timer. Figure 12.14 shows an example of a multicast router and its two state
tables, one related to interface m1 and the other to interface m2.

Figure 12.14 Router states

N1

N2

State for interface m1

State for interface m2

m1

m2

Filter

Exclude

Include

Multicast group

227.12.15.21

228.21.25.41

Source addresses

(a ,)

(b ,) (e ,)

(c ,)

(d ,)

Timer

Filter

Exclude

Multicast group

226.10.11.8

Source addresses

(b ,)

Timer

Include227.21.25.41 (a ,) (c ,) (b ,)

Include228.32.12.40 (d ,) (f ,) (e ,)

for76042_ch12.fm Page 351 Tuesday, February 17, 2009 10:47 AM

352 PART 2 NETWORK LAYER

Action Taken on Membership Report Reception

A multicast router sends out queries and receives reports. In this section we show the
changes in the state of a router when it receives a report.

Reception of Report in Response to General Query When a router sends a general
query, it expects to receive a report or reports. This type of a report normally contains
Current-State-Record (types 1 and 2). When such a report arrives, the router changes its
state, as shown in Figure 12.15. The figure shows the state of each record in the router
based on the current state and the record arrived in the report. In other words, the figure
is a state transition diagram. When a record is extracted from an arrived report, it
changes the state of the corresponding record (with the same group address) and
invokes some actions. We have shown the four different sets of actions separately, one
set for each change of state.

Reception of Reports in Response to Other Queries When a router sends a group-
specific or group-and-source-specific query, it expects to receive a report or reports.
This type of report normally contains Filter_Mode_Change_Record (types 3 and 4) or
Source_List_Change Record (types 5 and 6). When such a report arrives, the router
changes its state as shown in Figure 12.16. The figure shows the next state of each
record in the router based on the current state and the type of the record contained in
the arrived report. In other words, the figure is a state transition diagram. We can have
eight different cases.

Role of IGMP in Forwarding
As we discussed before, IGMP is a management protocol. It only collects information
to help the router attached to the network to make a decision about forwarding or not
forwarding a received packet coming from a specific source and destined for a multi-
cast group. In previous versions of IGMP, the forwarding recommendation was based
only on the destination multicast address of a packet; in IGMPv3, the recommendation

Figure 12.15 Change of state related to general query report

Include {A}

Type 1{C}/ Action I

Type 2{C}/ Action II

Include {(A) , (C)}

Exclude {(A . C), (C − A)}

Plus sign: Union operation

Current
State

Next States

Type N {X}: Arrival of report with record of type n and source list X Minus sign : Difference operation
Dot sign: Intersection operation

Include {X}: Record with include filter and sources X
{X, Y}: Record with source list X with nonzero timer and list Y with zero timer

Exclude {X}: Record with exclude filter and source X
Reset {X}: Reset timers for X

Legend
{X}: Record with source list X

Reset: Reset group timer

Type 1{C}/ Action III

Type 2{C}/ Action IV

Exclude {(A + C), (B − C)}
Exclude{A, B} Current

State

Next States

Exclude {(C − B), (B . C)}

I
II

III
IV

Sources timersGroup timer Delete

{A − C} & {B − C)

{C − A}Reset{C}

Reset{C}
Reset{C− A − B}

Reset{C− A}

Reset

Reset

Actions

for76042_ch12.fm Page 352 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS

353

is based on both the destination address and the source address. RFC 3376 mentions six
different recommendations that IGMPv3 software can give to the IP multicast router to
forward or not to forward a packet with respect to an interface. The recommendation is
based on the interface state of the router as shown in Figure 12.14. If the multicast desti-
nation address does not exist in the router state, the recommendation is definitely not to
forward the packet. When the destination address exists in the router state, then the rec-
ommendation is based on the filter mode and source address, as shown in Table 12.4.

The table shows that it is recommended to forward the multicast IP datagram in
three cases. The first case (first row) is obvious; the source address is in the list, which
means at least one host in the network desires to receive this type of packet. The third
case (row 6) is also clear; the mode is excluded and the source address is not excluded,

Figure 12.16

Change of state related to group-specific and group-and-source specific report

Table 12.4

Forwarding Recommendation of IGMPv3

Filter Mode Source Address Source Timer Value Recommendation

Include In the list greater than zero

Forward

Include In the list zero Do not forward

Include Not in the list Do not forward

Exclude In the list greater than zero

Forward

Exclude In the list zero Do not forward

Exclude Not in the list

Forward

I
II

III
IV
V
VI
VII
VIII

Include {A + C}

Include {A}

Type 5{C} / Action I

Type 3{C} / Action III

Type 4{C} / Action IV

Type 6{C} / Action II
Include{A}

Include {A + C}

Exclude {(A + C), (B − C)}

Exclude{A, B}

Type 5{C} / Action V

Type 3{C} / Action VII

Type 4{C} / Action VIII

Type 6{C} / Action VI
Exclude {(A + (B − Y)), (Y)}

Sources timers Send G-S queryGroup timer Send G-S-S queryDelete

{A − C}

Reset{C}

Reset{C}

Reset{C}
Reset{C − A − B}

Reset{C}
Reset

Reset

Q-G-S{A . C}

Q-G-S{A . C}

Q-G-S{C − B}

Q-G-S{A − B}

Type N {X}: Arrival of report with record of type N and sources X

Include {X}: Record with include filter and sources X
{X, Y}: Record with sources X with nonzero timer and sources Y with zero timer

Q-G-S{X}: Send group-and-source-specific query with sources X

Legend

Actions

Q-G

Q-G-S{A − C}

Q-G-S{A − C}
{A − C} & {B − C}

Exclude {(A + B), (B − C)}

Exclude {(C − B), (B . C)}Exclude{(A . C), (C − A)}

Current
State

Current
State

Next States Next States

Dot (.): Intersection operation

Exclude {X}: Record with exclude filter and source X

Plus (+): Union operation
{X}: Record with sources X
Q-G: Send group-specific query

Reset {X}: Reset timers for source X
Reset: Reset group timer

Minus (−): Difference operation

for76042_ch12.fm Page 353 Tuesday, February 17, 2009 5:18 PM

354 PART 2 NETWORK LAYER

which means that at least one host likes to receive group messages from this source.
What that may not be clear is the second case (row 4). The filter mode is excluded and
source address is in the list, which means that this source should be excluded and the
packet should not be normally forwarded. The rationale for forwarding the packet in
this case is that the timer for this source has not expired yet. The source is to be
excluded when the timer is expired.

Variables and Timers
In the previous sections, we have used several variables and timers whose meanings we
need to clarify here.

Maximum Response Time

The maximum response time is the maximum time allowed before sending a report in
response to a query. It is calculated from the value of the 8-bit Max Resp Code field in
the query. In other words, the query defines the maximum response time. The calcula-
tion of the maximum response time is shown in Figure 12.17. If the value of Max Resp
Code is less than 128 (leftmost bit is zero), the maximum response time is an integer
value; if the value of Max Resp Code is greater than or equal 128 (leftmost bit is 1), the
maximum response time is a floating-point value.

Querier’s Robustness Variable (QRV)

IGMP monitors the packet loss in the network (by measuring the delays in receiving
the reports) and adjusts the value of the QRV. The value of this variable dictates how
many times a response message to a query should be sent. If the network loses more
packets, the router sets a higher value for QRV. The number of times a host should send
a response to a query is QRV −1. The default value is 2, which means that the host
needs to send the response at least once. If the router has specified a value of 5, it means
that the router needs to send the response four times. Note that the value of QRV should
never be 0 or 1; otherwise the default value 2 is assumed.

Figure 12.17 Calculation of maximum response time

Integer Value

MRT = 1/10 of value in seconds

MRT = 1/10 of value in seconds

Legend

MRT: maximum response time
| : bit-wise OR operation

<< : bit-wise shift-left operation

0

Floating-point value

8-bit Max Resp code 8-bit Max Resp code

Mantissa

1

Exponent

Mantissa | 0x10 << (Exponent + 3)

for76042_ch12.fm Page 354 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 355

Querier’s Query Interval

This is the interval between the general queries. The default value is 125. This default
value can be changed by an administrator to control the traffic on the network.

Other Variables and Timers

There are several other variables and timers defined in RFC 3376 which is more inter-
esting to the administrator. We recommend this RFC for more details.

Encapsulation
The IGMP message is encapsulated in an IP datagram with the value of protocol field
set to 2 and the TTL field set to 1. The destination IP address of datagram, however,
depends on the type of the message, as shown in Table 12.5.

Compatibility with Older Versions
To be compatible with version 1 and 2, IGMPv3 software is designed to accept mes-
sages defined in version 1 and 2. Table 12.6 shows the value of type fields and the type
of messages in versions 1 and 2.

12.4 MULTICAST ROUTING
Now we show how information collected by IGMP is disseminated to other routers
using multicast routing protocols. However, we first discuss the idea of optimal routing,
common in all multicast protocols. We then give an overview of multicast routing
protocols.

Optimal Routing: Shortest Path Trees
The process of optimal interdomain routing eventually results in the finding of the
shortest path tree. The root of the tree is the source and the leaves are the potential
destinations. The path from the root to each destination is the shortest path. However,

Table 12.5 Destination IP Addresses

Message Type IP Address

General Query 224.0.0.1

Other Queries Group address

Report 224.0.0.22

Table 12.6 Messages in Versions 1 and 2

Version Type Value Message Type

1 0x11 Query

0x12 Membership Report

2 0x11 Query

0x16 Membership Report

0x17 Leave Group

for76042_ch12.fm Page 355 Tuesday, February 17, 2009 10:47 AM

356 PART 2 NETWORK LAYER

the number of trees and the formation of the trees in unicast and multicast routing are
different. Let us discuss each separately.

Unicast Routing

In unicast routing, when a router receives a packet to forward, it needs to find the short-
est path to the destination of the packet. The router consults its routing table for that
particular destination. The next-hop entry corresponding to the destination is the start
of the shortest path. The router knows the shortest path for each destination, which
means that the router has a shortest path tree to optimally reach all destinations. In
other words, each line of the routing table is a shortest path; the whole routing table is a
shortest path tree. In unicast routing, each router needs only one shortest path tree to
forward a packet; however, each router has its own shortest path tree. Figure 12.18
shows the situation.

The figure shows the details of the routing table and the shortest path tree for
router R1. Each line in the routing table corresponds to one path from the root to the
corresponding network. The whole table represents the shortest path tree.

Multicast Routing

When a router receives a multicast packet, the situation is different. A multicast packet
may have destinations in more than one network. Forwarding of a single packet to
members of a group requires a shortest path tree. If we have n groups, we may need n
shortest path trees. We can imagine the complexity of multicast routing. Two approaches
have been used to solve the problem: source-based trees and group-shared trees.

In unicast routing, each router in the domain has a table that defines a shortest path
tree to possible destinations.

Figure 12.18 Shortest path tree in unicast routing

N2

N1 N5 N6

N3

N4

R1 R4

R2

R3

R1 Table

Root

Destination Next-hop

Shortest path

N3

N4

N5

N6

N1

N2

R2

R2

R2

R4Shortest path

S
ho

rt
es

t p
at

h
tr

ee

R4 Table

R2 Table

R3 Table

—

—

for76042_ch12.fm Page 356 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 357

Source-Based Tree In the source-based tree approach, each router needs to have
one shortest path tree for each group. The shortest path tree for a group defines the next
hop for each network that has loyal member(s) for that group. In Figure 12.19, we
assume that we have only five groups in the domain: G1, G2, G3, G4, and G5. At the
moment G1 has loyal members in four networks, G2 in three, G3 in two, G4 in two,
and G5 in two. We have shown the names of the groups with loyal members on each
network. The figure also shows the multicast routing table for router R1. There is one
shortest path tree for each group; therefore there are five shortest path trees for five
groups. If router R1 receives a packet with destination address G1, it needs to send a
copy of the packet to the attached network, a copy to router R2, and a copy to router R4
so that all members of G1 can receive a copy.

In this approach, if the number of groups is m, each router needs to have m shortest
path trees, one for each group. We can imagine the complexity of the routing table if we
have hundreds or thousands of groups. However, we will show how different protocols
manage to alleviate the situation.

Group-Shared Tree In the group-shared tree approach, instead of each router hav-
ing m shortest path trees, only one designated router, called the center core, or rendez-
vous router, takes the responsibility of distributing multicast traffic. The core has m
shortest path trees in its routing table. The rest of the routers in the domain have none.

In multicast routing, each involved router needs to construct a shortest
path tree for each group.

In the source-based tree approach, each router needs
to have one shortest path tree for each group.

Figure 12.19 Source-based tree approach

G1, G2
G1, G2 G3 G1, G4, G5

G3, G5

G1, G2, G4 R1 Table

Destination Next-hop

Shortest path tree

G3
G4

G5

G1

G2

—, R2, R4

—, R2

—, R2
R2, R4

R2, R4Shortest path tree Fi
ve

 s
ho

rt
es

t
pa

th
 tr

ee
s

R1 R4

R2

R3

Root

R2 Table

R3 Table

for76042_ch12.fm Page 357 Tuesday, February 17, 2009 10:47 AM

358 PART 2 NETWORK LAYER

If a router receives a multicast packet, it encapsulates the packet in a unicast packet and
sends it to the core router. The core router removes the multicast packet from its cap-
sule, and consults its routing table to route the packet. Figure 12.20 shows the idea.

12.5 ROUTING PROTOCOLS
During the last few decades, several multicast routing protocols have emerged. Some of
these protocols are extensions of unicast routing protocols; some are totally new. We
discuss these protocols in the remainder of this chapter. Figure 12.21 shows the taxon-
omy of these protocols.

Multicast Link State Routing: MOSPF
In this section, we briefly discuss multicast link state routing and its implementation in
the Internet, MOSPF.

Multicast Link State Routing

We discussed unicast link state routing in Chapter 11. We said that each router creates a
shortest path tree using Dijkstra’s algorithm. The routing table is a translation of the
shortest path tree. Multicast link state routing is a direct extension of unicast routing
and uses a source-based tree approach. Although unicast routing is quite involved, the
extension to multicast routing is very simple and straightforward.

In the group-shared tree approach, only the core router, which has a shortest path tree
for each group, is involved in multicasting.

Figure 12.20 Group-shared tree approach

Center core router

Core Router Table

Destination Next-Hop

Shortest path tree —, R2, R3, R4

—, R2, R3

—
R3, R4

—, R4Shortest path tree Fi
ve

 s
ho

rt
es

t p
at

h
tr

ee
s

G3
G4

G5

G1

G2

G1, G2
G1, G2 G3 G1, G4, G5

G3, G5

G1, G2, G4

R1 R4

R2

R3

for76042_ch12.fm Page 358 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS

359

Recall that in unicast routing, each node needs to advertise the state of its links. For
multicast routing, a node needs to revise the interpretation of

state

. A node advertises
every group that has any loyal member on the link. Here the meaning of state is “what
groups are active on this link.” The information about the group comes from IGMP
(discussed earlier in the chapter). Each router running IGMP solicits the hosts on the
link to find out the membership status.

When a router receives all these LSPs, it creates

n

(

n

 is the number of groups)
topologies, from which

n

 shortest path trees are made using Dijkstra’s algorithm. So
each router has a routing table that represents as many shortest path trees as there are
groups.

The only problem with this protocol is the time and space needed to create and
save the many shortest path trees. The solution is to create the trees only when needed.
When a router receives a packet with a multicast destination address, it runs the Dijkstra
algorithm to calculate the shortest path tree for that group. The result can be cached in
case there are additional packets for that destination.

MOSPF

Multicast Open Shortest Path First (MOSPF)

 protocol is an extension of the OSPF
protocol that uses multicast link state routing to create source-based trees. The protocol
requires a new link state update packet to associate the unicast address of a host with
the group address or addresses the host is sponsoring. This packet is called the group-
membership LSA. In this way, we can include in the tree only the hosts (using their uni-
cast addresses) that belong to a particular group. In other words, we make a tree that
contains all the hosts belonging to a group, but we use the unicast address of the host in
the calculation. For efficiency, the router calculates the shortest path trees on demand
(when it receives the first multicast packet). In addition, the tree can be saved in cache
memory for future use by the same source/group pair. MOSPF is a

data-driven

 proto-
col; the first time an MOSPF router sees a datagram with a given source and group
address, the router constructs the Dijkstra shortest path tree.

Figure 12.21

Taxonomy of common multicast protocols

Multicast link state routing uses the source-based tree approach.

PIM

Multicasting
protocols

Source-based
tree

PIM-SM CBTPIM-DMDVMRP

Group-shared
tree

MOSPF

for76042_ch12.fm Page 359 Monday, February 23, 2009 8:30 PM

360 PART 2 NETWORK LAYER

Multicast Distance Vector
In this section, we briefly discuss multicast distance vector routing and its implementa-
tion in the Internet, DVMRP.

Multicast Distance Vector Routing

Unicast distance vector routing is very simple; extending it to support multicast routing
is complicated. Multicast routing does not allow a router to send its routing table to its
neighbors. The idea is to create a table from scratch using the information from the uni-
cast distance vector tables.

Multicast distance vector routing uses source-based trees, but the router never
actually makes a routing table. When a router receives a multicast packet, it forwards
the packet as though it is consulting a routing table. We can say that the shortest path
tree is evanescent. After its use (after a packet is forwarded) the table is destroyed.

To accomplish this, the multicast distance vector algorithm uses a process based
on four decision-making strategies. Each strategy is built on its predecessor. We
explain them one by one and see how each strategy can improve the shortcomings of
the previous one.

Flooding Flooding is the first strategy that comes to mind. A router receives a packet
and without even looking at the destination group address, sends it out from every
interface except the one from which it was received. Flooding accomplishes the first
goal of multicasting: every network with active members receives the packet. However,
so will networks without active members. This is a broadcast, not a multicast. There is
another problem: it creates loops. A packet that has left the router may come back again
from another interface or the same interface and be forwarded again. Some flooding
protocols keep a copy of the packet for a while and discard any duplicates to avoid
loops. The next strategy, reverse path forwarding, corrects this defect.

Reverse Path Forwarding (RPF) Reverse path forwarding (RPF) is a modified
flooding strategy. To prevent loops, only one copy is forwarded; the other copies are
dropped. In RPF, a router forwards only the copy that has traveled the shortest path
from the source to the router. To find this copy, RPF uses the unicast routing table. The
router receives a packet and extracts the source address (a unicast address). It consults
its unicast routing table as though it wants to send a packet to the source address. The
routing table tells the router the next hop. If the multicast packet has just come from
the hop defined in the table, the packet has traveled the shortest path from the source
to the router because the shortest path is reciprocal in unicast distance vector routing
protocols. If the path from A to B is the shortest, then it is also the shortest from B to A.
The router forwards the packet if it has traveled from the shortest path; it discards it
otherwise.

This strategy prevents loops because there is always one shortest path from the
source to the router. If a packet leaves the router and comes back again, it has not trav-
eled the shortest path. To make the point clear, let us look at Figure 12.22.

Flooding broadcasts packets, but creates loops in the systems.

for76042_ch12.fm Page 360 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 361

The figure shows part of a domain and a source. The shortest path tree as calcu-
lated by routers R1, R2, and R3 is shown by a thick line. When R1 receives a packet
from the source through the interface m1, it consults its routing table and finds that
the shortest path from R1 to the source is through interface m1. The packet is for-
warded. However, if a copy of the packet has arrived through interface m2, it is dis-
carded because m2 does not define the shortest path from R1 to the source. The
story is the same with R2 and R3. You may wonder what happens if a copy of a
packet that arrives at the m1 interface of R3 travels through R6, R5, R2, and then
enters R3 through interface m1. This interface is the correct interface for R3. Is the
copy of the packet forwarded? The answer is that this scenario never happens
because when the packet goes from R5 to R2, it will be discarded by R2 and never
reaches R3. The upstream routers toward the source always discard a packet that has
not gone through the shortest path, thus preventing confusion for the downstream
routers.

Reverse Path Broadcasting (RPB)

RPF guarantees that each network receives a copy of the multicast packet without for-
mation of loops. However, RPF does not guarantee that each network receives only one
copy; a network may receive two or more copies. The reason is that RPF is not based
on the destination address (a group address); forwarding is based on the source address.
To visualize the problem, let us look at Figure 12.23.

Figure 12.22 RPF

RPF eliminates the loop in the flooding process.

m1

m2
m3

m1

m2
m3

m3

m1

m2

R1
R4

R5

R6

SourceLegend

Received
Forwarded

R2

R3

for76042_ch12.fm Page 361 Tuesday, February 17, 2009 10:47 AM

362 PART 2 NETWORK LAYER

Net3 in this figure receives two copies of the packet even though each router
just sends out one copy from each interface. There is duplication because a tree has
not been made; instead of a tree we have a graph. Net3 has two parents: routers R2
and R4.

To eliminate duplication, we must define only one parent router for each network.
We must have this restriction: A network can receive a multicast packet from a particu-
lar source only through a designated parent router.

Now the policy is clear. For each source, the router sends the packet only out of those
interfaces for which it is the designated parent. This policy is called reverse path broad-
casting (RPB). RPB guarantees that the packet reaches every network and that every net-
work receives only one copy. Figure 12.24 shows the difference between RPF and RPB.

The reader may ask how the designated parent is determined. The designated parent
router can be the router with the shortest path to the source. Because routers periodically
send updating packets to each other (in RIP), they can easily determine which router in the

Figure 12.23 Problem with RPF

Figure 12.24 RPF versus RPB

Net1

Net3 Net4

Net2

R1

R4

R2 R3

Net3 receives two
copies of the packet

a. RPF

R1 R2

Net3

b. RPB

Net1 Net2

R1 R2

Net3

R1 is the parent of Net1 and Net2.
R2 is the parent of Net3

Net1 Net2

for76042_ch12.fm Page 362 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 363

neighborhood has the shortest path to the source (when interpreting the source as the desti-
nation). If more than one router qualifies, the router with the smallest IP address is selected.

Reverse Path Multicasting (RPM)

As you may have noticed, RPB does not multicast the packet, it broadcasts it. This is
not efficient. To increase efficiency, the multicast packet must reach only those net-
works that have active members for that particular group. This is called reverse path
multicasting (RPM). To convert broadcasting to multicasting, the protocol uses two
procedures, pruning and grafting. Figure 12.25 shows the idea of pruning and grafting.

Pruning The designated parent router of each network is responsible for holding
the membership information. This is done through the IGMP protocol described ear-
lier in the chapter. The process starts when a router connected to a network finds that
there is no interest in a multicast packet. The router sends a prune message to the
upstream router so that it can prune the corresponding interface. That is, the upstream
router can stop sending multicast messages for this group through that interface. Now
if this router receives prune messages from all downstream routers, it, in turn, sends a
prune message to its upstream router.

RPB creates a shortest path broadcast tree from the source to each destination.
It guarantees that each destination receives one and only one copy of the packet.

Figure 12.25 RPF, RPB, and RPM

a.RPF

c. RPM (after pruning)

Pruned route

P

P:

b. RPB

d. RPM (after grafting)

Legend

G

G: Grafted route

R1

Net3Net1 Net2

R1

Net3Net1 Net2

R1

Net3Net1 Net2

R1

Net3Net1 Net2

for76042_ch12.fm Page 363 Tuesday, February 17, 2009 10:47 AM

364 PART 2 NETWORK LAYER

Grafting What if a leaf router (a router at the bottom of the tree) has sent a prune
message but suddenly realizes, through IGMP, that one of its networks is again inter-
ested in receiving the multicast packet? It can send a graft message. The graft message
forces the upstream router to resume sending the multicast messages.

DVMRP
The Distance Vector Multicast Routing Protocol (DVMRP) is an implementation of
multicast distance vector routing. It is a source-based routing protocol, based on RIP.

CBT
The Core-Based Tree (CBT) protocol is a group-shared protocol that uses a core as
the root of the tree. The autonomous system is divided into regions, and a core (center
router or rendezvous router) is chosen for each region.

Formation of the Tree

After the rendezvous point is selected, every router is informed of the unicast address of
the selected router. Each router with an intercreated group then sends a unicast join mes-
sage (similar to a grafting message) to show that it wants to join the group. This message
passes through all routers that are located between the sender and the rendezvous router.
Each intermediate router extracts the necessary information from the message, such as
the unicast address of the sender and the interface through which the packet has arrived,
and forwards the message to the next router in the path. When the rendezvous router has
received all join messages from every member of the group, the tree is formed. Now
every router knows its upstream router (the router that leads to the root) and the down-
stream router (the router that leads to the leaf).

If a router wants to leave the group, it sends a leave message to its upstream router.
The upstream router removes the link to that router from the tree and forwards the mes-
sage to its upstream router, and so on. Figure 12.26 shows a group-shared tree with its
rendezvous router.

The reader may have noticed two differences between DVMRP and MOSPF, on
one hand, and CBT, on the other. First, the tree for the first two is made from the root
up; the tree for CBT is formed from the leaves down. Second, in DVMRP, the tree is
first made (broadcasting) and then pruned; in CBT, there is no tree at the beginning; the
joining (grafting) gradually makes the tree.

Sending Multicast Packets

After formation of the tree, any source (belonging to the group or not) can send a mul-
ticast packet to all members of the group. It simply sends the packet to the rendezvous
router, using the unicast address of the rendezvous router; the rendezvous router distrib-
utes the packet to all members of the group. Figure 12.27 shows how a host can send a
multicast packet to all members of the group. Note that the source host can be any of

RPM adds pruning and grafting to RPB to create a multicast shortest path tree that
supports dynamic membership changes.

for76042_ch12.fm Page 364 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 365

the hosts inside the shared tree or any host outside the shared tree. In the figure we
show one located outside the shared tree.

Selecting the Rendezvous Router

This approach is simple except for one point. How do we select a rendezvous router to
optimize the process and multicasting as well? Several methods have been implemented.
However, this topic is beyond the scope of this book and we leave it to more advanced
books.

Figure 12.26 Group-shared tree with rendezvous router

Figure 12.27 Sending a multicast packet to the rendezvous router

Shared Tree

Member Rendezvous
Router

A

C D E

R B

Member

Member Member Member

Shared Tree

Source

Member

A

C D E

R B

Member

Member Member Member

Multicast

Unicast

Legend

for76042_ch12.fm Page 365 Tuesday, February 17, 2009 10:47 AM

366 PART 2 NETWORK LAYER

Summary

In summary, the Core-Based Tree (CBT) is a group-shared tree, center-based protocol
using one tree per group. One of the routers in the tree is called the core. A packet is
sent from the source to members of the group following this procedure:

1. The source, which may or may not be part of the tree, encapsulates the multicast
packet inside a unicast packet with the unicast destination address of the core and
sends it to the core. This part of delivery is done using a unicast address; the only
recipient is the core router.

2. The core decapsulates the unicast packet and forwards it to all interested interfaces.

3. Each router that receives the multicast packet, in turn, forwards it to all interested
interfaces.

PIM
Protocol Independent Multicast (PIM) is the name given to two independent multi-
cast routing protocols: Protocol Independent Multicast, Dense Mode (PIM-DM) and
Protocol Independent Multicast, Sparse Mode (PIM-SM). Both protocols are
unicast-protocol dependent, but the similarity ends here. We discuss each separately.

PIM-DM

PIM-DM is used when there is a possibility that each router is involved in multicasting
(dense mode). In this environment, the use of a protocol that broadcasts the packet is
justified because almost all routers are involved in the process.

PIM-DM is a source-based tree routing protocol that uses RPF and pruning/grafting
strategies for multicasting. Its operation is like DVMRP; however, unlike DVMRP, it
does not depend on a specific unicasting protocol. It assumes that the autonomous sys-
tem is using a unicast protocol and each router has a table that can find the outgoing
interface that has an optimal path to a destination. This unicast protocol can be a dis-
tance vector protocol (RIP) or link state protocol (OSPF).

PIM-SM

PIM-SM is used when there is a slight possibility that each router is involved in multi-
casting (sparse mode). In this environment, the use of a protocol that broadcasts the

In CBT, the source sends the multicast packet (encapsulated in a unicast packet) to the
core router. The core router decapsulates the packet and forwards it to all interested

interfaces.

PIM-DM is used in a dense multicast environment, such as a LAN.

PIM-DM uses RPF and pruning/grafting strategies to handle multicasting. However, it
is independent from the underlying unicast protocol.

for76042_ch12.fm Page 366 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 367

packet is not justified; a protocol such as CBT that uses a group-shared tree is more
appropriate.

PIM-SM is a group-shared tree routing protocol that has a rendezvous point (RP)
as the source of the tree. Its operation is like CBT; however, it is simpler because it does
not require acknowledgment from a join message. In addition, it creates a backup set of
RPs for each region to cover RP failures.

One of the characteristics of PIM-SM is that it can switch from a group-shared tree
strategy to a source-based tree strategy when necessary. This can happen if there is a
dense area of activity far from the RP. That area can be more efficiently handled with a
source-based tree strategy instead of a group-shared tree strategy.

12.6 MBONE
Multimedia and real-time communication have increased the need for multicasting in
the Internet. However, only a small fraction of Internet routers are multicast routers. In
other words, a multicast router may not find another multicast router in the neighbor-
hood to forward the multicast packet. Although this problem may be solved in the next
few years by adding more and more multicast routers, there is another solution for this
problem. The solution is tunneling. The multicast routers are seen as a group of routers
on top of unicast routers. The multicast routers may not be connected directly, but they
are connected logically. Figure 12.28 shows the idea. In this figure, only the routers
enclosed in the shaded circles are capable of multicasting. Without tunneling, these
routers are isolated islands. To enable multicasting, we make a multicast backbone
(MBONE) out of these isolated routers using the concept of tunneling.

PIM-SM is used in a sparse multicast environment such as a WAN.

PIM-SM is similar to CBT but uses a simpler procedure.

Figure 12.28 Logical tunneling

Logical tunnel

R1
R2

R3
R4

Logical tunnel

L
og

ic
al

 tu
nn

el

for76042_ch12.fm Page 367 Tuesday, February 17, 2009 10:47 AM

368 PART 2 NETWORK LAYER

 A logical tunnel is established by encapsulating the multicast packet inside a uni-
cast packet. The multicast packet becomes the payload (data) of the unicast packet. The
intermediate (non-multicast) routers forward the packet as unicast routers and deliver
the packet from one island to another. It’s as if the unicast routers do not exist and the
two multicast routers are neighbors. Figure 12.29 shows the concept. So far the only
protocol that supports MBONE and tunneling is DVMRP.

12.7 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give thorough coverage of materials discussed in this chapter. We recom-
mend [Com 06], [Tan 03], and [Wit & Zit 01].

RFCs
Several RFCs are involved with the materials discussed in this chapter including RFC
1075, RFC 1585, RFC 2189, RFC 2362, and RFC 3376.

12.8 KEY TERMS

Figure 12.29 MBONE

Core-Base Tree (CBT) protocol flooding
data-driven graft message
Distance Vector Multicast Routing Protocol

(DVMRP)
group-shared tree
Internet Group Management Protocol (IGMP)

R2R1R1 R2

R4R3

S G

Source
address

Multicast
group

address

Unicast
source
address

(router R1)

Unicast
destination

address
(router R2)

Payload

for76042_ch12.fm Page 368 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 369

12.9 SUMMARY
❑ Multicasting is the sending of the same message to more than one receiver

simultaneously. Multicasting has many applications including distributed data-
bases, information dissemination, teleconferencing, and distance learning.

❑ In classless addressing the block 224.0.0.0/4 is used for multicast addressing. This
block is sometimes referred to as the multicast address space and is divided into
several blocks (smaller blocks) for different purposes.

❑ The Internet Group Management Protocol (IGMP) is involved in collecting local
membership group information. The last version of IGMP, IGMPv3 uses two types
of messages: query and report.

❑ In a source-based tree approach to multicast routing, the source/group combination
determines the tree. RPF, RPB, and RPM are efficient improvements to source-
based trees. MOSPF/DVMRP and PIM-DM are two protocols that use source-
based tree methods to multicast.

❑ In a group-shared approach to multicasting, one rendezvous router takes the
responsibility of distributing multicast messages to their destinations. CBT and
PIM-SM are examples of group-shared tree protocols.

❑ For multicasting between two noncontiguous multicast routers, we make a multi-
cast backbone (MBONE) to enable tunneling.

12.10 PRACTICE SET

Exercises
1. Exactly describe why we cannot use the CIDR notation for the following blocks in

Table 12.1:

a. AD HOC block with the range 224.0.2.0 to 224.0.255.255.

b. The first reserved block with the range 224.3.0.0 to 231.255.255.255.

c. The second reserved block with the range 234.0.0.0 to 238.255.255.255

2. The AS number in an organization is 24101. Find the range of multicast addresses
that the organization can use in the GLOP block.

3. A multicast address for a group is 232.24.60.9. What is its 48-bit Ethernet address
for a LAN using TCP/IP?

multicast backbone (MBONE) prune message
reverse path broadcasting (RPB)
reverse path forwarding (RPF)
reverse path multicasting (RPM)
shortest path tree
source-based tree
tunneling

Multicast Open Shortest Path First (MOSPF)
Protocol Independent Multicast (PIM)
Protocol Independent Multicast, Dense Mode

(PIM-DM)
Protocol Independent Multicast, Sparse Mode

(PIM-SM)

for76042_ch12.fm Page 369 Tuesday, February 17, 2009 10:47 AM

370 PART 2 NETWORK LAYER

4. Change the following IP multicast addresses to Ethernet multicast addresses. How
many of them specify the same Ethernet address?

a. 224.18.72.8

b. 235.18.72.8

c. 237.18.6.88

d. 224.88.12.8

5. Why is there no need for the IGMP message to travel outside its own network?

6. Answer the following questions:

a. What is the size of a general query message in IGMPv3?

b. What is the size of a group-specific message in IGMPv3?

c. What is the size of a group-and-source-specific message in IGMPv3 if it con-
tains 10 source addresses?

7. What is the size of a report message in IGMPv3 if it contains 3 records and each
record contain 5 source addresses (ignore auxiliary data)?

8. Show the socket state table (similar to Figure 12.11) for a host with two sockets:
S1 and S2. S1 is the member of group 232.14.20.54 and S2 is the member of the
group 232.17.2.8. S1 likes to receive multicast messages only from 17.8.5.2; S2
likes to receive multicast messages from all sources except 130.2.4.6.

9. Show the interface state for the computer in Exercise 8.

10. Show the group record sent by the host in Exercise 9 if socket S1 declares that it
likes also to receive messages from the source 24.8.12.6.

11. Show the group record sent by the host in Exercise 9 if socket S2 declares that it
wants to leave the group 232.17.2.8.

12. Show the group record sent by the host in Exercise 9 if socket S1 declares that it
wants to join the group 232.33.33.7 and accept any message from any source.

13. In Figure 12.14, show the state for interface m1 if the router receives a report with
the record telling a host wants to join the group 232.77.67.60 and accept the mes-
sages from any source.

14. Show the value of MRT in second if the Max Response Code is:

a. 125

b. 220

15. The contents of an IGMP message in hexadecimal notation are:

Answer the following questions:
a. What is the type?

b. What is the checksum?

c. What is the groupid?

16. The contents of an IGMP message in hexadecimal notation are:

11 03 EE FF E8 0E 15 08

22 00 F9 C0 00 00 00 02

for76042_ch12.fm Page 370 Tuesday, February 17, 2009 10:47 AM

CHAPTER 12 MULTICASTING AND MULTICAST ROUTING PROTOCOLS 371

Answer the following questions:
a. What is the type?

b. What is the checksum?

c. What is the number of records?

17. Change the following IP multicast addresses to Ethernet multicast addresses. How
many of them specify the same Ethernet address?

a. 224.18.72.8

b. 235.18.72.8

c. 237.18.6.88

d. 224.88.12.8

18. In Figure 12.18, find the unicast routing tables for routers R2, R3, and R4. Show
the shortest path trees.

19. In Figure 12.19, find the multicast routing tables for routers R2, R3, and R4.

20. A router using DVMRP receives a packet with source address 10.14.17.2 from
interface 2. If the router forwards the packet, what are the contents of the entry
related to this address in the unicast routing table?

21. Router A sends a unicast RIP update packet to router B that says 134.23.0.0/16 is
7 hops away. Network B sends an update packet to router A that says 13.23.0.0/16
is 4 hops away. If these two routers are connected to the same network, which one
is the designated parent router?

22. Does RPF actually create a shortest path tree? Explain.

23. Does RPB actually create a shortest path tree? Explain. What are the leaves of the
tree?

24. Does RPM actually create a shortest path tree? Explain. What are the leaves of the
tree?

Research Activities
25. Use netstat to find if your server supports multicast addressing.

26. Find the format of the DVMRP prune message. What is the format of the graft
message?

27. For MOSPF find the format of the group-membership-LSA packet that associates a
network with a group.

28. CBT uses nine types of packets. Use the Internet to find the purpose and format of
each packet.

29. Use the Internet to find how CBT messages are encapsulated.

30. Use the Internet to find information regarding the scalability of each multicast
routing protocol we discussed. Make a table and compare them.

for76042_ch12.fm Page 371 Tuesday, February 17, 2009 10:47 AM

for76042_ch12.fm Page 372 Tuesday, February 17, 2009 10:47 AM

373

 P A R T

3

Transport Layer

Chapter 13 Introduction to the Transport Layer 374

Chapter 14 User Datagram Protocol (UDP) 414

Chapter 15 Transmission Control Protocol (TCP) 432

Chapter 16 Stream Control Transmission Protocol (SCTP) 502

for76042_ch13.fm Page 373 Tuesday, February 17, 2009 10:17 AM

C H A P T E R

13

374

13

Introduction to
the Transport Layer

his chapter discusses general services that a transport-layer protocol
can provide and the issues related to these services. The chapter also

describes the behavior of some generic transport-layer protocols designed
in response to different situations. We will see, in the next chapters, how
these generic protocols are combined to create transport layer protocols in
the TCP/IP protocol suite such as UDP, TCP, and SCTP.

OBJECTIVE

We have several objectives for this chapter:

❑

To define process-to-process communication at the transport layer and
compare it with host-to-host communication at the network layer.

❑

To discuss the addressing mechanism at the transport layer, to discuss
port numbers, and to define the range port numbers used for different
purposes.

❑

To explain the packetizing issue at the transport layer: encapsulation
and decapsulation of messages.

❑

To discuss multiplexing (many-to-one) and demultiplexing (one-to-
many) services provided by the transport layer.

❑

To discuss flow control and how it can be achieved at the transport layer.

❑

To discuss error control and how it can be achieved at the transport layer.

❑

To discuss congestion control and how it can be achieved at the
transport layer.

❑

To discuss the connectionless and connection-oriented services at the
transport layer and show their implementation using an FSM.

❑

To discuss the behavior of four generic transport-layer protocols and
their applications: simple protocol, Stop-and-Wait protocol, Go-Back-

N

protocol, and Selective-Repeat protocol.

❑

To describe the idea of bidirectional communication at the transport
layer using the piggybacking method.

T

for76042_ch13.fm Page 374 Tuesday, February 17, 2009 10:17 AM

375

13.1 TRANSPORT-LAYER SERVICES

As we discussed in Chapter 2, the transport layer is located between the network layer and
the application layer. The transport layer is responsible for providing services to the
application layer; it receives services from the network layer. In this section, we discuss
the services that can be provided by a transport layer; in the next section, we discuss the
principle beyond several transport layer protocols.

Process-to-Process Communication

The first duty of a transport-layer protocol is to provide

process-to-process communi-
cation.

 A process is an application-layer entity (running program) that uses the services
of the transport layer. Before we discuss how process-to-process communication can be
accomplished, we need to understand the difference between host-to-host communica-
tion and process-to-process communication.

The network layer is responsible for communication at the computer level (host-to-
host communication). A network layer protocol can deliver the message only to the
destination computer. However, this is an incomplete delivery. The message still needs
to be handed to the correct process. This is where a transport layer protocol takes over.
A transport layer protocol is responsible for delivery of the message to the appropriate
process. Figure 13.1 shows the domains of a network layer and a transport layer.

Addressing: Port Numbers

Although there are a few ways to achieve process-to-process communication, the most
common is through the

client-server

paradigm

 (see Chapter 17).

A

process on the
local host,

called a

client,

needs services from a process usually on the remote host,
called a

server.

Figure 13.1

Network layer versus transport layer

Domain of network-layer protocol

Domain of transport-layer protocol

Processes Processes

Internet

for76042_ch13.fm Page 375 Tuesday, February 17, 2009 10:17 AM

376

PART 3 TRANSPORT LAYER

Both processes (client and server) have the same name. For example, to get the day
and time from a remote machine, we need a daytime client process running on the local
host and a daytime server process running on a remote machine.

However, operating systems today support both multiuser and multiprogramming
environments. A remote computer can run several server programs at the same time,
just as several local computers can run one or more client programs at the same time.
For communication, we must define the

❑

Local host

❑

Local process

❑

Remote host

❑

Remote process

The local host and the remote host are defined using IP addresses. To define the pro-
cesses, we need second identifiers called

port numbers.

 In the TCP/IP protocol suite,
the port numbers are integers between 0 and 65,535.

The client program defines itself with a port number, called the

ephemeral port
number.

 The word ephemeral means

short lived

 and is used because the life of a client
is normally short. An ephemeral port number is recommended to be greater than 1,023
for some client/server programs to work properly.

The server process must also define itself with a port number. This port number,
however, cannot be chosen randomly. If the computer at the server site runs a server
process and assigns a random number as the port number, the process at the client site
that wants to access that server and use its services will not know the port number. Of
course, one solution would be to send a special packet and request the port number of a
specific server, but this creates more overhead. TCP/IP has decided to use universal
port numbers for servers; these are called

well-known port numbers.

 There are some
exceptions to this rule; for example, there are clients that are assigned well-known port
numbers. Every client process knows the well-known port number of the corresponding
server process. For example, while the daytime client process, discussed above, can use
an ephemeral (temporary) port number 52,000 to identify itself, the daytime server pro-
cess must use the well-known (permanent) port number 13. Figure 13.2 shows this
concept.

Figure 13.2

Port numbers

Transport
layer

Daytime
client

52,000

Daytime
server

13

Transport
layer

52,000 13

Data

52,00013

Data

for76042_ch13.fm Page 376 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER

377

It should be clear by now that the IP addresses and port numbers play different
roles in selecting the final destination of data. The destination IP address defines the
host among the different hosts in the world. After the host has been selected, the port
number defines one of the processes on this particular host (see Figure 13.3).

ICANN Ranges

ICANN has divided the port numbers into three ranges: well-known, registered, and
dynamic (or private), as shown in Figure 13.4.

❑

Well-known ports.

 The ports ranging from 0 to 1,023 are assigned and controlled by
ICANN. These are the well-known ports.

❑

Registered ports.

 The ports ranging from 1,024 to 49,151 are not assigned or con-
trolled by ICANN. They can only be registered with ICANN to prevent duplication.

❑

Dynamic ports.

 The ports ranging from 49,152 to 65,535 are neither controlled nor
registered. They can be used as temporary or private port numbers. The original rec-
ommendation was that the ephemeral port numbers for clients be chosen from this
range. However, most systems do not follow this recommendation.

Figure 13.3

IP addresses versus port numbers

Figure 13.4

ICANN ranges

Server

Transport

Application 13

13
Data

193.14.26.7

13
Data

Destination IP address
selects the server

 Destination port number
selects the process

Well-known Dynamic or private

Registered

1,023

1,024 49,151

49,152 65,5350

for76042_ch13.fm Page 377 Tuesday, February 17, 2009 10:17 AM

378

PART 3 TRANSPORT LAYER

Example 13.1

In UNIX, the well-known ports are stored in a file called /etc/services. Each line in this file gives
the name of the server and the well-known port number. We can use the grep utility to extract the
line corresponding to the desired application. The following shows the port for TFTP. Note that
TFTP can use port 69 on either UDP or TCP.

SNMP (see Chapter 24) uses two port numbers (161
and 162), each for a different purpose.

Socket Addresses

A transport-layer protocol in the TCP suite needs both the IP address and the port num-
ber, at each end, to make a connection. The combination of an IP address and a port
number is called a

socket address.

The client socket address defines the client process
uniquely just as the server socket address defines the server process uniquely (see
Figure 13.5).

To use the services of transport layer in the Internet, we need a pair of socket addresses:
the client socket address and the server socket address. These four pieces of information are
part of the network-layer packet header and the transport-layer packet header. The first
header contains the IP addresses; the second header contains the port numbers.

Encapsulation and Decapsulation

To send a message from one process to another, the transport layer protocol encapsu-
lates and decapsulates messages (Figure 13.6).

Encapsulation happens at the sender site. When a process has a message to send, it
passes the message to the transport layer along with a pair of socket addresses and

The well-known port numbers are less than 1,024.

$grep tftp /etc/services

tftp 69/tcp
tftp 69/udp

$grep snmp /etc/services

snmp161/tcp#Simple Net Mgmt Proto
snmp161/udp#Simple Net Mgmt Proto
snmptrap162/udp#Traps for SNMP

Figure 13.5

Socket address

IP address

Socket address

Port number200.23.56.8 69

200.23.56.8 69

for76042_ch13.fm Page 378 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER

379

some other pieces of information that depends on the transport layer protocol. The
transport layer receives the data and adds the transport-layer header. The packets at the
transport layers in the Internet are called

user datagrams

,

segments

, or

packets

. We call
them packets in this chapter.

Decapsulation happens at the receiver site. When the message arrives at the desti-
nation transport layer, the header is dropped and the transport layer delivers the mes-
sage to the process running at the application layer. The sender socket address is passed
to the process in case it needs to respond to the message received.

Multiplexing and Demultiplexing

Whenever an entity accepts items from more than one source, it is referred to as

mul-
tiplexing

 (many to one); whenever an entity delivers items to more than one source, it
is referred to as

demultiplexing

 (one to many). The transport layer at the source per-
forms multiplexing; the transport layer at the destination performs demultiplexing
(Figure 13.7).

Figure 13.7 shows communication between a client and two servers. Three client
processes are running at the client site, P1, P2, and P3. The processes P1 and P3 need to
send requests to the corresponding server process running in a server. The client pro-
cess P2 needs to send a request to the corresponding server process running at another
server. The transport layer at the client site accepts three messages from the three pro-
cesses and creates three packets. It acts as a

multiplexer

. The packets 1 and 3 use the
same logical channel to reach the transport layer of the first server. When they arrive at
the server, the transport layer does the job of a

multiplexer

 and distributes the messages
to two different processes. The transport layer at the second server receives packet 2
and delivers it to the corresponding process.

Flow Control

Whenever an entity produces items and another entity consumes them, there should be
a balance between production and consumption rates. If the items are produced faster
than they can be consumed, the consumer can be overwhelmed and needs to discard
some items. If the items are produced slower than they can be consumed, the consumer
should wait; the system becomes less efficient. Flow control is related to the first issue.
We need to prevent losing the data items at the consumer site.

Figure 13.6

Encapsulation and decapsulation

a. Encapsulation

Client
Process

Application
layer

Header
Packet

Transport
layer

Client

Message

Payroll

b. Decapsulation

Logical channel

Server
process

Application
layer

Header

Transport
layer

Message

Payroll

Server

Packet

for76042_ch13.fm Page 379 Tuesday, February 17, 2009 10:17 AM

380

PART 3 TRANSPORT LAYER

Pushing or Pulling

Delivery of items from a producer to a consumer can occur in one of the two ways:

pushing

 or

pulling

. If the sender delivers items whenever they are produced



without
the prior request from the consumer



the delivery is referred to as pushing. If the pro-
ducer delivers the items after the consumer has requested them, the delivery is referred
to as pulling. Figure 13.8 shows these two types of delivery.

When the producer

pushes

 the items, the consumer may be overwhelmed and there
is a need for flow control, in the opposite direction, to prevent the discarding of the
items. In other words, the consumer needs to warn the producer to stop the delivery and
to inform it when it is ready again to receive the items. When the consumer pulls the
items, it requests them when it is ready. In this case, there is no need for flow control.

Figure 13.7

Multiplexing and demultiplexing

Figure 13.8

Pushing or pulling

P1 P2 P3

Messages

Application
layer

P1 P3

Application
layer

Transport
layer

Transport
layer

Client

Server

Server
Multiplexer

Demultiplexer

P2

Application
layer

Transport
layer

Demultiplexer

m1 m2 m3

Messages m1 m3

Message

Packet 2

Pa
ck

et
 3

Packet 3

Packet 2

Packet 3

Packet 2

Packet 1

Pa
ck

et
 1

Packet 1

m2

Flow control

a. Pushing b. Pulling

Delivery
ConsumerProducer

Delivery

Request

ConsumerProducer

1

1 2

2

for76042_ch13.fm Page 380 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER

381

Flow Control at Transport Layer

In communication at the transport layer, we are dealing with four entities: sender pro-
cess, sender transport layer, receiver transport layer, and receiver process. The sending
process at the application layer is only a producer. It produces message chunks and
pushes them to the transport layer. The sending transport layer has a double role: it is
both a consumer and the producer. It consumes the messages pushed by the producer. It
encapsulates the messages in packets and pushes them to the receiving transport layer.
The receiving transport layer has also a double role: it is the consumer for the packets
received from the sender. It is also a producer; it needs to decapsulate the messages and
deliver them to the application layer. The last delivery, however, is normally a pulling
delivery; the transport layer waits until the application-layer process asks for messages.

Figure 13.9 shows that we need at least two cases of flow control: from the sending
transport layer to the sending application layer and from the receiving transport layer to
the sending transport layer.

Buffers

Although flow control can be implemented in several ways, one of the solutions is nor-
mally to use two

buffers

. One at the sending transport layer and the other at the receiv-
ing transport layer. A buffer is a set of memory locations that can hold packets at the
sender and receiver. The flow control communication can occur by sending signals
from the consumer to producer.

When the buffer of the sending transport layer is full, it informs the application
layer to stop passing chunks of messages; when there are some vacancies, it informs
the application layer that it can pass message chunks again.

When the buffer of the receiving transport layer is full, it informs the sending
transport layer to stop sending packets. When there are some vacancies, it informs the
sending transport layer that it can send message again.

Example 13.2

The above discussion requires that the consumers communicate with the producers in two occa-
sions: when the buffer is full and when there are vacancies. If the two parties use a buffer of only
one slot, the communication can be easier. Assume that each transport layer uses one single

Figure 13.9

Flow control at the transport layer

Sender Receiver

Flow control

Flow
control

Messages
are pushed

Messages
are pulled

Application
layer

Transport
layer

Producer

Consumer

Producer

Application
layer

Transport
layer

Consumer

Producer

Consumer

Requests

Packets are pushed

for76042_ch13.fm Page 381 Tuesday, February 17, 2009 10:17 AM

382

PART 3 TRANSPORT LAYER

memory location to hold a packet. When this single slot in the sending transport layer is empty,
the sending transport layer sends a note to the application layer to send its next chunk; when this
single slot in the receiving transport layer is empty, it sends an acknowledgment to the sending
transport layer to send its next packet. As we will see later, this type of flow control, using a
single-slot buffer at the sender and the receiver, is inefficient.

Error Control

In the Internet, since the underlying network layer (IP), which is responsible to carry
the packets from the sending transport layer to the receiving transport layer, is unreli-
able, we need to make the transport layer reliable if the application requires reliability.
Reliability can be achieved to add error control service to the transport layer. Error con-
trol at the transport layer is responsible to

1.

Detect and discard corrupted packets.

2.

Keep track of lost and discarded packets and resend them.

3.

Recognize duplicate packets and discard them.

4.

Buffer out-of-order packets until the missing packets arrive.

Error control, unlike the flow control, involves only the sending and receiving transport
layers. We are assuming that the message chunks exchanged between the application
and transport layers are error free. Figure 13.10 shows the error control between the
sending and receiving transport layer. As with the case of flow control, the receiving
transport layer manages error control, most of the time, by informing the sending trans-
port layer about the problems.

Sequence Numbers

Error control requires that the sending transport layer knows which packet is to be
resent and the receiving transport layer knows which packet is a duplicate, or which
packet has arrived out of order. This can be done if the packets are numbered. We can
add a field to the transport layer packet to hold the

sequence number

 of the packets.
When a packet is corrupted or lost, the receiving transport layer can somehow inform
the sending transport layer to resend that packet using the sequence number. The
receiving transport layer can also detect duplicate packets if two received packets have
the same sequence number. The out-of-order packets can be recognized by observing
gaps in the sequence numbers.

Packets are numbered sequentially. However, because we need to include the
sequence number of each packet in the header, we need to set a limit. If the header of

Figure 13.10

Error control at the transport layer

Sender Receiver

Error control

Transport
layer

Transport
layer

Packets

for76042_ch13.fm Page 382 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER

383

the packet allows

m

 bits for the sequence number, the sequence numbers range from 0
to 2

m

−

 1. For example, if

m

 is 4, the only sequence numbers are 0 through 15, inclu-
sive. However, we can wrap around the sequence. So the sequence numbers in this
case are

In other words, the sequence numbers are modulo 2m.

Acknowledgment

We can use both positive and negative signals as error control. The receiver side can
send an acknowledgement (ACK) for each or a collection of packets that have arrived
safe and sound. The receiver can simply discard the corrupted packets. The sender can
detect lost packets if it uses a timer. When a packet is sent, the sender starts a timer;
when the timer expires, if an ACK does not arrive before the timer expires, the sender
resends the packet. Duplicate packets can be silently discarded by the receiver. Out-of-
order packets can be either discarded (to be treated as lost packets by the sender), or
stored until the missing ones arrives.

Combination of Flow and Error Control
We have discussed that flow control requires the use of two buffers, one at the sender
site and the other at the receiver site. We have also discussed that the error control
requires the use of sequence and acknowledgment numbers by both sides. These two
requirements can be combined if we use two numbered buffers, one at the sender, one
at the receiver.

At the sender, when a packet is prepared to be sent, we use the number of the next
free location, x, in the buffer as the sequence number of the packet. When the packet is
sent, a copy is stored at memory location x, awaiting the acknowledgment from the
other end. When an acknowledgment related to a sent packet arrives, the packet is
purged and the memory location becomes free.

At the receiver, when a packet with sequence number y arrives, it is stored at the
memory location y until the application layer is ready to receive it. An acknowledgment
can be sent to announce the arrival of packet y.

Sliding Window

Since the sequence numbers used modulo 2m, a circle can represent the sequence num-
ber from 0 to 2m − 1 (Figure 13.11).

The buffer is represented as a set of slices, called the sliding window, that occupy
part of the circle at any time. At the sender site, when a packet is sent, the corresponding
slice is marked. When all the slices are marked, it means that the buffer is full and no
further messages can be accepted from the application layer. When an acknowledgment

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …

For error control, the sequence numbers are modulo 2m,
where m is the size of the sequence number field in bits.

for76042_ch13.fm Page 383 Tuesday, February 17, 2009 10:17 AM

384 PART 3 TRANSPORT LAYER

arrives, the corresponding slice is unmarked. If some consecutive slices from the begin-
ning of the window are unmarked, the window slides over the range of the corresponding
sequence number to allow more free slices at the end of the window. Figure 13.11 shows
the sliding window at the sender. The sequence number are modulo 16 (m = 4) and
the size of the window is 7. Note that the sliding window is just an abstraction: the
actual situation uses computer variables to hold the sequence number of the next packet
to be sent and the last packet sent.

Most protocols show the sliding window using linear representation. The idea is
the same, but it normally takes less space on paper. Figure 13.12 shows this representa-
tion. Both representations tell us the same thing. If we take both sides of each part in
Figure 13.11 and bend them up, we can make the same part in Figure 13.12.

Figure 13.11 Sliding window in circular format

Figure 13.12 Sliding window in linear format

seqNo of Next
packet to send

seqNo of Next
packet to send

seqNo of Next
packet to send

seqNo of first
outstanding

packet

seqNo of first
outstanding

packet

seqNo of first
outstanding

packet 0
1

2

3

4

5

6
78

9
10

11

12

13
14

15 0
1

2

3

4

5

6
78

9
10

11

12

13
14

15

0
1

2

3

4

5

6
78

9
10

11

12

13
14

15

seqNo of Next
packet to send

a. Four packets have been sent b. Five packets have been sent

c. Seven packets have been sent
window is full

d. Packet 0 has been acknowledged,
window slides

seqNo of first
outstanding

packet
0

1
2

3

4

5

6
78

9
10

11

12

13
14

15

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 150 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

a. Four packets have been sent b. Five packets have been sent

c. Seven packets have been sent
window is full

d. Packet 0 have been acknowledged
and window slid

for76042_ch13.fm Page 384 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 385

Congestion Control
An important issue in the Internet is congestion. Congestion in a network may occur if
the load on the network—the number of packets sent to the network—is greater than
the capacity of the network—the number of packets a network can handle. Congestion
control refers to the mechanisms and techniques to control the congestion and keep the
load below the capacity.

We may ask why there is congestion on a network. Congestion happens in any
system that involves waiting. For example, congestion happens on a freeway because
any abnormality in the flow, such as an accident during rush hour, creates blockage.

Congestion in a network or internetwork occurs because routers and switches have
queues—buffers that hold the packets before and after processing. The packet is put in
the appropriate output queue and waits its turn to be sent. These queues are finite, so it
is possible for more packets to arrive at a router than the router can buffer.

Congestion control refers to techniques and mechanisms that can either prevent
congestion, before it happens, or remove congestion, after it has happened.

Open-Loop Congestion Control

In open-loop congestion control, policies are applied to prevent congestion before it
happens. In these mechanisms, congestion control is handled by either the source or the
destination.

Retransmission Policy Retransmission is sometimes unavoidable. If the sender feels
that a sent packet is lost or corrupted, the packet needs to be retransmitted. Retransmis-
sion in general may increase congestion in the network. However, a good retransmission
policy can prevent congestion. The retransmission policy and the retransmission timers
must be designed to optimize efficiency and at the same time prevent congestion.

Window Policy The type of window at the sender may also affect congestion. We
will see later in the chapter that the Selective Repeat window is better than the Go-
Back-N window for congestion control.

Acknowledgment Policy The acknowledgment policy imposed by the receiver may
also affect congestion. If the receiver does not acknowledge every packet it receives, it
may slow down the sender and help prevent congestion. Several approaches are used in
this case. A receiver may send an acknowledgment only if it has a packet to be sent or a
special timer expires. A receiver may decide to acknowledge only N packets at a time.
We need to know that the acknowledgments are also part of the load in a network.
Sending fewer acknowledgments means imposing less load on the network.

Closed-Loop Congestion Control

Closed-loop congestion control mechanisms try to alleviate congestion after it happens.
Several mechanisms have been used by different protocols. We describe the one used in
the transport layer. The size of the window at the sender size can be flexible. One factor
that can determine the sender window size is the congestion in the Internet. The sending
transport layer can monitor the congestion in the Internet, by watching the lost packets,
and use a strategy to decrease the window size if the congestion is increasing and vice
versa. We see in Chapter 15 how TCP uses this strategy to control its window size.

for76042_ch13.fm Page 385 Tuesday, February 17, 2009 10:17 AM

386 PART 3 TRANSPORT LAYER

Connectionless and Connection-Oriented Services
A transport-layer protocol, like a network-layer protocol can provide two types of ser-
vices: connectionless and connection-oriented. The nature of these services at the trans-
port layer, however, is different from the ones at the network layer. At the network
layer, a connectionless service may mean different paths for different datagrams
belonging to the same message. At the transport layer, we are not concerned about the
physical paths of packets (we assume a logical connection between two transport lay-
ers), connectionless service at the transport layer means independency between pack-
ets; connection-oriented means dependency. Let us elaborate on these two services.

Connectionless Service

In a connectionless service, the source process (application program) needs to divide its
message into chunks of data of the size acceptable by the transport layer and deliver
them to the transport layer one by one. The transport layer treats each chunk as a single
unit without any relation between the chunks. When a chunk arrives from the applica-
tion layer, the transport layer encapsulates it in a packet and sends it. To show the inde-
pendency of packets, assume that a client process has three chunks of messages to send
a server process. The chunks are handed over to the connectionless transport protocol
in order. However, since there is no dependency between the packets at the transport
layer, the packets may arrive out of order at the destination and will be delivered out of
order to the server process. In Figure 13.13, we have shown the movement of packets
using a time line, but we have assumed that the delivery of the process to the transport
layer and vice versa are instantaneous.

The figure shows that at the client site, the three chunks of messages are delivered
to the client transport layer in order (1, 2, and 3). Because of the extra delay in transpor-
tation of the second packet, the delivery of messages at the server is not in order (1, 3,
2). If these three chunks of data belong to the same message, the server process may
have received a strange message.

Figure 13.13 Connectionless service

Time Time Time Time

Client
process

Server
process

Client transport
layer

Message 0
Message 0

Message 1

Message 1

Message 2
Message 2 Message 2 is

delivered out
of order

Server transport
layer

Packet 0

Packet 2

Packet 1

ACK

for76042_ch13.fm Page 386 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 387

The situation would be worse if one of the packets were lost. Since there is no
numbering on the packets, the receiving transport layer has no idea that one of the mes-
sages has been lost. It just delivers two chunks of data to the server process.

The above two problems arise from the fact that the two transport layers do not
coordinate with each other. The receiving transport layer does not know when the first
packet will come nor when all of the packets have arrived.

We can say that no flow control, error control, or congestion control can be effec-
tively implemented in a connectionless service.

Connection-Oriented Service

In a connection-oriented service, the client and the server first need to establish a connec-
tion between themselves.The data exchange can only happen after the connection estab-
lishment. After data exchange, the connection needs to be teared down (Figure 13.14). As
we mentioned before, the connection-oriented service at the transport layer is different
from the same service at the network layer. In the network layer, connection-oriented

Figure 13.14 Connection-oriented service

Time Time Time Time

Client
process

C
on

ne
ct

io
n

es
ta

bl
is

hm
en

t

D
at

a
T

ra
ns

fe
r

C
on

ne
ct

io
n

te
ar

do
w

n

Server
process

Client transport
layer

Client open-request packet

Server open-request packet

Acknowledgment for packet 1

Acknowledgment for packet 3

Client close-request packet

Server close-request packet
Acknowledgment for packet 5

Acknowledgment for packet 7

Connection-
close request

Connection-
close request

Connection-
open request

Connection-
open request

Message 0
Message 0

Message 1

Message 2

Messages 1,
2 delivered

Message 1
is hold in
window

Server transport
layer

1 1

4
4

3
3

2 2

8 8

5
6

6
7 7

5

Packet 0

Packet 2

Packet 1 ACK

ACK

for76042_ch13.fm Page 387 Tuesday, February 17, 2009 10:17 AM

388 PART 3 TRANSPORT LAYER

service means a coordination between the two end hosts and all the routers in
between. At the transport layer, connection-oriented service involves only the two
hosts; the service is end to end. This means that we should be able to make a
connection-oriented protocol over either a connectionless or connection-oriented
protocol. Figure 13.14 shows the connection establishment, data transfer, and tear-
down phases in a connection-oriented service at the transport layer. Note that most pro-
tocols combine the third and fourth packets in the connection establishment phase into
one packet, as we will see in Chapters 15 and 16.

We can implement flow control, error control, and congestion control in a connection-
oriented protocol.

Finite State Machine

The behavior of a transport layer protocol, both when it provides a connectionless and
when it provides a connection-oriented protocol, can be better shown as a finite state
machine (FSM). Figure 13.15 shows the representation of a transport layer using an
FSM. Using this tool, each transport layer (sender or receiver) is taught as a machine
with a finite number of states. The machine is always in one of the states until an event
occurs. Each event is associated with two reactions: defining the list (possibly empty)
of actions to be performed and determining the next state (which can be the same as the
current state). One of the states must be defined as the initial state, the state in which
the machine starts when it turns on. In this figure we have used ovals to show states,

Figure 13.15 Connectionless and connection-oriented service represented as FSMs

Established

Established

Closed

Data Transfer occurs
when both ends are in

established state

Both ends are always
in the established state.

FSM for
connectionless
transport layer

Note:
The colored
arrow shows the
starting state.

FSM for
connection-oriented

transport layer Do nothing.

An ACK received
from the other end.

Send an ACK packet.

An open-request
packet arrived from
the other end.

Send an ACK packet.

A close-request
packet arrived from
the other end.

Send an open request
packet to the other end.

A connection-open
request acceoted
from application.

Send a close request
packet to the other end.

A connection-close
request accepted
from application.

Open-Wait-I

Open-wait-II Close-Wait-I

Do nothing

An ACK received
from the other end.

Do nothing.

Closed-Wait-II

for76042_ch13.fm Page 388 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 389

color text to show events, and regular black text to show actions. The initial state has an
incoming arrow from another state. A horizontal line is used to separate the event from
the actions, although in Chapter 15 we replace the horizontal line with a slash. The
arrow shows the movement to the next state.

We can think of a connectionless transport layer as an FSM with only one single
state: the established state. The machine on each end (client and server) is always in the
established state, ready to send and receive transport-layer packets.

An FSM in a connection-oriented transport layer, on the other hand, needs to go
through three states before reaching the established state. The machine also needs to go
through three states before closing the connection. The machine is in the closed state
when there is no connection. It remains in this state until a request for opening the con-
nection arrives from the local process; the machine sends an open request packet to the
remote transport layer and moves to the open-wait-I state. When an acknowledgment is
received from the other end, the local FSM moves to the open-wait-II state. When the
machine is in this state, a unidirectional connection has been established, but if bidirec-
tional connection is needed, the machine needs to wait in this state until the other end
also requests a connection. When the request is received, the machine sends an
acknowledgment and moves to the established state.

Data and data acknowledgment can be exchanged between the two ends when
they are both in the established state. However, we need to remember that the estab-
lished state, both in connectionless and connection-oriented transport layers, repre-
sents a set of data transfer states that we discuss in the next section, Transport-Layer
Protocols.

To tear down a connection, the application layer sends a close request message to
its local transport layer. The transport layer sends a close-request packet to the other
end and moves to close-wait-I state. When an acknowledgment is received from the
other end, the machine moves to the close-wait-II state and waits for the close-request
packet from the other end. When this packet arrives, the machine sends an acknowledg-
ment and moves to the closed state.

There are several variations of the connection-oriented FSM that we will discuss in
Chapters 15 and 16. In Chapters 15 and 16, we also see how the FSM can be condensed
or expanded and the names of the states can be changed.

13.2 TRANSPORT-LAYER PROTOCOLS
We can create a transport-layer protocol by combining a set of services described in the
previous sections. To better understand the behavior of these protocols, we start with
the simplest one and gradually add more complexity. The TCP/IP protocol uses a trans-
port layer protocol that is either a modification or a combination of some of these pro-
tocols. This is the reason that we discuss these general protocols in this chapter to pave
the way for understanding more complex ones in the next three chapters. To make our
discussion simpler, we first discuss all of these protocols as a unidirectional protocol
(i.e., simplex) in which the data packets move in one direction. At the end of the chap-
ter, we briefly discuss how they can be changed to bidirectional protocols where data
can be moved in two directions (i.e., full duplex).

for76042_ch13.fm Page 389 Tuesday, February 17, 2009 10:17 AM

390 PART 3 TRANSPORT LAYER

Simple Protocol
Our first protocol is a simple connectionless protocol with neither flow nor error control.
We assume that the receiver can immediately handle any packet it receives. In other
words, the receiver can never be overwhelmed with incoming packets. Figure 13.16
shows the layout for this protocol.

The transport layer at the sender gets a message from its application layer, makes a
packet out of it, and sends the packet. The transport layer at the receiver receives a
packet from its network layer, extracts the message from the packet, and delivers the
message to its application layer. The transport layers of the sender and receiver provide
transmission services for their application layers.

FSMs

The sender site should not send a packet until its application layer has a message to
send. The receiver site cannot deliver a message to its application layer until a packet
arrives. We can show these requirements using two FSMs. Each FSM has only one
state, the ready state. The sending machine remains in the ready state until a request
comes from the process in the application layer. When this event occurs, the sending
machine encapsulates the message in a packet and sends it to the receiving machine.
The receiving machine remains in the ready state until a packet arrives from the send-
ing machine. When this event occurs, the receiving machine decapsulates the message
out of the packet and delivers it to the process at the application layer. Figure 13.17
shows the FSMs for the simple protocol. We see in Chapter 14 that UDP protocol is a
slight modification of this protocol.

Figure 13.16 Simple protocol

Figure 13.17 FSMs for the simple protocol

The simple protocol is a connectionless protocol that provides neither
flow nor error control.

Sender Receiver

Transport Transport
Logical channel

Application Application
Packet

ReadyReady

Sender Receiver

Make a packet and send it.

Request came from application.

Deliver it to process.

Packet arrived.

for76042_ch13.fm Page 390 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 391

Example 13.3

Figure 13.18 shows an example of communication using this protocol. It is very simple. The
sender sends packets one after another without even thinking about the receiver.

Stop-and-Wait Protocol
Our second protocol is a connection-oriented protocol called the Stop-and-Wait
protocol, which uses both flow and error control. Both the sender and the receiver use a
sliding window of size 1. The sender sends one packet at a time and waits for an
acknowledgment before sending the next one.To detect corrupted packets, we need to
add a checksum to each data packet. When a packet arrives at the receiver site, it is
checked. If its checksum is incorrect, the packet is corrupted and silently discarded.
The silence of the receiver is a signal for the sender that a packet was either corrupted
or lost. Every time the sender sends a packet, it starts a timer. If an acknowledgment
arrives before the timer expires, the timer is stopped and the sender sends the next
packet (if it has one to send). If the timer expires, the sender resends the previous
packet assuming that either the packet was lost or corrupted. This means that the sender
needs to keep a copy of the packet until its acknowledgment arrives. Figure 13.19
shows the outline for the Stop-and-Wait protocol. Note that only one packet and one
acknowledgment can be in the channels at any time.

The Stop-and-Wait protocol is a connection-oriented protocol that provides flow
and error control.

Figure 13.18 Flow diagram for Example 13.3

Figure 13.19 Stop-and-Wait protocol

Time Time

Packet

Packet

Sender Receiver

Transport
layer

Transport
layer

pArr

Req: Request came from process
pArr: Packet arrived

Events:

Req

Req
pArr

S

• • •• • •

R Next packet
to receive

• • •• • •
Send window

Timer

Receive window

Sender Receiver

Transport Transport

Logical channels

Application Application

Packet ACK

checksumackNochecksumseqNo

for76042_ch13.fm Page 391 Tuesday, February 17, 2009 10:17 AM

392 PART 3 TRANSPORT LAYER

Sequence Numbers

To prevent duplicate packets, the protocol uses sequence numbers and acknowledgment
numbers. A field is added to the packet header to hold the sequence number of that
packet. One important consideration is the range of the sequence numbers. Since we
want to minimize the packet size, we look for the smallest range that provides unam-
biguous communication. Let us reason out the range of sequence numbers we need.
Assume we have used x as a sequence number; we only need to use x + 1 after that.
There is no need for x + 2. To show this, assume that the sender has sent the packet with
sequence number x. Three things can happen.

1. The packet arrives safe and sound at the receiver site; the receiver sends an
acknowledgment. The acknowledgment arrives at the sender site, causing the
sender to send the next packet numbered x + 1.

2. The packet is corrupted or never arrives at the receiver site; the sender resends the
packet (numbered x) after the time-out. The receiver returns an acknowledgment.

3. The packet arrives safe and sound at the receiver site; the receiver sends an
acknowledgment, but the acknowledgment is corrupted or lost. The sender resends
the packet (numbered x) after the time-out. Note that the packet here is a duplicate.
The receiver can recognize this fact because it expects packet x + 1 but packet x
was received.

We can see that there is a need for sequence numbers x and x + 1 because the receiver
needs to distinguish between case 1 and case 3. But there is no need for a packet to be
numbered x + 2. In case 1, the packet can be numbered x again because packets x and x + 1
are acknowledged and there is no ambiguity at either site. In cases 2 and 3, the new packet
is x + 1, not x + 2. If only x and x + 1 are needed, we can let x = 0 and x + 1 = 1. This means
that the sequence is 0, 1, 0, 1, 0, and so on. This is referred to as modulo 2 arithmetic.

Acknowledgment Numbers

Since the sequence numbers must be suitable for both data packets and acknowledg-
ments, we use this convention: The acknowledgment numbers always announce the
sequence number of the next packet expected by the receiver. For example, if packet 0
has arrived safe and sound, the receiver sends an ACK with acknowledgment 1 (mean-
ing packet 1 is expected next). If packet 1 has arrived safe and sound, the receiver sends
an ACK with acknowledgment 0 (meaning packet 0 is expected).

In Stop-and-Wait protocol, flow control is achieved by forcing the sender to wait for an
acknowledgment, and error control is achieved by discarding corrupted packets and

letting the sender resend unacknowledged packets when the timer expires.

In the Stop-and-Wait protocol, we can use a 1-bit field to number the packets. The
sequence numbers are based on modulo-2 arithmetic.

In the Stop-and-Wait protocol, the acknowledgment number always announces in
modulo-2 arithmetic the sequence number of the next packet expected.

for76042_ch13.fm Page 392 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER

393

The sender has a control variable, which we call

S

(sender),

that points to the only
slot in the send window. The receiver has a control variable, which we call

R

(receiver),
that points to the only slot in the receive window.

FSMs

Figure 13.20 shows the FSMs for the Stop-and-Wait protocol. Since the protocol is a
connection-oriented protocol, both ends should be in the

established

 state before
exchanging data packets. The states we describe here are actually nested in the

estab-
lished

 state.

Sender

The sender is initially in the ready state, but it can move between the ready
and blocking state. The variable

S

 is initialized to 0.

❑

Ready State.

 When the sender is in this state, it is only waiting for one event to
occur. If a request comes from the application, the sender creates a packet with the
sequence number set to

S

. A copy of the packet is stored, and the packet is sent. The
sender then starts the only timer. The sender then moves to the blocking state.

❑

Blocking State.

When the sender is in this state, three events can occur:

1.

If an error-free ACK arrives with ackNo related to the next packet to be sent,
which means ackNo = (

S

+ 1) modulo 2, then the timer is stopped. The window
is slided,

S

 = (

S

 + 1) modulo 2. Finally, the sender moves to the ready state.

All calculation in the Stop-and-Wait protocol is in modulo 2.

Figure 13.20

FSM for the Stop-and-Wait protocol

Error-free ACK with ackNo = S + 1 arrived.

Corrupted ACK or error-free ACK
with ackNo not related to the only
outstanding packet arrived.

Sender

Receiver

Make a packet with seqNo = S, save a copy, and send it.
Start the timer.

Ready

Deliver the message to application.

Discard the ACK.
Slide the send window forward (S = S + 1).
Stop the timer.

Slide the receive window forward (R = R +1).
Send ACK with ackNo = R.

Discard the packet (it is duplicate).

Discard the packet.

Send ACK with ackNo = R

Error-free packet with seqNo = R arrived.

Error-free packet with seqNo ! = R arrived.

Corrupted packet arrived.

Request came from application.

Time-out.
Resend the packet in the window.
Restart the timer.

Note:
All arithmetic equations
are in modulo 2.

Note:
All arithmetic equations
are in modulo 2.

Blocking

Ready

for76042_ch13.fm Page 393 Tuesday, February 17, 2009 6:42 PM

394 PART 3 TRANSPORT LAYER

2. If a corrupted ACK or an error-free ACK with the ackNo ≠ (S + 1) modulo 2
arrives, the ACK is discarded.

3. If a time-out occurs, the sender resends the only outstanding packet and restarts
the timer.

Receiver The receiver is always in the ready state. The variable R is initialized to 0.
Three events may occur:

1. If an error-free packet with seqNo = R arrives, the message in the packet is deliv-
ered to the application layer. The window then slides, R = (R + 1) modulo 2. Finally
an ACK with ackNo = R is sent.

2. If an error-free packet with seqNo ≠ R arrives. The packet is discarded, but an ACK
with ackNo = R is sent.

3. If a corrupted packet arrives, the packet is discarded.

Example 13.4

Figure 13.21 shows an example of Stop-and-Wait protocol. Packet 0 is sent and acknowledged.
Packet 1 is lost and resent after the time-out. The resent packet 1 is acknowledged and the timer
stops. Packet 0 is sent and acknowledged, but the acknowledgment is lost. The sender has no idea
if the packet or the acknowledgment is lost, so after the time-out, it resends packet 0, which is
acknowledged.

Figure 13.21 Flow diagram for Example 13.4

Lost

Lost

Start

Stop

Stop

Time-out; restart

Time-out; restart
Packet 0
discarded

(a duplicate)

Time Time

Packet 0

Packet 0

Packet 0 (resent)

Packet 1

Packet 1 (resent)

ACK 0

ACK 1

ACK 1

ACK 1

Start

Start

Stop

S

0 1 0 1 0 1

R

R

0 1 0 1 0 1

0 1 0 1 0 1

S

S

S

0 1 0 1 0

S

0 1 0 1 0

1

0 1 0 1 0 1

0 1 0 1 0 1

Sender Receiver

Transport
layer

Transport
layer

pArr

aArr

Req: Request from process
pArr: Packet arrivalEvents:
aArr: ACK arrival

Req

Req

Req

T-Out

T-Out: Time our occurs

T-Out

aArr

aArr

pArr

R

0 1 0 1 0 1
pArr

pArr

1

S

S

0 1 0 1 0 1

0 1 0 1 0 1
S

0 1 0 1 0 1

for76042_ch13.fm Page 394 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 395

Efficiency

The Stop-and-Wait protocol is very inefficient if our channel is thick and long. By thick,
we mean that our channel has a large bandwidth (high data rate); by long, we mean the
round-trip delay is long. The product of these two is called the bandwidth-delay prod-
uct. We can think of the channel as a pipe. The bandwidth-delay product then is the vol-
ume of the pipe in bits. The pipe is always there. If we do not use it, we are inefficient.
The bandwidth-delay product is a measure of the number of bits a sender can transmit
through the system while waiting for an acknowledgment from the receiver.

Example 13.5

Assume that, in a Stop-and-Wait system, the bandwidth of the line is 1 Mbps, and 1 bit takes
20 milliseconds to make a round trip. What is the bandwidth-delay product? If the system data
packets are 1,000 bits in length, what is the utilization percentage of the link?

Solution
The bandwidth-delay product is (1 × 106) × (20 × 10−3) = 20,000 bits. The system can send
20,000 bits during the time it takes for the data to go from the sender to the receiver and the
acknowledgment to come back. However, the system sends only 1,000 bits. We can say that the
link utilization is only 1,000/20,000, or 5 percent. For this reason, for a link with a high band-
width or long delay, the use of Stop-and-Wait wastes the capacity of the link.

Example 13.6

What is the utilization percentage of the link in Example 13.5 if we have a protocol that can
send up to 15 packets before stopping and worrying about the acknowledgments?

Solution
The bandwidth-delay product is still 20,000 bits. The system can send up to 15 packets or
15,000 bits during a round trip. This means the utilization is 15,000/20,000, or 75 percent. Of
course, if there are damaged packets, the utilization percentage is much less because packets
have to be resent.

Pipelining

In networking and in other areas, a task is often begun before the previous task has
ended. This is known as pipelining. There is no pipelining in the Stop-and-Wait proto-
col because a sender must wait for a packet to reach the destination and be acknowl-
edged before the next packet can be sent. However, pipelining does apply to our next
two protocols because several packets can be sent before a sender receives feedback
about the previous packets. Pipelining improves the efficiency of the transmission if the
number of bits in transition is large with respect to the bandwidth-delay product.

Go-Back-N Protocol
To improve the efficiency of transmission (fill the pipe), multiple packets must be in
transition while the sender is waiting for acknowledgment. In other words, we need to
let more than one packet be outstanding to keep the channel busy while the sender is
waiting for acknowledgment. In this section, we discuss one protocol that can achieve this
goal; in the next section, we discuss a second. The first is called Go-Back-N (GBN) (the

for76042_ch13.fm Page 395 Tuesday, February 17, 2009 10:17 AM

396 PART 3 TRANSPORT LAYER

rationale for the name will become clear later). The key to Go-back-N is that we can
send several packets before receiving acknowledgments, but the receiver can only
buffer one packet. We keep a copy of the sent packets until the acknowledgments
arrive. Figure 13.22 shows the outline of the protocol. Note that several data packets
and acknowledgments can be in the channel at the same time.

Sequence Numbers

As we mentioned before, the sequence numbers are used modulo 2m, where m is the
size of the sequence number field in bits.

Acknowledgment Number

Acknowledgment number in this protocol is cumulative and defines the sequence num-
ber of the next packet expected. For example, if the acknowledgment number (ackNo)
is 7, it means all packets with sequence number up to 6 have arrived, safe and sound,
and the receiver is expecting the packet with sequence number 7.

Send Window

The send window is an imaginary box covering the sequence numbers of the data pack-
ets that can be in transit or can be sent. In each window position, some of these
sequence numbers define the packets that have been sent; others define those that can
be sent. The maximum size of the window is 2m − 1 for reasons that we discuss later. In
this chapter, we let the size be fixed and set to the maximum value, but we will see in
future chapters that some protocols may have a variable window size. Figure 13.23
shows a sliding window of size 7 (m = 3) for the Go-Back-N protocol.

Figure 13.22 Go-Back-N protocol

In the Go-Back-N Protocol, the sequence numbers are modulo 2m,
where m is the size of the sequence number field in bits.

In the Go-Back-N protocol, the acknowledgment number is cumulative and
defines the sequence number of the next packet expected to arrive.

Sf First
outstanding

Sn Next
to send

• • • • • •

Rn Next
to receive

Sender Receiver

Transport Transport

Logical channels

Application Application

Send window

Timer

Receive window

• • •• • •

Packet ACK

checksumackNochecksumackNo

for76042_ch13.fm Page 396 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 397

The send window at any time divides the possible sequence numbers into four
regions. The first region, left of the window, defines the sequence numbers belonging to
packets that are already acknowledged. The sender does not worry about these packets
and keeps no copies of them. The second region, colored, defines the range of sequence
numbers belonging to the packets that are sent, but have an unknown status. The sender
needs to wait to find out if these packets have been received or were lost. We call these
outstanding packets. The third range, white in the figure, defines the range of sequence
numbers for packets that can be sent; however, the corresponding data have not yet
been received from the application layer. Finally, the fourth region, right of the window,
defines sequence numbers that cannot be used until the window slides.

The window itself is an abstraction; three variables define its size and location at
any time. We call these variables Sf (send window, the first outstanding packet), Sn
(send window, the next packet to be sent), and Ssize (send window, size). The variable Sf
defines the sequence number of the first (oldest) outstanding packet. The variable Sn
holds the sequence number that will be assigned to the next packet to be sent. Finally,
the variable Ssize defines the size of the window, which is fixed in our protocol.

 Figure 13.24 shows how a send window can slide one or more slots to the right
when an acknowledgment arrives from the other end. In the figure, an acknowledgment
with ackNo = 6 has arrived. This means that the receiver is waiting for packets with
sequence number 6.

Receive Window

The receive window makes sure that the correct data packets are received and that the
correct acknowledgments are sent. In Go-back-N, the size of the receive window is
always 1. The receiver is always looking for the arrival of a specific packet. Any packet
arriving out of order is discarded and needs to be resent. Figure 13.25 shows the

Figure 13.23 Send window for Go-Back-N

The send window is an abstract concept defining an imaginary
box of maximum size = 2m − 1 with three variables: Sf, Sn, and Ssize.

The send window can slide one or more slots when an error-free
ACK with ackNo between Sf and Sn (in modular arithmetic) arrives.

Outstanding
(sent, but not

acknowledged)

Sent,
acknowledged,

and purged

 Cannot be
accepted

from process

Ssize = Send window size

Can be sent
when accepted
from process

First
outstanding

 Next
to send

0 71 05 66 3 47

Sf Sn

2

for76042_ch13.fm Page 397 Tuesday, February 17, 2009 10:17 AM

398 PART 3 TRANSPORT LAYER

receive window. Note that we need only one variable Rn (receive window, next packet
expected) to define this abstraction. The sequence numbers to the left of the window
belong to the packets already received and acknowledged; the sequence numbers to the
right of this window define the packets that cannot be received. Any received packet
with a sequence number in these two regions is discarded. Only a packet with a
sequence number matching the value of Rn is accepted and acknowledged. The receive
window also slides, but only one slot at a time. When a correct packet is received, the
window slides, Rn = (Rn + 1) modulo 2m.

Timers

Although there can be a timer for each packet that is sent, in our protocol we use only
one. The reason is that the timer for the first outstanding packet always expires first. We
resend all outstanding packets when this timer expires.

Resending packets

When the timer expires, the sender resends all outstanding packets. For example, sup-
pose the sender has already sent packet 6 (Sn = 7), but the only timer expires. If Sf = 3,

Figure 13.24 Sliding the send window

Figure 13.25 Receive window for Go-Back-N

The receive window is an abstract concept defining an imaginary
box of size 1 with one single variable Rn. The window slides

when a correct packet has arrived; sliding occurs one slot at a time.

First
outstanding

 Next
to send

4 35 5411 22 7 00 3

Sf Sn

6 6

First
outstanding

 Next
to send

a. Window before sliding

b. Window after sliding (an ACK with ackNo = 6 has arrived)

4 35 5411 22 7 00 3

Sf Sn

6 6

Rsize = 1

Already received
and acknowledged

 Cannot be
received

2 13 27 00 5 61 4

Next
expected

Rn

for76042_ch13.fm Page 398 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 399

this means that packets 3, 4, 5, and 6 have not been acknowledged; the sender goes
back and resends packets 3, 4, 5, and 6. That is why the protocol is called Go-Back-N.
On a time-out, the machine goes back N locations and resends all packets.

FSMs

Figure 13.26 shows the FSMs for the GBN protocol.

Sender The sender starts in the ready state, but it can be in one of the two states after:
ready and blocking. The two variables are normally initialized to 0 (Sf = Sn = 0), but we
will see in the future chapters that some protocols in the TCP/IP protocol use a different
initialization.

❑ Ready State. Four events may occur when the sender is in ready state.

1. If a request comes from the application layer, the sender creates a packet with
the sequence number set to Sn. A copy of the packet is stored, and the packet is
sent. The sender also starts the only timer if it is not running. The value of Sn is
now incremented, (Sn = Sn + 1) modulo 2m. If the window is full, Sn = (Sf +
Ssize) modulo 2m, the sender goes to the blocking state.

Figure 13.26 FSM for the Go-Back-N protocol

Sender

Receiver

Ready

Deliver message.
Slide window (Rn = Rn + 1).
Send ACK (ackNo = Rn).

Error-free packet with
seqNo = Rn arrived.

Discard packet. Discard packet.

Send an ACK (ackNo = Rn).

Request from process came.
Make a packet (seqNo = Sn) .

Sn = Sn + 1.

Store a copy and send the packet.
Start the timer if it is not running.

[true]
[false]

Error free ACK with ackNo between
Sf and Sn arrived.

Slide window (Sf = ackNo).
If ackNo equals Sn, stop the timer.
If ackNo < Sn, restart the timer.

Ready Blocking

Window full
(Sn = Sf + SSize)?

Error-free packet
with seqNo ! =/ Rn arrived. Corrupted packet arrived.

Time-out.

Resend all outstanding
packets.
Restart the timer. Time-out.

Resend all outstanding
packets.
Restart the timer.

Discard it.

A corrupted ACK or an
error-free ACK with ackNo
outside window arrived.

Discard it.

A corrupted ACK or an
error-free ACK with ackNo
outside window arrived.

Note:
All arithmetic equations
are in modulo 2m.

Note:
All arithmetic equations
are in modulo 2m.

for76042_ch13.fm Page 399 Tuesday, February 17, 2009 10:17 AM

400 PART 3 TRANSPORT LAYER

2. If an error-free ACK arrives with ackNo related to one of the outstanding pack-
ets, the sender slides the window (set Sf = ackNo) and if all outstanding packets
are acknowledged (ackNo = Sn), then the timer is stopped. If all outstanding
packets are not acknowledged, the timer is restarted.

3. If a corrupted ACK or an error-free ACK with ackNo not related to the out-
standing packet arrives, it is discarded.

4. If a time-out occurs, the sender resends all outstanding packet and restarts the
timer.

❑ Blocking State. Three events may occur in this case:

1. If an error-free ACK arrives with ackNo related to one of the outstanding pack-
ets, the sender slides the window (set Sf = ackNo) and if all outstanding packets
are acknowledged (ackNo = Sn), then the timer is stopped. If all outstanding
packets are not acknowledged, the timer is restarted. The sender then moves to
the ready state.

2. If a corrupted ACK or an error-free ACK with the ackNo not related to out-
standing packets arrives, the ACK is discarded.

3. If a time-out occurs, the sender sends all outstanding packets and restarts the timer.

Receiver The receiver is always in the ready state. The only variable Rn is initialized
to 0. Three events may occur:

1. If an error-free packet with seqNo = Rn arrives, the message in the packet is deliv-
ered to the application layer. The window then slides, Rn = (Rn + 1) modulo 2m.
Finally an ACK is sent with acqNo = Rn.

2. If an error-free packet with seqNo outside the window arrives, the packet is dis-
carded, but an ACK with ackNo = Rn is sent.

3. If a corrupted packet arrives, it is discarded.

Send Window Size

We can now show why the size of the send window must be less than 2m. As an
example, we choose m = 2, which means the size of the window can be 2m − 1, or 3.
Figure 13.27 compares a window size of 3 against a window size of 4.

If the size of the window is 3 (less than 2m) and all three acknowledgments are lost,
the only timer expires and all three packets are resent. The receiver is now expecting
packet 3, not packet 0, so the duplicate packet is correctly discarded. On the other hand,
if the size of the window is 4 (equal to 22) and all acknowledgments are lost, the sender
will send a duplicate of packet 0. However, this time the window of the receiver expects
to receive packet 0 (in the next cycle), so it accepts packet 0, not as a duplicate, but as
the first packet in the next cycle. This is an error. This shows that the size of the send
window must be less than 2m.

In the Go-Back-N protocol, the size of the send window must be less than 2m;
the size of the receive window is always 1.

for76042_ch13.fm Page 400 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 401

Example 13.7

Figure 13.28 shows an example of Go-Back-N. This is an example of a case where the forward
channel is reliable, but the reverse is not. No data packets are lost, but some ACKs are delayed
and one is lost. The example also shows how cumulative acknowledgments can help if acknowledg-
ments are delayed or lost.

Figure 13.27 Send window size for Go-Back-N

Figure 13.28 Flow diagram for Example 13.7

Sender Receiver

0 1 2 3 0 01 2 3

0 1 0 12 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3 Correctly
discarded

Sn
Sf Sn

Sf
Rn

Erroneously
accepted and
delivered as

new data

Sender Receiver

0 1 2 3 0 1 2 3 0

0 1 2 3 0

0 1 2 3 0

0 1 2 3 0

0 1 2 3 0

2 3 0

0 1 3 0

0 1 2 3 0

a. Send window of size < 2m

b. Send window of size = 2m

2

Rn
Packet 0

Packet 0
Resent

Resent

Packet 1

Packet 2

Packet 0

Packet 0

Packet 3

Packet 1

Packet 2

Start

Time-out;
restart

Start

ACK1ACK1

ACK2

ACK3

ACK2

ACK3

ACK0

Time-out;
restart

Start
timer

Restart

Stop
timer

InitialSf Sn

0 1 2 0 1 23 4 5 6 7 0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

Sf Sn

0 1 2 0 1 23 4 5 6 7

Sf Sn

0 1 2 0 1 23 4 5 6 7

SnSf

0 1 2 0 1 23 4 5 6 7

Sf Sn

0 1 2 0 1 23 4 5 6 7

Sf Sn

0 1 2 0 1 23 4 5 6 7

Sf Sn

0 1 2 0 1 23 4 5 6 7

Sf Sn

0 1 2 0 1 23 4 5 6 7

pArr

aArr

Initial

Req

Req

Req: Request from process
pArr: Packet arrival

Events:

aArr: ACK arrival

Req

Req

Time

Lost

Time

Packet 0

Packet 1

ACK 1

ACK 2

ACK 4

ACK 3

Packet 2

Packet 3

Rn

Rn

Rn

Rn

Rn

aArr

aArr

pArr

pArr

pArr

Sender Receiver
Transport

layer
Transport

layer

for76042_ch13.fm Page 401 Tuesday, February 17, 2009 10:17 AM

402

PART 3 TRANSPORT LAYER

After initialization, there are some sender events. Request events are triggered by message
chunks from the application layer; arrival events are triggered by ACK received from the network
layer. There is no time-out event here because all outstanding packets are acknowledged before
the timer expires. Note that although ACK 2 is lost, ACK 3 is cumulative and serves as both
ACK 2 and ACK 3. There are four events at the receiver site.

Example 3.8

Figure 13.29 shows what happens when a packet is lost. Packets 0, 1, 2, and 3 are sent. However,
packet 1 is lost. The receiver receives packets 2 and 3, but they are discarded because they are
received out of order (packet 1 is expected). When the receiver receives packets 2 and 3, it sends
ACK1 to show that it expects to receive packet 1. However, these ACKs are not useful for the
sender because the ackNo is equal

S

f

, not greater that

S

f

. So the sender discards them. When the
time-out occurs, the sender resends packets 1, 2, and 3, which are acknowledged.

Figure 13.29

Flow diagram for Example 3.8

Lost

time out

time-out: timer expiration

ACK 1

ACK 1

ACK 2

ACK 3

ACK 4

ACK 1

Start
timer

Stop

Restart

Restart

Stop
timer

Rn

Rn

Rn

Rn

Rn

Initial

Packet discarded

ACK discarded

ACK discarded

Packet discarded

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 3 4 5 6 7

Initial

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Time Time

Packet 0

Packet 1

Packet 1 (resent)

Packet 2 (resent)

Packet 3 (resent)

Packet 2

Packet 3

0 1 2 3 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

0 1 2 0

0

1 23 4 5 6 7

Sf Sn

Sf Sn

Sf Sn

Sf Sn

Sf Sn

Sf Sn

Sf Sn

Sf Sn

Sf Sn

Sf Sn

Sf Sn

Sf Sn

Start

pArr

aArr

Req: Request from process
pArr: Packet arrival

Events:

aArr: ACK arrival

Req

Req

Req

Req

aArr

aArr

aArr

aArr

aArr

pArr

pArr

pArr

pArr

pArr

Sender Receiver

Transport
layer

Transport
layer

for76042_ch13.fm Page 402 Monday, February 23, 2009 1:17 PM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 403

Go-Back-N versus Stop-and-Wait

The reader may find that there is a similarity between the Go-Back-N protocol and the Stop-
and-Wait protocol.The Stop-and-Wait protocol is actually a Go-Back-N protocol in
which there are only two sequence numbers and the send window size is 1. In other
words, m = 1 and 2m − 1 = 1. In Go-Back-N, we said that the arithmetic is modulo 2m; in
Stop-and-Wait it is modulo 2, which is the same as 2m when m = 1.

Selective-Repeat Protocol
The Go-Back-N protocol simplifies the process at the receiver. The receiver keeps track
of only one variable, and there is no need to buffer out-of-order packets; they are sim-
ply discarded. However, this protocol is inefficient if the underlying network protocol
loses a lot of packets. Each time a single packet is lost or corrupted, the sender resends
all outstanding packets although some of these packets may have been received safe
and sound, but out of order. If the network layer is losing many packets because of con-
gestion in the network, the resending of all of these outstanding packets makes the con-
gestion worse, and eventually more packets are lost. This has an avalanche effect that
may result in the total collapse of the network.

Another protocol, called the Selective-Repeat (SR) protocol, has been devised
that, as the name implies, resends only selective packets, those that are actually lost.
The outline of this protocol is shown in Figure 13.30.

Windows

The Selective-Repeat protocol also uses two windows: a send window and a receive
window. However, there are differences between the windows in this protocol and the
ones in Go-Back-N. First, the maximum size of the send window is much smaller; it is
2m–1. The reason for this will be discussed later. Second, the receive window is the
same size as the send window.

Figure 13.30 Outline of Selective-Repeat

Sender Receiver

Transport Transport

Logical channels

Timer

Application Application

Send window

Sent, but not acknowledged

Acknowledged out of order Packet received out of order

Receive window

Sf
First
outstanding

SnNext
to send

Rn Next
to receive

Packet ACK

checksumackNochecksumseqNo

for76042_ch13.fm Page 403 Tuesday, February 17, 2009 10:17 AM

404 PART 3 TRANSPORT LAYER

The send window maximum size can be 2m−1. For example, if m = 4, the sequence
numbers go from 0 to 15, but the maximum size of the window is just 8 (it is 15 in
the Go-Back-N Protocol). We show the Selective-Repeat send window in Figure 13.31
to emphasize the size.

The receive window in Selective-Repeat is totally different from the one in Go-
Back-N. The size of the receive window is the same as the size of the send window
(maximum 2m–1). The Selective-Repeat protocol allows as many packets as the size of
the receive window to arrive out of order and be kept until there is a set of consecutive
packets to be delivered to the application layer. Because the sizes of the send window
and receive window are the same, all the packets in the send packet can arrive out of
order and be stored until they can be delivered. We need, however, to emphasize that in a
reliable protocol, the receiver never delivers packets out of order to the application layer.
Figure 13.32 shows the receive window in the Selective-Repeat. Those slots inside the
window that are shaded define packets that have arrived out of order and are waiting for
the earlier transmitted packet to arrive before delivery to the application layer.

Timer

Theoretically, Selective-Repeat uses one timer for each outstanding packet. When a timer
expires, only the corresponding packet is resent. In other words, GBN treats outstanding
packets as a group; SR treats them individually. However, most transport layer protocol
that implement SR use only one single timer. For this reason, we use only one timer.

Figure 13.31 Send window for Selective-Repeat protocol

Figure 13.32 Receive window for Selective-Repeat protocol

Outstanding packets,
some acknowledged

Outstanding packet,
not acknowledged

Packet acknowledged
out of order

Packets already
acknowledged

Packets that
cannot be sent

Ssize = 2m–1

Packets that can
be sent

First outstanding Next to send

0 113 1514 5 63 4 7 8 10 11 12

Sf Sn

92

Packets that can be received
and stored for later delivery.

Shaded boxes, already received
Packet already

received
Packet that

cannot be received

Packet Received
out of order

Rsize = 2m–1

Receive window,
next packet expected

0 1 5 63 4 7 8 10 11 1312 14 15

Rn

92

for76042_ch13.fm Page 404 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 405

Acknowledgments

Still there is another difference between the two protocols. In GBN an ackNo is cumu-
lative; it defines the sequence number of the next packet expected, confirming that all
previous packets have been received safe and sound. The semantics of acknowledgment
is different in SR. In SR, an ackNo defines the sequence number of one single packet
that is received safe and sound; there is no feedback for any other.

Example 13.9

Assume a sender sends 6 packets: packets 0, 1, 2, 3, 4, and 5. The sender receives an ACK with
ackNo = 3. What is the interpretation if the system is using GBN or SR?

Solution
If the system is using GBN, it means that packets 0, 1, and 2 have been received uncorrupted and
the receiver is expecting packet 3. If the system is using SR, it means that packet 3 has been
received uncorrupted; the ACK does not say anything about other packets.

FSMs

Figure 13.33 shows the FSMs for the Selective-Repeat protocol. It is similar to the ones
for the GBN, but there are some differences.

Sender The sender starts in the ready state, but later it can be in one of the two
states: ready or blocking. The following shows the events and the corresponding actions
in each state.

❑ Ready State. Four events may occur in this case:

1. If a request comes from the application layer, the sender creates a packet with
the sequence number set to Sn. A copy of the packet is stored, and the packet is
sent. If the timer is not running, the sender starts the timer. The value of Sn is
now incremented, Sn = (Sn + 1) modulo 2m. If the window is full, Sn = (Sf +
Ssize) modulo 2m, the sender goes to the blocking state.

2. If an error-free ACK arrives with ackNo related to one of the outstanding pack-
ets, that packet is marked as acknowledged. If the ackNo = Sf, the window
slides to the right until the Sf points to the first unacknowledged packet (all con-
secutive acknowledged packets are now outside the window). If there are out-
standing packets, restarts the timer; else, stops the timer.

3. If a corrupted ACK or an error-free ACK with ackNo not related to an outstand-
ing packet arrives, it is discarded.

4. If a time-out occurs, the sender resends all unacknowledged packets in the win-
dow and restarts the timer.

❑ Blocking State. Three events may occur in this case:

1. If an error-free ACK arrives with ackNo related to one of the outstanding pack-
ets, that packet is marked as acknowledged. In addition, if the ackNo = Sf, the

In the Selective-Repeat protocol, an acknowledgment number defines
the sequence number of the error-free packet received.

for76042_ch13.fm Page 405 Tuesday, February 17, 2009 10:17 AM

406 PART 3 TRANSPORT LAYER

window is slid to the right until the Sf points to the first unacknowledged packet
(all consecutive acknowledged packets are now outside the window). If the win-
dow has slid, the sender moves to the ready state.

2. If a corrupted ACK or an error-free ACK with the ackNo not related to out-
standing packets arrives, the ACK is discarded.

3. If a time-out occurs, the sender resends all unacknowledged packets in the win-
dow and restarts the timer.

Receiver The receiver is always in the ready state. Three events may occur:

1. If an error-free packet with seqNo in the window arrives, the packet is stored and
an ACK with ackNo = seqNo is sent. In addition, if the seqNo = Rn, then the packet

Figure 13.33 FSMs for SR protocol

Corrupted packet arrived.

Request came from process.

Make a packet (seqNo = Sn).
Store a copy and send the packet.
Start a timer for this packet.
Set Sn = Sn + 1.

Mark the corresponding packet.
 If ackNo = Sf, slide the window over
all consecutive acknowledged packets.
If there are outstanding packets,
restart the timer. Else, stop the
timer.

Discard the packet.

[true]

[true]

[false]

[false]

An error-free ACK arrived that
acknowledges one of the outstanding
packets.

Ready Blocking

Ready

Sender

Receiver

Time-out.
Resend all unacked
packets in window.
Reset the timer.

Time-out.
Resend all unacked
packets in window.
Reset the timer.

Error-free packet with seqNo
outside window boundaries arrived.

Discard the packet.
Send an ACK with ackNo = Rn.

Discard it.

A corrupted ACK or
an ACK about a non-
outstanding packet
arrived.

Discard it.

A corrupted ACK or
an ACK about a non-
outstanding packet
arrived.

Error-free packet with seqNo
inside window arrived.
If duplicate, discard; else,
store the packet.
Send an ACK with ackNo = seqNo.
If seqNo = Rn, deliver the packet and
all consecutive previously arrived
and stored packets to application,
and slide window.

Window full
(Sn = Sf + Ssize)?

Window slides?

Note:
All arithmetic equations
are in modulo 2m.

Note:
All arithmetic equations
are in modulo 2m.

for76042_ch13.fm Page 406 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 407

and all previously arrived consecutive packets are delivered to the application layer
and the window slides so that the Rn points to the first empty slot.

2. If an error-free packet with seqNo outside the window arrives, the packet is dis-
carded, but an ACK with ackNo = Rn is returned to the sender. This is needed to
let the sender slide its window if some ACKs related to packets with seqNo < Rn
were lost.

3. If a corrupted packet arrives, the packet is discarded.

Example 13.10

This example is similar to Example 3.8 (Figure 13.29) in which packet 1 is lost. We show how
Selective-Repeat behaves in this case. Figure 13.34 shows the situation.

At the sender, packet 0 is transmitted and acknowledged. Packet 1 is lost. Packets 2 and 3
arrive out of order and are acknowledged. When the timer times out, packet 1 (the only unac-
knowledged packet) is resent and is acknowledged. The send window then slides.

Figure 13.34 Flow diagram for Example 13.10

Rn

Rn

Rn

Initial

TimeTime

Lost

Sf

0 1 2 03 4 5 6 7

Sn

Sf Sn

0 1 2 03 4 5 6 7

0 1 2 03 4 5 6 7

0 1 2 03 4 5 6 7

0 1 2 03 4 5 6 7

0 1 2 03 4 5 6 7

0 1 2 03 4 5 6 7

0 1 2 3 4 5 6 7

Initial

Data delivered
to application

Data delivered
to application

0 1 2 3 4 5 6 7

Rn

0 1 2 3 4 5 6 7

Rn

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Sf Sn

Sf Sn

Sf Sn

0 1 2 03 4 5 6 7

Sf Sn

Sf Sn

Sf Sn

Sender Receiver
Transport

layer
Transport

layer
T-Out: time-out

Req: Request from process
pArr: Packet arrival

Events:

aArr: ACK arrival

Start

Start

Restart

Stop

Stop

ACK 0

ACK 1

ACK 2

ACK 3

Packet 0

Packet 1

Packet 1 (resent)

Packet 2

Packet 3

pArr
Req

Req

Req

Req

T-Out

0 1 2 03 4 5 6 7

Sf Sn

0 1 2 03 4 5 6 7

Sf Sn

aArr

aArr

aArr

aArr

pArr

pArr

pArr

for76042_ch13.fm Page 407 Tuesday, February 17, 2009 10:17 AM

408 PART 3 TRANSPORT LAYER

At the receiver site we need to distinguish between the acceptance of a packet and its deliv-
ery to the application layer. At the second arrival, packet 2 arrives and is stored and marked
(shaded slot), but it cannot be delivered because packet 1 is missing. At the next arrival, packet 3
arrives and is marked and stored, but still none of the packets can be delivered. Only at the last
arrival, when finally a copy of packet 1 arrives, can packets 1, 2, and 3 be delivered to the appli-
cation layer. There are two conditions for the delivery of packets to the application layer: First, a
set of consecutive packets must have arrived. Second, the set starts from the beginning of the win-
dow. After the first arrival, there was only one packet and it started from the beginning of the
window. After the last arrival, there are three packets and the first one starts from the beginning of
the window. The key is that a reliable transport layer promises to deliver packets in order.

Window Sizes

We can now show why the size of the sender and receiver windows can be at most one-half
of 2m. For an example, we choose m = 2, which means the size of the window is 2m/2, or 2.
Figure 13.35 compares a window size of 2 with a window size of 3.

If the size of the window is 2 and all acknowledgments are lost, the timer for packet
0 expires and packet 0 is resent. However, the window of the receiver is now expecting
packet 2, not packet 0, so this duplicate packet is correctly discarded (the sequence
number 0 is not in the window). When the size of the window is 3 and all acknowledg-
ments are lost, the sender sends a duplicate of packet 0. However, this time, the win-
dow of the receiver expects to receive packet 0 (0 is part of the window), so it accepts
packet 0, not as a duplicate, but as a packet in the next cycle. This is clearly an error.

Bidirectional Protocols: Piggybacking
The four protocols we discussed in this section are all unidirectional: data packets flow
in only one direction and acknowledgments travel in the other direction. In real life,
data packets are normally flowing in both directions: from client to server and from
server to client. This means that acknowledgments also need to flow in both directions.

Figure 13.35 Selective-Repeat, window size

In Selective-Repeat, the size of the sender and receiver window
can be at most one-half of 2m.

Sender Receiver

0 1 2 3
0 1 2 3

Correctly
discarded

0 1 2 3

Rn

0 1 2 3

0 1 2 3

Sf Sn

Sender Receiver

0 1 2 3 0

0 1 2 3 0

0 1 2 3 0

0 1 2 3 0

a. Send and receive windows
of size = 2m _ 1

b. Send and receive windows
of size > 2m _ 1

Sf Sn

0 1 1 22 3 0

Rn

0 1 12 3 0

0 1 12 3 0

Packet 0

Packet 1

Packet 0

Start

Time-out;
restart

Start

Time-out;
restart

ACK 0ACK 0

ACK 1ACK 1

ACK 2

Packet 0

Packet 1

Packet 2

Packet 0

2

2

Erroneously
accepted and

stored as
new data

for76042_ch13.fm Page 408 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 409

A technique called piggybacking is used to improve the efficiency of the bidirectional
protocols. When a packet is carrying data from A to B, it can also carry acknowledgment
feedback about arrived packets from B; when a packet is carrying data from B to A, it
can also carry acknowledgment feedback about the arrived packets from A.

 Figure 13.36 shows the layout for the GBN protocol implemented bidirectionally
using piggybacking. The client and server each use two independent windows: send
and receive windows. We leave the FSMs for this case, and others, as exercises.

13.3 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books. The items enclosed in brackets refer to the reference list at the end of the book:
[Com 06], [Pet & Dav 03], [Kur & Ros 08], [Gar & Vid 04], [Far 04], [Tan 03], and
[Sta 04]. In addition, we recommend the following informative paper: “The Transport
Layer: Tutorial and Survey” by Sami Iren, Paul D. Amer, and Phillip T. Conrad, ACM
Computing Surveys, vol. 31, no. 4, Dec. 1999.

13.4 KEY TERMS

Figure 13.36 Design of piggybacking in Go-Back-N

acknowledgment number congestion
bandwidth-delay product congestion control
client-server paradigm demultiplexing
closed-loop congestion control ephemeral port number

ServerClient

Logical channels

Packet

Windows for communication from client to server

Windows for communication from server to client

Client send window Server receive window

Sf First
outstanding

Sn Next
to send

• • • • • •

Rn Next
to receive

• • •• • •

Server send window

Sf First
outstanding

Sn Next
to send

• • • • • •
Client receive window

Rn Next
to receive

• • •

• • •

• • •

• • •

TransportTransport

Application Application
ackNo

checksumseqNo

for76042_ch13.fm Page 409 Tuesday, February 17, 2009 10:17 AM

410 PART 3 TRANSPORT LAYER

13.5 SUMMARY
❑ The main duty of a transport-layer protocol is to provide process-to-process com-

munication. To define the processes, we need port numbers. The client program
defines itself with an ephemeral port number. The server defines itself with a well-
known port number.

❑ To send a message from one process to another, the transport layer protocol encap-
sulates and decapsulates messages. Encapsulation happens at the sender site.
Decapsulation happens at the receiver site.

❑ The transport layer at the source performs multiplexing, collecting messages from
server processes for transmission; the transport layer at the destination performs
demultiplexing, delivering messages to different processes.

❑ Flow control balances the exchange of data items between a producer and a con-
sumer. At the transport layer, we use buffers to hold packets when the consumer is
not ready to accept them. Reliability at the transport layer can be achieved by add-
ing error control, which includes detection of corrupted packets, resending lost and
corrupted packets, discarding duplicate packets, and reordering packets that
arrived out of order. To manage flow and error control, we use sequence numbers
to number packets and use acknowledgment numbers to refer to the numbered
packets.

❑ A transport layer can provide two types of congestion control: open-loop and
closed loop. In an open-loop congestion control, the protocol tries to avoid the con-
gestion; in closed-loop congestion control, the protocol tries to detect and remove
the congestion after it has occurred.

❑ A transport-layer protocol can provide two types of services: connectionless and
connection-oriented. In a connectionless service, the sender sends packets to the
receiver without any connection establishment. In a connection-oriented service,
the client and the server first need to establish a connection between them-
selves.The data exchange can only happen after the connection establishment.
After data exchange, the connection needs to be torn down.

❑ We have discussed several common transport-layer protocols in this chapter. The
simple connectionless protocol provides neither flow control nor error control. The
connection-oriented Stop-and-Wait protocol provides both flow and error control,
but is inefficient. The Go-back-N protocol is the more efficient version of the Stop-
and-Wait protocol that takes advantage of pipelining. The Selective-Repeat protocol

finite state machine process-to-process communication
Go-back-N protocol Selective-Repeat protocol
load sequence number
multiplexing sliding window
open-loop congestion control socket address
piggybacking Stop-and-Wait protocol
pipelining well-known port number
port number

for76042_ch13.fm Page 410 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 411

is a modification of the Go-back-N protocol that is better suited to handle packet loss.
All of these protocols can be implemented bidirectionally using piggybacking.

13.6 PRACTICE SET

Exercises
1. A sender sends a series of packets to the same destination using 5-bit sequence of

numbers. If the sequence number starts with 0, what is the sequence number of the
100th packet?

2. Using 5-bit sequence numbers, what is the maximum size of the send and receive
windows for each of the following protocols?

a. Stop-and-Wait

b. Go-Back-N

c. Selective-Repeat

3. Show the FSM for an imaginary machine with three states: state A (starting state),
state B, and state C; and four events: events 1, 2, 3, and 4. The following specify
the behavior of the machine:

a. When in state A, two events may occur: event 1 and event 2. If event 1 occurs,
the machine performs action 1 and moves to state B. If event 2 occurs, the
machine moves to state C (no action).

b. When in state B, two events may occur: event 3 and event 4. If event 3 occurs,
the machine performs action 2, but remains in state B. If event 4 occurs, the
machine just moves to state C.

c. When in state C, the machine remains in this state forever.

4. Redesign the FSM in Figure 13.15 if the connection establishment is done with
only three packet exchange (combining packet 2 and 3).

5. Redraw Figure 13.18 with 5 packets exchanged (0, 1, 2, 3, 4). Assume packet 2 is
lost and packet 3 arrives after packet 4.

6. Create a scenario similar to Figure 13.21 in which the sender sends three packets.
The first and second packets arrived and acknowledged. The third packet is
delayed and resent. The duplicate packet is received after the acknowledgment for
the original to be sent.

7. Create a scenario similar to figure 13.21 in which the sender sends two packets.
The first packet is received and acknowledged, but the acknowledgement is lost.
The sender resends the packet after time-out. The second packet is lost and resent.

8. Redraw Figure 13.28 if the sender sends 5 packets (0, 1, 2, 3, and 4). Packets 0, 1,
and 2 are sent and acknowledged in one single ACK, which arrives at the sender
site after all packets have been sent. Packet 3 is received and acknowledged in a
single ACK. Packet 4 is lost and resent.

9. Redraw Figure 13.34 if the sender sends 5 packets (0, 1, 2, 3, and 4). Packets 0, 1,
and 2 are received in order and acknowledged, one by one. Packet 3 is delayed and
received after packet 4.

for76042_ch13.fm Page 411 Tuesday, February 17, 2009 10:17 AM

412 PART 3 TRANSPORT LAYER

10. Answer the following questions related to the FSMs for the Stop-and-Wait proto-
col (Figure 13.20):

a. The sending machine is in the ready state and S = 0. What is the sequence num-
ber of the next packet to send?

b. The sending machine is in the blocking state and S = 1. What is the sequence
number of the next packet to send if a time-out occurs.

c. The receiving machine is in the ready state and R = 1. A packet with the
sequence number 1 arrives. What is the action in response to this event?

d. The receiving machine is in the ready state and R = 1. A packet with the
sequence number 0 arrives. What is the action in response to this event?

11. Answer the following questions related to the FSM’s for the Go-back-N protocol
with m = 6 (Figure 13.26):

a. The sending machine is in the ready state with Sf = 10 and Sn = 15. What is the
sequence number of the next packet to send?

b. The sending machine is in the ready state with Sf = 10 and Sn = 15. A time-out
occurs. How many packets are to be resent? What are their sequence numbers?

c. The sending machine is in the ready state with Sf = 10 and Sn = 15. An ACK
with ackNo = 13 arrives. What are the next values of Sf and Sn?

d. The sending machine is in the blocking state with Sf = 14 and Sn = 21. What is
the size of the window?

e. The sending machine is in the blocking state with Sf = 14 and Sn = 21. An ACK
with ackNo = 18 arrives. What are the next values of Sf and Sn? What is the state
of the sending machine?

f. The receiving machine is in the ready state with Rn = 16. A packet with
sequence number 16 arrives. What is the next value of Rn? What is the response
of the machine to this event?

12. Answer the following questions related to the FSM’s for the Selective-Repeat pro-
tocol with m = 7 bits (Figure 13.33):

a. The sending machine is in the ready state with Sf = 10 and Sn = 15. What is the
sequence number of the next packet to send?

b. The sending machine is in the ready state with Sf = 10 and Sn = 15. The timer
for packet 10 times out. How many packets are to be resent? What are their
sequence numbers?

c. The sending machine is in the ready state with Sf = 10 and Sn = 15. An ACK
with ackNo = 13 arrives. What are the next values of Sf and Sn? What is the
action in response to this event?

d. The sending machine is in the blocking state with Sf = 14 and Sn = 21. What is
the size of the window?

e. The sending machine is in the blocking state with Sf = 14 and Sn = 21. An ACK
with ackNo = 14 arrives. Packets 15 and 16 have been already acknowledged.
What are the next values of Sf and Sn? What is the state of the sending machine?

f. The receiving machine is in the ready state with Rn = 16. The size of the win-
dow is 8. A packet with sequence number 16 arrives. What is the next value of
Rn? What is the response of the machine to this event?

for76042_ch13.fm Page 412 Tuesday, February 17, 2009 10:17 AM

CHAPTER 13 INTRODUCTION TO THE TRANSPORT LAYER 413

g. The receiving machine is in the ready state with Rn = 16. The size of the win-
dow is 8. A packet with sequence number 18 arrives. What is the next value of
Rn? What is the response of the machine to this event?

h. The receiving machine is in the ready state with Rn = 16. The size of the win-
dow is 8. A packet with sequence number 18 arrives. What is the next value of
Rn? What is the response of the machine to this event?

Research Activities
13. Redraw the bidirectional outline (using piggybacking) for the simple protocol in

Figure 13.16.

14. Redraw the bidirectional outline (using piggybacking) for the Stop-and-Wait pro-
tocol in Figure 13.19.

15. Redraw the bidirectional outline (using piggybacking) for the Selective-Repeat
protocol in Figure 13.30.

16. Show the bidirectional FSMs for the simple protocol using piggybacking. Note
that both parties need to send and receive.

17. Show the bidirectional FSMs for the Stop-and-Wait protocol using piggybacking.
Note that both parties need to send and receive.

18. Show the bidirectional FSMs for the Go-back-N protocol using piggybacking.
Note that both parties need to send and receive.

19. Show the bidirectional FSMs for the Selective-Repeat protocol using piggyback-
ing. Note that both parties need to send and receive.

20. Write two algorithms in pseudocode (or in a computer language) for the FSMs
related to the simple protocol (Figure 13.17).

21. Write two algorithms in pseudocode (or in a computer language) for the FSMs
related to the Stop-and-Wait protocol (Figure 13.20).

22. Write two algorithms in pseudocode (or in a computer language) for the FSMs
related to the Go-back-N protocol (Figure 13.26).

23. Write two algorithms in pseudocode (or in a computer language) for the FSMs
related to the Selective-Repeat protocol (Figure 13.33).

for76042_ch13.fm Page 413 Tuesday, February 17, 2009 10:17 AM

C H A P T E R

14

414

14

User Datagram Protocol
(UDP)

he original TCP/IP protocol suite specifies two protocols for the
transport layer: UDP and TCP. We first focus on UDP, the simpler of

the two, before discussing TCP in Chapter 15. A new transport-layer pro-
tocol, SCTP, has been designed, which we will discuss in Chapter 16.

OBJECTIVE

We have several objectives for this chapter:

❑

To introduce UDP and show its relationship to other protocols in the
TCP/IP protocol suite.

❑

To explain the format of a UDP packet, which is called a user data-
gram, and discuss the use of each field in the header.

❑

To discuss the services provided by the UDP such as process-to-process
delivery, rudimentary error control, multiplexing/demultiplexing, and
queuing.

❑

To show how to calculate the optional checksum and why the sender
of a UDP packet needs to add a pseudoheader to the packet when
calculating the checksum.

❑

To discuss how some application programs can benefit from the
simplicity of UDP.

❑

To briefly discuss the structure of a software package that imple-
ments UDP and give the description of control-block, input, and
output module.

T

for76042_ch14.fm Page 414 Tuesday, February 17, 2009 10:56 AM

415

14.1 INTRODUCTION

Figure 14.1 shows the relationship of the

User Datagram Protocol

 (UDP) to the other
protocols and layers of the TCP/IP protocol suite: UDP is located between the applica-
tion layer and the IP layer, and serves as the intermediary between the application
programs and the network operations.

As discussed in Chapter 13, a transport layer protocol usually has several responsi-
bilities. One is to create a process-to-process communication; UDP uses port numbers to
accomplish this. Another responsibility is to provide control mechanisms at the transport
level. UDP does this task at a very minimal level. There is no flow control mechanism
and there is no acknowledgment for received packets. UDP, however, does provide error
control to some extent. If UDP detects an error in the received packet, it silently drops it.

UDP is a

connectionless, unreliable transport protocol.

 It does not add anything
to the services of IP except for providing process-to-process communication instead of
host-to-host communication.

If UDP is so powerless, why would a process want to use it? With the disadvan-
tages come some advantages. UDP is a very simple protocol using a minimum of over-
head. If a process wants to send a small message and does not care much about
reliability, it can use UDP. Sending a small message using UDP takes much less inter-
action between the sender and receiver than using TCP.

Figure 14.1

Position of UDP in the TCP/IP protocol suite

Network
layer IP

ICMPIGMP

ARP

Application
layer

Transport
layer

Data link
layer

Physical
layer

Underlying LAN or WAN
technology

SCTP TCP UDP

SMTP FTP DNS DHCPSNMPTFTP

for76042_ch14.fm Page 415 Tuesday, February 17, 2009 10:56 AM

416

PART 3 TRANSPORT LAYER

14.2 USER DATAGRAM

UDP packets, called

user datagrams,

have a fixed-size header of 8 bytes. Figure 14.2
shows the format of a user datagram. The fields are as follows:

❑

Source port number.

 This is the port number used by the process running on the
source host. It is 16 bits long, which means that the port number can range from 0 to
65,535. If the source host is the client (a client sending a request), the port number, in
most cases, is an ephemeral port number requested by the process and chosen by the
UDP software running on the source host. If the source host is the server (a server
sending a response), the port number, in most cases, is a well-known port number.

❑

Destination port number.

 This is the port number used by the process running on
the destination host. It is also 16 bits long. If the destination host is the server (a
client sending a request), the port number, in most cases, is a well-known port
number. If the destination host is the client (a server sending a response), the port
number, in most cases, is an ephemeral port number. In this case, the server copies
the ephemeral port number it has received in the request packet.

❑

Length.

 This is a 16-bit field that defines the total length of the user datagram,
header plus data. The 16 bits can define a total length of 0 to 65,535 bytes. How-
ever, the total length needs to be much less because a UDP user datagram is stored
in an IP datagram with the total length of 65,535 bytes. The length field in a UDP
user datagram is actually not necessary. A user datagram is encapsulated in an IP
datagram. There is a field in the IP datagram that defines the total length. There is
another field in the IP datagram that defines the length of the header. So if we sub-
tract the value of the second field from the first, we can deduce the length of the
UDP datagram that is encapsulated in an IP datagram.

However, the designers of the UDP protocol felt that it was more efficient for the
destination UDP to calculate the length of the data from the information provided

Figure 14.2

User datagram format

UDP length

====

 IP length

−−−−

 IP header’s length

Destination port numberSource port number

ChecksumTotal length

b. Header format

0 16 31

Header

8 bytes
8 to 65,535 bytes

a. UDP user datagram

Data

for76042_ch14.fm Page 416 Tuesday, February 17, 2009 10:56 AM

CHAPTER 14 USER DATAGRAM PROTOCOL (UDP)

417

in the UDP user datagram rather than ask the IP software to supply this informa-
tion. We should remember that when the IP software delivers the UDP user data-
gram to the UDP layer, it has already dropped the IP header.

❑

Checksum.

 This field is used to detect errors over the entire user datagram (header
plus data). The checksum is discussed in the next section.

Example 14.1

The following is a dump of a UDP header in hexadecimal format.

a.

What is the source port number?

b.

What is the destination port number?

c.

What is the total length of the user datagram?

d.

What is the length of the data?

e.

Is the packet directed from a client to a server or vice versa?

f.

What is the client process?

Solution

a.

The source port number is the first four hexadecimal digits (CB84

16

), which means that
the source port number is 52100.

b.

The destination port number is the second four hexadecimal digits (000D

16

), which
means that the destination port number is 13.

c.

The third four hexadecimal digits (001C

16

) define the length of the whole UDP packet as
28 bytes.

d.

The length of the data is the length of the whole packet minus the length of the header, or
28 – 8 = 20 bytes.

e.

Since the destination port number is 13 (well-known port), the packet is from the client
to the server.

f.

The client process is the Daytime (see Table 14.1).

14.3 UDP SERVICES

We discussed the general services provided by a transport layer protocol in Chapter 13.
In this section, we discuss what portions of those general services are provided by UDP.

Process-to-Process Communication

UDP provides process-to-process communication discussed in Chapter 13 using sock-
ets, a combination of IP addresses and port numbers. Several port numbers used by
UDP are shown in Table 14.1.

CB84000D001C001C

for76042_ch14.fm Page 417 Tuesday, February 17, 2009 5:58 PM

418

PART 3 TRANSPORT LAYER

Connectionless Services

As mentioned previously, UDP provides a

connectionless service.

 This means that each
user datagram sent by UDP is an independent datagram. There is no relationship
between the different user datagrams even if they are coming from the same source pro-
cess and going to the same destination program. The user datagrams are not numbered.
Also, there is no connection establishment and no connection termination as is the case
for TCP. This means that each user datagram can travel on a different path.

One of the ramifications of being connectionless is that the process that uses
UDP cannot send a stream of data to UDP and expect UDP to chop them into differ-
ent related user datagrams. Instead each request must be small enough to fit into one
user datagram. Only those processes sending short messages, messages less than
65,507 bytes (65,535 minus 8 bytes for the UDP header and minus 20 bytes for the
IP header), can use UDP.

Flow Control

UDP is a very simple protocol. There is no

flow control

, and hence no window mecha-
nism. The receiver may overflow with incoming messages. The lack of

flow control
means that the process using UDP should provide for this service, if needed.

Error Control

There is no

error control

 mechanism in UDP except for the checksum. This means
that the sender does not know if a message has been lost or duplicated. When the
receiver detects an error through the checksum, the user datagram is silently dis-
carded. The lack of

error control

means that the process using UDP should provide for
this service if needed.

Table 14.1

Well-known Ports used with UDP

Port Protocol Description

7 Echo Echoes a received datagram back to the sender

9 Discard Discards any datagram that is received

11 Users Active users

13 Daytime Returns the date and the time

17 Quote Returns a quote of the day

19 Chargen Returns a string of characters

53 Domain Domain Name Service (DNS)

67 Bootps Server port to download bootstrap information

68 Bootpc Client port to download bootstrap information

69 TFTP Trivial File Transfer Protocol

111 RPC Remote Procedure Call

123 NTP Network Time Protocol

161 SNMP Simple Network Management Protocol

162 SNMP Simple Network Management Protocol (trap)

for76042_ch14.fm Page 418 Tuesday, February 17, 2009 10:56 AM

CHAPTER 14 USER DATAGRAM PROTOCOL (UDP)

419

Checksum

We have already talked about the concept of the

checksum

 and the way it is calculated
for IP in Chapter 7. UDP checksum calculation is different from the one for IP. Here the
checksum includes three sections: a pseudoheader, the UDP header, and the data com-
ing from the application layer.

 The

pseudoheader

 is the part of the header of the IP packet in which the user data-
gram is to be encapsulated with some fields filled with 0s (see Figure 14.3).

If the checksum does not include the pseudoheader, a user datagram may arrive
safe and sound. However, if the IP header is corrupted, it may be delivered to the wrong
host.

The protocol field is added to ensure that the packet belongs to UDP, and not to
TCP. We will see later that if a process can use either UDP or TCP, the destination port
number can be the same. The value of the protocol field for UDP is 17. If this value is
changed during transmission, the checksum calculation at the receiver will detect it and
UDP drops the packet. It is not delivered to the wrong protocol.

Note the similarities between the pseudoheader fields and the last 12 bytes of the
IP header.

Example 14.2

Figure 14.4 shows the checksum calculation for a very small user datagram with only 7 bytes of
data. Because the number of bytes of data is odd, padding is added for checksum calculation. The
pseudoheader as well as the padding will be dropped when the user datagram is delivered to IP
(see Appendix F).

Optional Inclusion of Checksum

The sender of a UDP packet can choose not to calculate the checksum. In this case, the
checksum field is filled with all 0s before being sent. In the situation that the sender
decides to calculate the checksum, but it happens that the result is all 0s, the checksum
is changed to all 1s before the packet is sent. In other words, the sender complements
the sum two times. Note that this does not create confusion because the value of check-
sum is never all 1s in a normal situation (see the next example).

Figure 14.3

Pseudoheader for checksum calculation

Data

(Padding must be added to make the data a multiple of 16 bits)

Destination port address
16 bits

Source port address
16 bits

Checksum
16 bits

16-bit UDP total length

32-bit source IP address

P
se

ud
oh

ea
de

r
H

ea
de

r

8-bit protocolAll 0s

32-bit destination IP address

UDP total length
16 bits

for76042_ch14.fm Page 419 Tuesday, February 17, 2009 10:56 AM

420

PART 3 TRANSPORT LAYER

Example 14.3

What value is sent for the checksum in one of the following hypothetical situations?

a.

The sender decides not to include the checksum.

b.

The sender decides to include the checksum, but the value of the sum is all 1s.

c.

The sender decides to include the checksum, but the value of the sum is all 0s.

Solution

a.

The value sent for the checksum field is all 0s to show that the checksum is not
calculated.

b.

When the sender complements the sum, the result is all 0s; the sender complements the
result again before sending. The value sent for the checksum is all 1s. The second
complement operation is needed to avoid confusion with the case in part a.

c.

This situation never happens because it implies that the value of every term included in
the calculation of the sum is all 0s, which is impossible; some fields in the pseudoheader
have nonzero values (see Appendix D).

Congestion Control

Since UDP is a connectionless protocol, it does not provide congestion control. UDP
assumes that the packets sent are small and sporadic, and cannot create congestion in
the network. This assumption may or may not be true today when UDP is used for real-
time transfer of audio and video.

Encapsulation and Decapsulation

To send a message from one process to another, the UDP protocol encapsulates and
decapsulates messages (see Figure 14.5).

Figure 14.4

Checksum calculation of a simple UDP user datagram

153.18.8.105

171.2.14.10

All 0s

1087 13

T E S T

PadI N G

All 0s 17 15

15

10011001 00010010
00001000 01101001
10101011 00000010
00001110 00001010
00000000 00010001
00000000 00001111
00000100 00111111
00000000 00001101
00000000 00001111
00000000 00000000
01010100 01000101
01010011 01010100
01001001 01001110
01000111 00000000

153.18
8.105
171.2
14.10
0 and 17
15
1087
13
15
0 (checksum)
T and E
S and T
I and N
G and 0 (padding)

10010110 11101011
01101001 00010100

Sum

Checksum

for76042_ch14.fm Page 420 Tuesday, February 17, 2009 10:56 AM

CHAPTER 14 USER DATAGRAM PROTOCOL (UDP)

421

Encapsulation

When a process has a message to send through UDP, it passes the message to UDP
along with a pair of socket addresses and the length of data. UDP receives the data and
adds the UDP header. UDP then passes the user datagram to IP with the socket
addresses. IP adds its own header, using the value 17 in the protocol field, indicating
that the data has come from the UDP protocol. The IP datagram is then passed to the
data link layer. The data link layer receives the IP datagram, adds its own header (and
possibly a trailer), and passes it to the physical layer. The physical layer encodes the
bits into electrical or optical signals and sends it to the remote machine.

Decapsulation

When the message arrives at the destination host, the physical layer decodes the signals
into bits and passes it to the data link layer. The data link layer uses the header (and the
trailer) to check the data. If there is no error, the header and trailer are dropped and the
datagram is passed to IP. The IP software does its own checking. If there is no error,
the header is dropped and the user datagram is passed to UDP with the sender and
receiver IP addresses. UDP uses the checksum to check the entire user datagram. If
there is no error, the header is dropped and the application data along with the sender
socket address is passed to the process. The sender socket address is passed to the
process in case it needs to respond to the message received.

Queuing

We have talked about ports without discussing the actual implementation of them. In
UDP, queues are associated with ports (see Figure 14.6).

At the client site, when a process starts, it requests a port number from the operat-
ing system. Some implementations create both an incoming and an outgoing queue
associated with each process. Other implementations create only an incoming queue
associated with each process.

Figure 14.5

Encapsulation and decapsulation

UDP
header

Frame
header

IP
header

Frame data

Message

IP data

UDP data

a. Encapsulation b. Decapsulation

Sender Process Receiver Process

Message

UDP
header

Frame
header

IP
header

Frame data

IP data

UDP data

for76042_ch14.fm Page 421 Tuesday, February 17, 2009 10:56 AM

422

PART 3 TRANSPORT LAYER

Note that even if a process wants to communicate with multiple processes, it
obtains only one port number and eventually one outgoing and one incoming

queue.

The queues opened by the client are, in most cases, identified by ephemeral port numbers.
The queues function as long as the process is running. When the process terminates, the
queues are destroyed.

The client process can send messages to the outgoing queue by using the source
port number specified in the request. UDP removes the messages one by one, and, after
adding the UDP header, delivers them to IP. An outgoing queue can overflow. If this
happens, the operating system can ask the client process to wait before sending any
more messages.

When a message arrives for a client, UDP checks to see if an incoming queue has
been created for the port number specified in the destination port number field of the
user datagram. If there is such a queue, UDP sends the received user datagram to the
end of the queue. If there is no such queue, UDP discards the user datagram and asks
the ICMP protocol to send a

port unreachable

 message to the server. All of the incom-
ing messages for one particular client program, whether coming from the same or a
different server, are sent to the same queue. An incoming queue can overflow. If this
happens, UDP drops the user datagram and asks for a

port unreachable message to be
sent to the server.

At the server site, the mechanism of creating queues is different. In its simplest
form, a server asks for incoming and outgoing queues using its well-known port when
it starts running. The queues remain open as long as the server is running.

When a message arrives for a server, UDP checks to see if an incoming queue has
been created for the port number specified in the destination port number field of the
user datagram. If there is such a queue, UDP sends the received user datagram to the
end of the queue. If there is no such queue, UDP discards the user datagram and asks
the ICMP protocol to send a port unreachable message to the client. All of the incoming
messages for one particular server, whether coming from the same or a different client,
are sent to the same queue. An incoming queue can overflow. If this happens, UDP
drops the user datagram and asks for a port unreachable message to be sent to the client.

Figure 14.6

Queues in UDP

UDP

Outgoing
queue

Incoming
queue

UDP

Port 52000Port 52000

Outgoing
queue

Incoming
queue

Daytime
client

Daytime
server

Port 13Port 13

for76042_ch14.fm Page 422 Tuesday, February 17, 2009 10:56 AM

CHAPTER 14 USER DATAGRAM PROTOCOL (UDP)

423

When a server wants to respond to a client, it sends messages to the outgoing queue
using the source port number specified in the request. UDP removes the messages one
by one, and, after adding the UDP header, delivers them to IP. An outgoing queue
can overflow. If this happens, the operating system asks the server to wait before send-
ing any more messages.

Multiplexing and Demultiplexing

In a host running a TCP/IP protocol suite, there is only one UDP but possibly several
processes that may want to use the services of UDP. To handle this situation, UDP mul-
tiplexes and demultiplexes (see Figure 14.7).

Multiplexing

At the sender site, there may be several processes that need to send user datagrams.
However, there is only one UDP. This is a many-to-one relationship and requires multi-
plexing. UDP accepts messages from different processes, differentiated by their
assigned port numbers. After adding the header, UDP passes the user datagram to IP.

Demultiplexing

At the receiver site, there is only one UDP. However, we may have many processes that
can receive user datagrams. This is a one-to-many relationship and requires demulti-
plexing. UDP receives user datagrams from IP. After error checking and dropping of
the header, UDP delivers each message to the appropriate process based on the port
numbers.

Comparison between UDP and Generic Simple Protocol

We can compare UDP with the connectionless simple protocol we discussed in Chapter 13.
The only difference is that UDP provides an optional checksum to detect corrupted
packets at the receiver site. If the checksum is added to the packet, the receiving UDP

Figure 14.7

Multiplexing and demultiplexing

Processes

UDP
(Demultiplexer)

IP

UDP
(Multiplexer)

Processes

IP

for76042_ch14.fm Page 423 Tuesday, February 17, 2009 10:56 AM

424

PART 3 TRANSPORT LAYER

can check the packet and discard the packet if it is corrupted. No feedback, however, is
sent to the sender.

14.4 UDP APPLICATIONS

Although UDP meets almost none of the criteria we mentioned in Chapter 13 for a reli-
able transport-layer protocol, UDP is preferable for some applications. The reason is
that some services may have some side effects that are either unacceptable or not pref-
erable. An application designer needs sometimes to compromise to get the optimum.
For example, in our daily life, we all know that a one-day delivery of a package by a
carrier is more expensive than a three-day delivery. Although time and cost are both
desirable features in delivery of a parcel, they are in conflict with each other. We need
to choose the optimum.

In this section, we first discuss some features of UDP that may need to be con-
sidered when one designs an application program and then show some typical
applications.

UDP Features

We briefly discuss some features of UDP and their advantages and disadvantages.

Connectionless Service

As we mentioned previously, UDP is a connectionless protocol. Each UDP packet is
independent from other packets sent by the same application program. This feature can
be considered as an advantage or disadvantage depending on the application require-
ment. It is an advantage if, for example, a client application needs to send a short
request to a server and to receive a short response. If the request and response can each
fit in one single user datagram, a connectionless service may be preferable. The over-
head to establish and close a connection may be significant in this case. In the
connection-oriented service, to achieve the above goal, at least 9 packets are exchanged
between the client and the server; in connectionless service only two packets are
exchanged. The connectionless service provides less delay; the connection-oriented
service creates more delay. If delay is an important issue for the application, the
connectionless service is preferred.

Example 14.4

A client-server application such as DNS (see Chapter 19) uses the services of UDP because a cli-
ent needs to send a short request to a server and to receive a quick response from it. The request
and response can each fit in one user datagram. Since only one message is exchanged in each
direction, the connectionless feature is not an issue; the client or server does not worry that mes-
sages are delivered out of order.

UDP is an example of the connectionless simple protocol we discussed in Chapter 13
with the exception of an optional checksum added to packets for error detection.

for76042_ch14.fm Page 424 Tuesday, February 17, 2009 5:59 PM

CHAPTER 14 USER DATAGRAM PROTOCOL (UDP)

425

Example 14.5

A client-server application such as SMTP (see Chapter 23), which is used in electronic mail, can-
not use the services of UDP because a user can send a long e-mail message, which may include
multimedia (images, audio, or video). If the application uses UDP and the message does not fit in
one single user datagram, the message must be split by the application into different user data-
grams. Here the connectionless service may create problems. The user datagrams may arrive and
be delivered to the receiver application out of order. The receiver application may not be able to
reorder the pieces. This means the connectionless service has a disadvantage for an application
program that sends long messages. In SMTP, when one sends a message, one does not expect to
receive a response quickly (sometimes no response is required). This means that the extra delay
inherent in connection-oriented service is not crucial for SMTP.

Lack of Error Control

UDP does not provide error control; it provides an unreliable service. Most applications
expect reliable service from a transport-layer protocol. Although a reliable service is
desirable, it may have some side effects that are not acceptable to some applications.
When a transport layer provides reliable services, if a part of the message is lost or cor-
rupted, it needs to be resent. This means that the receiving transport layer cannot
deliver that part to the application immediately; there is an uneven delay between dif-
ferent parts of the message delivered to the application layer. Some applications by
nature do not even notice these uneven delays, but for some they are very crucial.

Example 14.6

Assume we are downloading a very large text file from the Internet. We definitely need to use a
transport layer that provides reliable service. We don’t want part of the file to be missing or cor-
rupted when we open the file. The delay created between the delivery of the parts are not an over-
riding concern for us; we wait until the whole file is composed before looking at it. In this case,
UDP is not a suitable transport layer.

Example 14.7

Assume we are watching a real-time stream video on our computer. Such a program is considered
a long file; it is divided into many small parts and broadcast in real time. The parts of the message
are sent one after another. If the transport layer is supposed to resend a corrupted or lost frame,
the synchronizing of the whole transmission may be lost. The viewer suddenly sees a blank
screen and needs to wait until the second transmission arrives. This is not tolerable. However, if
each small part of the screen is sent using one single user datagram, the receiving UDP can easily
ignore the corrupted or lost packet and deliver the rest to the application program. That part of the
screen is blank for a very short period of the time, which most viewers do not even notice. How-
ever, video cannot be viewed out of order, so streaming audio, video, and voice applications that
run over UDP must reorder or drop frames that are out of sequence.

Lack of Congestion Control

UDP does not provide congestion control. However, UDP does not create additional
traffic in an error-prone network. TCP may resend a packet several times and thus con-
tribute to the creation of congestion or worsen a congested situation. Therefore, in
some cases, lack of error control in UDP can be considered an advantage when conges-
tion is a big issue.

for76042_ch14.fm Page 425 Tuesday, February 17, 2009 10:56 AM

426

PART 3 TRANSPORT LAYER

Typical Applications

The following shows some typical applications that can benefit more from the services
of UDP than from those of TCP.

❑ UDP is suitable for a process that requires simple request-response communication
with little concern for flow and error control. It is not usually used for a process
such as FTP that needs to send bulk data (see Chapter 21).

❑ UDP is suitable for a process with internal flow and error-control mechanisms. For
example, the Trivial File Transfer Protocol (TFTP) (see Chapter 21) process
includes flow and error control. It can easily use UDP.

❑ UDP is a suitable transport protocol for multicasting. Multicasting capability is
embedded in the UDP software but not in the TCP software.

❑ UDP is used for management processes such as SNMP (see Chapter 24).

❑ UDP is used for some route updating protocols such as Routing Information Proto-
col (RIP) (see Chapter 11).

❑ UDP is normally used for real-time applications that cannot tolerate uneven delay
between sections of a received message.

14.5 UDP PACKAGE
To show how UDP handles the sending and receiving of UDP packets, we present a
simple version of the UDP package.

We can say that the UDP package involves five components: a control-block
table, input queues, a control-block module, an input module, and an output module.
Figure 14.8 shows these five components and their interactions.

Control-Block Table
In our package, UDP has a control-block table to keep track of the open ports. Each
entry in this table has a minimum of four fields: the state, which can be FREE or IN-USE,
the process ID, the port number, and the corresponding queue number.

Input Queues
Our UDP package uses a set of input queues, one for each process. In this design, we
do not use output queues.

Control-Block Module
The control-block module (Table 14.2) is responsible for the management of the
control-block table. When a process starts, it asks for a port number from the operating
system. The operating system assigns well-known port numbers to servers and ephem-
eral port numbers to clients. The process passes the process ID and the port number to
the control-block module to create an entry in the table for the process. The module

for76042_ch14.fm Page 426 Tuesday, February 17, 2009 10:56 AM

CHAPTER 14 USER DATAGRAM PROTOCOL (UDP) 427

does not create the queues. The field for queue number has a value of zero. Note that
we have not included a strategy to deal with a table that is full.

Input Module
The input module (Table 14.3) receives a user datagram from the IP. It searches the
control-block table to find an entry having the same port number as this user datagram.
If the entry is found, the module uses the information in the entry to enqueue the data.
If the entry is not found, it generates an ICMP message.

Figure 14.8 UDP design

Table 14.2 Control Block Module

1 UDP_Control_Block_Module (process ID, port number)

2 {

3 Search the table for a FREE entry.

4 if (not found)

5 Delete one entry using a predefined strategy.

6 Create a new entry with the state IN-USE

7 Enter the process ID and the port number.

8 Return.

9 } // End module

Input module

Control-block
module

Process Process Process

Output module

UDP
User datagram

Data

Queues

Control-block
table

Processes
(when started)

UDP
User datagram

U
D
P

IP

Data Data

for76042_ch14.fm Page 427 Tuesday, February 17, 2009 10:56 AM

428 PART 3 TRANSPORT LAYER

Output Module
The output module (Table 14.4) is responsible for creating and sending user datagrams.

Examples
In this section we show some examples of how our package responds to input and output.
The control-block table at the start of our examples is shown in Table 14.5.

Table 14.3 Input Module

1 UDP_INPUT_Module (user_datagram)

2 {

3 Look for the entry in the control_block table

4 if (found)

5 {

6 Check to see if a queue is allocated

7 If (queue is not allocated)

8 allocate a queue

9 else

10 enqueue the data

11 } //end if

12 else

13 {

14 Ask ICMP to send an "unreachable port" message

15 Discard the user datagram

16 } //end else

17

18 Return.

19 } // end module

Table 14.4 Output Module

1 UDP_OUTPUT_MODULE (Data)

2 {

3 Create a user datagram

4 Send the user datagram

5 Return.

6 }

for76042_ch14.fm Page 428 Tuesday, February 17, 2009 10:56 AM

CHAPTER 14 USER DATAGRAM PROTOCOL (UDP) 429

Example 14.8

The first activity is the arrival of a user datagram with destination port number 52,012. The input
module searches for this port number and finds it. Queue number 38 has been assigned to this
port, which means that the port has been previously used. The input module sends the data to
queue 38. The control-block table does not change.

Example 14.9

After a few seconds, a process starts. It asks the operating system for a port number and is
granted port number 52,014. Now the process sends its ID (4,978) and the port number to the
control-block module to create an entry in the table. The module takes the first FREE entry and
inserts the information received. The module does not allocate a queue at this moment because no
user datagrams have arrived for this destination (see Table 14.6).

Example 14.10

A user datagram now arrives for port 52,011. The input module checks the table and finds that
no queue has been allocated for this destination since this is the first time a user datagram
has arrived for this destination. The module creates a queue and gives it a number (43). See
Table 14.7.

Table 14.5 The Control-Block Table at the Beginning of Examples

State Process ID Port Number Queue Number
IN-USE 2,345 52,010 34
IN-USE 3,422 52,011
FREE
IN-USE 4,652 52,012 38
FREE

Table 14.6 Control-Block Table after Example 14.9

State Process ID Port Number Queue Number
IN-USE 2,345 52,010 34
IN-USE 3,422 52,011
IN-USE 4,978 52,014
IN-USE 4,652 52,012 38
FREE

Table 14.7 Control-Block Table after Example 14.10

State Process ID Port Number Queue Number
IN-USE 2,345 52,010 34
IN-USE 3,422 52,011 43
IN-USE 4,978 52,014
IN-USE 4,652 52,012 38
FREE

for76042_ch14.fm Page 429 Tuesday, February 17, 2009 10:56 AM

430 PART 3 TRANSPORT LAYER

Example 14.11

After a few seconds, a user datagram arrives for port 52,222. The input module checks the table
and cannot find an entry for this destination. The user datagram is dropped and a request is made
to ICMP to send an unreachable port message to the source.

14.6 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and websites. The items enclosed in brackets refer to the reference list at the end
of the book.

Books
Several books give information about UDP. In particular, we recommend [Com 06] and
[Ste 94].

RFCs
The main RFC related to UDP is RFC 768.

14.7 KEY TERMS

14.8 SUMMARY
❑ UDP is a transport protocol that creates a process-to-process communication. UDP

is a (mostly) unreliable and connectionless protocol that requires little overhead
and offers fast delivery. The UDP packet is called a user datagram.

❑ UDP’s only attempt at error control is the checksum. Inclusion of a pseudoheader
in the checksum calculation allows source and destination IP address errors to be
detected. UDP has no flow-control mechanism.

❑ A user datagram is encapsulated in the data field of an IP datagram. Incoming and
outgoing queues hold messages going to and from UDP.

❑ UDP uses multiplexing to handle outgoing user datagrams from multiple processes
on one host. UDP uses demultiplexing to handle incoming user datagrams that go
to different processes on the same host.

❑ A UDP package can involve five components: a control-block table, a control-
block module, input queues, an input module, and an output module. The input
queues hold incoming user datagrams. The control-block module is responsible for
maintenance of entries in the control-block table. The input module creates input
queues; the output module sends out user datagrams.

connectionless, unreliable transport protocol user datagram
pseudoheader User Datagram Protocol (UDP)
queue

for76042_ch14.fm Page 430 Tuesday, February 17, 2009 10:56 AM

CHAPTER 14 USER DATAGRAM PROTOCOL (UDP) 431

14.9 PRACTICE SET

Exercises
1. In cases where reliability is not of primary importance, UDP would make a good

transport protocol. Give examples of specific cases.

2. Are both UDP and IP unreliable to the same degree? Why or why not?

3. Show the entries for the header of a UDP user datagram that carries a message from
a TFTP client to a TFTP server. Fill the checksum field with 0s. Choose an appro-
priate ephemeral port number and the correct well-known port number. The length
of data is 40 bytes. Show the UDP packet using the format in Figure 14.2.

4. An SNMP client residing on a host with IP address 122.45.12.7 sends a message to
an SNMP server residing on a host with IP address 200.112.45.90. What is the pair
of sockets used in this communication?

5. A TFTP server residing on a host with IP address 130.45.12.7 sends a message to a
TFTP client residing on a host with IP address 14.90.90.33. What is the pair of
sockets used in this communication?

6. Answer the following questions:

a. What is the minimum size of a UDP datagram?

b. What is the maximum size of a UDP datagram?

c. What is the minimum size of the process data that can be encapsulated in a
UDP datagram?

d. What is the maximum size of the process data that can be encapsulated in a
UDP datagram?

7. A client uses UDP to send data to a server. The data length is 16 bytes. Calculate the
efficiency of this transmission at the UDP level (ratio of useful bytes to total bytes).

8. Redo Exercise 7, calculating the efficiency of transmission at the IP level. Assume
no options for the IP header.

9. Redo Exercise 7, calculating the efficiency of transmission at the data link layer.
Assume no options for the IP header and use Ethernet at the data link layer.

10. The following is a dump of a UDP header in hexadecimal format.

a. What is the source port number?

b. What is the destination port number?

c. What is the total length of the user datagram?

d. What is the length of the data?

e. Is the packet directed from a client to a server or vice versa?

f. What is the client process?

0045DF000058FE20

for76042_ch14.fm Page 431 Tuesday, February 17, 2009 10:56 AM

C H A P T E R

15

432

15

Transmission Control
Protocol (TCP)

s we discussed in Chapter 14, several protocols have been specified
in the transport layer of the TCP/IP protocol suite. We will discuss

TCP in this chapter. TCP is the heart of the suite, providing a vast array of
services, and therefore, is a complicated protocol. TCP has gone through
many revisions in the last few decades. This means that this chapter will
be very long.

OBJECTIVES

The chapter has several objectives:

❑

To introduce TCP as a protocol that provides reliable stream delivery
service.

❑

To define TCP features and compare them with UDP features.

❑

To define the format of a TCP segment and its fields.

❑

To show how TCP provides a connection-oriented service, and show
the segments exchanged during connection establishment and
connection termination phases.

❑

To discuss the state transition diagram for TCP and discuss some
scenarios.

❑

To introduce windows in TCP that are used for flow and error control.

❑

To discuss how TCP implements flow control in which the receive
window controls the size of the send window.

❑

To discuss error control and FSMs used by TCP during the data
transmission phase.

❑

To discuss how TCP controls the congestion in the network using
different strategies.

❑

To list and explain the purpose of each timer in TCP.

❑

To discuss options in TCP and show how TCP can provide selective
acknowledgment using the SACK option.

❑

To give a layout and a simplified pseudocode for the TCP package.

A

for76042_ch15.fm Page 432 Monday, February 16, 2009 5:10 PM

433

15.1 TCP SERVICES

Figure 15.1 shows the relationship of TCP to the other protocols in the TCP/IP protocol
suite. TCP lies between the application layer and the network layer, and serves as the
intermediary between the application programs and the network operations.

Before discussing TCP in detail, let us explain the services offered by TCP to the
processes at the application layer.

Process-to-Process Communication

As with UDP, TCP provides process-to-process communication using port numbers
(see Chapter 13). Table 15.1 lists some well-known port numbers used by TCP.

Figure 15.1

TCP/IP protocol suite

Table 15.1

Well-known Ports used by TCP

Port Protocol Description

7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received

11 Users Active users
13 Daytime Returns the date and the time
17 Quote Returns a quote of the day

Application
layer

Transport
layer

Network
layer

DNS DHCPSNMPTFTP

IP

ICMPIGMP

ARP

Data link
layer

Physical
layer

Underlying LAN or WAN
technology

SMTP FTP

TCP SCTPUDP

for76042_ch15.fm Page 433 Monday, February 16, 2009 5:10 PM

434

PART 3 TRANSPORT LAYER

Stream Delivery Service

TCP, unlike UDP, is a stream-oriented protocol. In UDP, a process sends messages with
predefined boundaries to UDP for delivery. UDP adds its own header to each of these
messages and delivers it to IP for transmission. Each message from the process is called
a

user datagram

, and becomes, eventually, one IP datagram. Neither IP nor UDP recog-
nizes any relationship between the datagrams.

TCP, on the other hand, allows the sending process to deliver data as a stream of
bytes and allows the receiving process to obtain data as a stream of bytes. TCP creates
an environment in which the two processes seem to be connected by an imaginary
“tube” that carries their bytes across the Internet. This imaginary environment is
depicted in Figure 15.2. The sending process produces (writes to) the stream of bytes
and the receiving process consumes (reads from) them.

Sending and Receiving Buffers

Because the sending and the receiving processes may not necessarily write or read data
at the same rate, TCP needs buffers for storage. There are two buffers, the sending
buffer and the receiving buffer, one for each direction. We will see later that these buff-
ers are also necessary for flow- and error-control mechanisms used by TCP. One way to
implement a buffer is to use a circular array of 1-byte locations as shown in Figure 15.3.
For simplicity, we have shown two buffers of 20 bytes each; normally the buffers are
hundreds or thousands of bytes, depending on the implementation. We also show the
buffers as the same size, which is not always the case.

19 Chargen Returns a string of characters
20 and 21 FTP File Transfer Protocol (Data and Control)

23 TELNET Terminal Network
25 SMTP Simple Mail Transfer Protocol
53 DNS Domain Name Server
67 BOOTP Bootstrap Protocol
79 Finger Finger
80 HTTP Hypertext Transfer Protocol

Figure 15.2

Stream delivery

Table 15.1

Well-known Ports used by TCP (continued)

Port Protocol Description

TCP TCP

Sending
process

Receiving
process

Stream of bytes

for76042_ch15.fm Page 434 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP)

435

The figure shows the movement of the data in one direction. At the sender, the
buffer has three types of chambers. The white section contains empty chambers that
can be filled by the sending process (producer). The colored area holds bytes that have
been sent but not yet acknowledged. The TCP sender keeps these bytes in the buffer
until it receives an acknowledgment. The shaded area contains bytes to be sent by the
sending TCP. However, as we will see later in this chapter, TCP may be able to send
only part of this shaded section. This could be due to the slowness of the receiving pro-
cess, or congestion in the network. Also note that after the bytes in the colored cham-
bers are acknowledged, the chambers are recycled and available for use by the sending
process. This is why we show a circular buffer.

The operation of the buffer at the receiver is simpler. The circular buffer is divided
into two areas (shown as white and colored). The white area contains empty chambers
to be filled by bytes received from the network. The colored sections contain received
bytes that can be read by the receiving process. When a byte is read by the receiving
process, the chamber is recycled and added to the pool of empty chambers.

Segments

Although buffering handles the disparity between the speed of the producing and con-
suming processes, we need one more step before we can send data. The IP layer, as a
service provider for TCP, needs to send data in packets, not as a stream of bytes. At the
transport layer, TCP groups a number of bytes together into a packet called a

segment

.
TCP adds a header to each segment (for control purposes) and delivers the segment to
the IP layer for transmission. The segments are encapsulated in an IP datagram and
transmitted. This entire operation is transparent to the receiving process. Later we will
see that segments may be received out of order, lost, or corrupted and resent. All of these
are handled by the TCP sender with the receiving application process unaware of TCP’s
activities. Figure 15.4 shows how segments are created from the bytes in the buffers.

Note that segments are not necessarily all the same size. In the figure, for simplic-
ity, we show one segment carrying 3 bytes and the other carrying 5 bytes. In reality,
segments carry hundreds, if not thousands, of bytes.

Figure 15.3

Sending and receiving buffers

Next byte
to send

Next byte
to receive

Not read

Sent
Not sent

TCPTCP
Next byte

to write
Next byte

to read

Buffer Buffer

Sending
process

Receiving
process

Stream of bytes

for76042_ch15.fm Page 435 Monday, February 16, 2009 5:10 PM

436

PART 3 TRANSPORT LAYER

Full-Duplex Communication

TCP offers

full-duplex service,

where data can flow in both directions at the same time.
Each TCP endpoint then has its own sending and receiving buffer, and segments move in
both directions.

Multiplexing and Demultiplexing

Like UDP, TCP performs multiplexing at the sender and demultiplexing at the receiver.
However, since TCP is a connection-oriented protocol, a connection needs to be estab-
lished for each pair of processes. This will be more clear when we discuss the client/
server paradigm in Chapter 17.

Connection-Oriented Service

TCP, unlike UDP, is a connection-oriented protocol. As shown in Chapter 13, when a
process at site A wants to send to and receive data from another process at site B, the
following three phases occur:

1.

The two TCPs establish a virtual connection between them.

2.

Data are exchanged in both directions.

3.

The connection is terminated.

Note that this is a virtual connection, not a physical connection. The TCP segment is
encapsulated in an IP datagram and can be sent out of order, or lost, or corrupted, and
then resent. Each may be routed over a different path to reach the destination. There is
no physical connection. TCP creates a stream-oriented environment in which it accepts
the responsibility of delivering the bytes in order to the other site.

Reliable Service

TCP is a reliable transport protocol. It uses an acknowledgment mechanism to check
the safe and sound arrival of data. We will discuss this feature further in the section on
error control.

Figure 15.4

TCP segments

Segment 1

H

Segment N

HNext byte
to send

Next byte
to receive

Not read

Sent
Not sent

TCPTCP
Next byte

to write
Next byte

to read

Buffer Buffer

Sending
process

Receiving
process

for76042_ch15.fm Page 436 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP)

437

15.2 TCP FEATURES

To provide the services mentioned in the previous section, TCP has several features that
are briefly summarized in this section and discussed later in detail.

Numbering System

Although the TCP software keeps track of the segments being transmitted or received,
there is no field for a segment number value in the segment header. Instead, there are
two fields called the

sequence number

 and the

acknowledgment number

. These two
fields refer to a byte number and not a segment number.

Byte Number

TCP numbers all data bytes (octets) that are transmitted in a connection. Numbering is
independent in each direction. When TCP receives bytes of data from a process, TCP
stores them in the sending buffer and numbers them. The numbering does not necessar-
ily start from 0. Instead, TCP chooses an arbitrary number between 0 and 2

32

−

 1 for
the number of the first byte. For example, if the number happens to be 1,057 and the
total data to be sent is 6,000 bytes, the bytes are numbered from 1,057 to 7,056. We will
see that byte numbering is used for flow and error control.

Sequence Number

After the bytes have been numbered, TCP assigns a sequence number to each segment
that is being sent. The sequence number for each segment is the number of the first byte
of data carried in that segment.

Example 15.1

Suppose a TCP connection is transferring a file of 5,000 bytes. The first byte is numbered 10,001.
What are the sequence numbers for each segment if data are sent in five segments, each carrying
1,000 bytes?

Solution

The following shows the sequence number for each segment:

The bytes of data being transferred in each connection are numbered by TCP.
The numbering starts with an arbitrarily generated number.

Segment 1

→

Sequence Number: 10,001 Range: 10,001

to

11,000

Segment 2

→

Sequence Number: 11,001 Range: 11,001

to

12,000

Segment 3

→

Sequence Number: 12,001 Range: 12,001

to

13,000

Segment 4

→

Sequence Number: 13,001 Range: 13,001

to

14,000

Segment 5

→

Sequence Number: 14,001 Range: 14,001

to

15,000

for76042_ch15.fm Page 437 Monday, February 16, 2009 5:10 PM

438

PART 3 TRANSPORT LAYER

When a segment carries a combination of data and control information (piggy-
backing), it uses a sequence number. If a segment does not carry user data, it does not
logically define a sequence number. The field is there, but the value is not valid. How-
ever, some segments, when carrying only control information, need a sequence number
to allow an acknowledgment from the receiver. These segments are used for connection
establishment, termination, or abortion. Each of these segments consume one sequence
number as though it carries one byte, but there are no actual data. We will elaborate on
this issue when we discuss connections.

Acknowledgment Number

As we discussed previously, communication in TCP is full duplex; when a connection
is established, both parties can send and receive data at the same time. Each party num-
bers the bytes, usually with a different starting byte number. The sequence number in
each direction shows the number of the first byte carried by the segment. Each party
also uses an acknowledgment number to confirm the bytes it has received. However, the
acknowledgment number defines the number of the next byte that the party expects to
receive. In addition, the acknowledgment number is cumulative, which means that the
party takes the number of the last byte that it has received, safe and sound, adds 1 to it,
and announces this sum as the acknowledgment number. The term

cumulative

 here
means that if a party uses 5,643 as an acknowledgment number, it has received all bytes
from the beginning up to 5,642. Note that this does not mean that the party has received
5,642 bytes because the first byte number does not have to start from 0.

Flow Control

TCP, unlike UDP, provides flow control. The sending TCP controls how much data can
be accepted from the sending process; the receiving TCP controls how much data can
to be sent by the sending TCP (See Chapter 13). This is done to prevent the receiver
from being overwhelmed with data. The numbering system allows TCP to use a byte-
oriented flow control, as we discuss later in the chapter.

Error Control

To provide reliable service, TCP implements an error control mechanism. Although
error control considers a segment as the unit of data for error detection (loss or cor-
rupted segments), error control is byte-oriented, as we will see later.

The value in the sequence number field of a segment defines the number assigned to the
first data byte contained in that segment.

The value of the acknowledgment field in a segment defines the number of the next byte
a party expects to receive. The acknowledgment number is cumulative.

for76042_ch15.fm Page 438 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP)

439

Congestion Control

TCP, unlike UDP, takes into account congestion in the network. The amount of data
sent by a sender is not only controlled by the receiver (flow control), but is also deter-
mined by the level of congestion, if any, in the network.

15.3 SEGMENT

Before discussing TCP in more detail, let us discuss the TCP packets themselves. A
packet in TCP is called a

segment.

Format

The format of a segment is shown in Figure 15.5. The segment consists of a header of
20 to 60 bytes, followed by data from the application program. The header is 20 bytes if
there are no options and up to 60 bytes if it contains options. We will discuss some of
the header fields in this section. The meaning and purpose of these will become clearer
as we proceed through the chapter.

❑

Source port address.

 This is a 16-bit field that defines the port number of the
application program in the host that is sending the segment. This serves the
same purpose as the source port address in the UDP header discussed in
Chapter 14.

Figure 15.5

TCP segment format

Destination port address
16 bits

Source port address
16 bits

Sequence number
32 bits

Acknowledgment number
32 bits

Urgent pointer
16 bits

Window size
16 bits

Checksum
16 bits

HLEN
4 bits

Reserved
6 bits

U
R
G

A
C
K

P
S
H

S
Y
N

R
S
T

F
I
N

a. Segment

b. Header

1 16 31

DataHeader

20 to 60 bytes

Options and padding

for76042_ch15.fm Page 439 Monday, February 16, 2009 5:10 PM

440

PART 3 TRANSPORT LAYER

❑

Destination port address.

 This is a 16-bit field that defines the port number of the
application program in the host that is receiving the segment. This serves the same
purpose as the destination port address in the UDP header discussed in Chapter 14.

❑

Sequence number.

 This 32-bit field defines the number assigned to the first byte
of data contained in this segment. As we said before, TCP is a stream transport pro-
tocol. To ensure connectivity, each byte to be transmitted is numbered. The
sequence number tells the destination which byte in this sequence is the first byte
in the segment. During connection establishment (discussed later) each party uses
a random number generator to create an

initial sequence number

(ISN), which is
usually different in each direction.

❑

Acknowledgment number.

This 32-bit field defines the byte number that the
receiver of the segment is expecting to receive from the other party. If the receiver
of the segment has successfully received byte number

x

 from the other party, it
returns

x

+

 1 as the acknowledgment number. Acknowledgment and data can be
piggybacked together.

❑

Header length.

 This 4-bit field indicates the number of 4-byte words in the TCP
header. The length of the header can be between 20 and 60 bytes. Therefore, the
value of this field is always between 5 (5

×

4

=

 20) and 15 (15

×

 4

=

 60).

❑

Reserved.

 This is a 6-bit field reserved for future use.

❑

Control.

This field defines 6 different control bits or flags as shown in Figure 15.6.
One or more of these bits can be set at a time. These bits enable flow control,
connection establishment and termination, connection abortion, and the mode of
data transfer in TCP. A brief description of each bit is shown in the figure. We will
discuss them further when we study the detailed operation of TCP later in the
chapter.

❑

Window size.

 This field defines the window size of the sending TCP in bytes. Note
that the length of this field is 16 bits, which means that the maximum size of the
window is 65,535 bytes. This value is normally referred to as the receiving window
(

rwnd

) and is determined by the receiver. The sender must obey the dictation of the
receiver in this case.

❑

Checksum.

 This 16-bit field contains the checksum. The calculation of the check-
sum for TCP follows the same procedure as the one described for UDP in Chapter 14.

Figure 15.6

Control field

URG ACK PSH RST

6 bits

SYN FIN

URG: Urgent pointer is valid
ACK: Acknowledgment is valid
PSH: Request for push

RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: Terminate the connection

for76042_ch15.fm Page 440 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP)

441

However, the use of the checksum in the UDP datagram is optional, whereas the
use of the checksum for TCP is mandatory. The same pseudoheader, serving the
same purpose, is added to the segment. For the TCP pseudoheader, the value for
the protocol field is 6. See Figure 15.7.

❑

Urgent pointer.

This 16-bit field, which is valid only if the urgent flag is set, is
used when the segment contains urgent data. It defines a value that must be added
to the sequence number to obtain the number of the last urgent byte in the data sec-
tion of the segment. This will be discussed later in this chapter.

❑

Options.

 There can be up to 40 bytes of optional information in the TCP header. We
will discuss the different options currently used in the TCP header later in the chapter.

Encapsulation

A TCP segment encapsulates the data received from the application layer. The TCP
segment is encapsulated in an IP datagram, which in turn is encapsulated in a frame at
the data-link layer as shown in Figure 15.8.

Figure 15.7 Pseudoheader added to the TCP datagram

The use of the checksum in TCP is mandatory.

Figure 15.8 Encapsulation

16-bit TCP total length

32-bit source IP address

P
se

ud
oh

ea
de

r
H

ea
de

r

Destination port number

Sequence number

Acknowledgment number

Window sizeControlReservedHLEN

Urgent pointerChecksum

Source port number

8-bit protocol All 0s

32-bit destination IP address

Data and option
(Padding must be added to make

the data a multiple of 16 bits)

Frame
header

IP
header Application-layer data

Data-link layer payload

IP payload

TCP payload

TCP
header

for76042_ch15.fm Page 441 Monday, February 16, 2009 5:10 PM

442 PART 3 TRANSPORT LAYER

15.4 A TCP CONNECTION
TCP is connection-oriented. As discussed in Chapter 13, a connection-oriented transport
protocol establishes a virtual path between the source and destination. All of the segments
belonging to a message are then sent over this virtual path. Using a single virtual path-
way for the entire message facilitates the acknowledgment process as well as retrans-
mission of damaged or lost frames. You may wonder how TCP, which uses the services
of IP, a connectionless protocol, can be connection-oriented. The point is that a TCP
connection is virtual, not physical. TCP operates at a higher level. TCP uses the ser-
vices of IP to deliver individual segments to the receiver, but it controls the connection
itself. If a segment is lost or corrupted, it is retransmitted. Unlike TCP, IP is unaware of
this retransmission. If a segment arrives out of order, TCP holds it until the missing seg-
ments arrive; IP is unaware of this reordering.

In TCP, connection-oriented transmission requires three phases: connection estab-
lishment, data transfer, and connection termination.

Connection Establishment
TCP transmits data in full-duplex mode. When two TCPs in two machines are con-
nected, they are able to send segments to each other simultaneously. This implies that
each party must initialize communication and get approval from the other party before
any data are transferred.

Three-Way Handshaking

The connection establishment in TCP is called three-way handshaking. In our exam-
ple, an application program, called the client, wants to make a connection with another
application program, called the server, using TCP as the transport layer protocol.

The process starts with the server. The server program tells its TCP that it is ready
to accept a connection. This request is called a passive open. Although the server TCP
is ready to accept a connection from any machine in the world, it cannot make the
connection itself.

The client program issues a request for an active open. A client that wishes to con-
nect to an open server tells its TCP to connect to a particular server. TCP can now start
the three-way handshaking process as shown in Figure 15.9.

To show the process we use time lines. Each segment has values for all its header
fields and perhaps for some of its option fields too. However, we show only the few
fields necessary to understand each phase. We show the sequence number, the acknowl-
edgment number, the control flags (only those that are set), and window size if relevant.
The three steps in this phase are as follows.

1. The client sends the first segment, a SYN segment, in which only the SYN flag is
set. This segment is for synchronization of sequence numbers. The client in our
example chooses a random number as the first sequence number and sends this
number to the server. This sequence number is called the initial sequence number
(ISN). Note that this segment does not contain an acknowledgment number. It does
not define the window size either; a window size definition makes sense only when
a segment includes an acknowledgment. The segment can also include some

for76042_ch15.fm Page 442 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 443

options that we discuss later in the chapter. Note that the SYN segment is a control
segment and carries no data. However, it consumes one sequence number. When
the data transfer starts, the ISN is incremented by 1. We can say that the SYN seg-
ment carries no real data, but we can think of it as containing one imaginary byte.

2. The server sends the second segment, a SYN + ACK segment with two flag bits set:
SYN and ACK. This segment has a dual purpose. First, it is a SYN segment for com-
munication in the other direction. The server uses this segment to initialize a sequence
number for numbering the bytes sent from the server to the client. The server also
acknowledges the receipt of the SYN segment from the client by setting the ACK flag
and displaying the next sequence number it expects to receive from the client.
Because it contains an acknowledgment, it also needs to define the receive window
size, rwnd (to be used by the client), as we will see in the flow control section.

3. The client sends the third segment. This is just an ACK segment. It acknowledges
the receipt of the second segment with the ACK flag and acknowledgment number
field. Note that the sequence number in this segment is the same as the one in the
SYN segment; the ACK segment does not consume any sequence numbers. The
client must also define the server window size. Some implementations allow this
third segment in the connection phase to carry the first chunk of data from the

Figure 15.9 Connection establishment using three-way handshaking

A SYN segment cannot carry data, but it consumes one sequence number.

A SYN + ACK segment cannot carry data,
but does consume one sequence number.

A: ACK flag
S: SYN flag

SYN

ACK

SYN + ACK
U A P R S F

seq: 15000

ack: 8001

U A P R S F

seq: 8000

U A P R S F

seq: 8000
ack: 15001

rwnd: 5000

rwnd: 10000

Time Time Time Time

Client
process

Server
process

Client transport
layer

Active
open

Connection
opened

Connection
opened

Passive
open

Server transport
layer

for76042_ch15.fm Page 443 Monday, February 16, 2009 5:10 PM

444 PART 3 TRANSPORT LAYER

client. In this case, the third segment must have a new sequence number showing
the byte number of the first byte in the data. In general, the third segment usually
does not carry data and consumes no sequence numbers.

Simultaneous Open

A rare situation may occur when both processes issue an active open. In this case, both
TCPs transmit a SYN + ACK segment to each other and one single connection is estab-
lished between them. We will show this case when we discuss the transition diagram in
the next section.

SYN Flooding Attack

The connection establishment procedure in TCP is susceptible to a serious security prob-
lem called SYN flooding attack. This happens when one or more malicious attackers
send a large number of SYN segments to a server pretending that each of them is coming
from a different client by faking the source IP addresses in the datagrams. The server,
assuming that the clients are issuing an active open, allocates the necessary resources,
such as creating transfer control block (TCB) tables (explained later in the chapter) and
setting timers. The TCP server then sends the SYN + ACK segments to the fake clients,
which are lost. When the server waits for the third leg of the handshaking process, how-
ever, resources are allocated without being used. If, during this short period of time, the
number of SYN segments is large, the server eventually runs out of resources and may be
unable to accept connection requests from valid clients. This SYN flooding attack
belongs to a group of security attacks known as a denial of service attack, in which an
attacker monopolizes a system with so many service requests that the system overloads
and denies service to valid requests.

Some implementations of TCP have strategies to alleviate the effect of a SYN attack.
Some have imposed a limit of connection requests during a specified period of time. Oth-
ers try to filter out datagrams coming from unwanted source addresses. One recent strat-
egy is to postpone resource allocation until the server can verify that the connection
request is coming from a valid IP address, by using what is called a cookie. SCTP, the
new transport-layer protocol that we discuss in the next chapter, uses this strategy.

Data Transfer
After connection is established, bidirectional data transfer can take place. The client
and server can send data and acknowledgments in both directions. We will study the
rules of acknowledgment later in the chapter; for the moment, it is enough to know that
data traveling in the same direction as an acknowledgment are carried on the same seg-
ment. The acknowledgment is piggybacked with the data. Figure 15.10 shows an example.

In this example, after a connection is established, the client sends 2,000 bytes of
data in two segments. The server then sends 2,000 bytes in one segment. The client
sends one more segment. The first three segments carry both data and acknowledgment,
but the last segment carries only an acknowledgment because there is no more data to
be sent. Note the values of the sequence and acknowledgment numbers. The data seg-
ments sent by the client have the PSH (push) flag set so that the server TCP tries to
deliver data to the server process as soon as they are received. We discuss the use of this

An ACK segment, if carrying no data, consumes no sequence number.

for76042_ch15.fm Page 444 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 445

flag in more detail later. The segment from the server, on the other hand, does not set
the push flag. Most TCP implementations have the option to set or not set this flag.

Pushing Data

We saw that the sending TCP uses a buffer to store the stream of data coming from the
sending application program. The sending TCP can select the segment size. The receiv-
ing TCP also buffers the data when they arrive and delivers them to the application pro-
gram when the application program is ready or when it is convenient for the receiving
TCP. This type of flexibility increases the efficiency of TCP.

However, there are occasions in which the application program has no need for this
flexibility. For example, consider an application program that communicates interac-
tively with another application program on the other end. The application program on
one site wants to send a keystroke to the application at the other site and receive an
immediate response. Delayed transmission and delayed delivery of data may not be
acceptable by the application program.

TCP can handle such a situation. The application program at the sender can request
a push operation. This means that the sending TCP must not wait for the window to be
filled. It must create a segment and send it immediately. The sending TCP must also set

Figure 15.10 Data transfer

A: ACK flagP: PSH flag

Time Time Time Time

Client
process

Server
process

Client transport
layer

Send
request

Receive

Receive

Server transport
layer

Send
request

Send
request

rwnd:5000

U A P R S F

seq: 9001

Data
bytes: 9001-10000

U A P R S F

seq: 8001

Data
bytes: 8001-9000

ack: 15001

ack: 15001

U A P R S F

seq: 10000
ack: 17001

U A P R S F

seq: 15001

ack: 10001

Data

bytes: 15001-17000

rwnd:10000

Connection Establishment

Connection Termination

for76042_ch15.fm Page 445 Monday, February 16, 2009 5:10 PM

446

PART 3 TRANSPORT LAYER

the push bit (PSH) to let the receiving TCP know that the segment includes data that
must be delivered to the receiving application program as soon as possible and not to
wait for more data to come.

Although the push operation can be requested by the application program, most current
TCP implementations ignore such requests. TCP can choose whether or not to use this feature.

Urgent Data

TCP is a stream-oriented protocol. This means that the data is presented from the appli-
cation program to TCP as a stream of bytes. Each byte of data has a position in the
stream. However, there are occasions in which an application program needs to send

urgent

 bytes, some bytes that need to be treated in a special way by the application at
the other end. The solution is to send a segment with the URG bit set. The sending
application program tells the sending TCP that the piece of data is urgent. The sending
TCP creates a segment and inserts the urgent data at the beginning of the segment. The
rest of the segment can contain normal data from the buffer. The urgent pointer field in
the header defines the end of the urgent data (the last byte of urgent data).

When the receiving TCP receives a segment with the URG bit set, it informs the
receiving application of the situation. How this is done, depends on the operation sys-
tem. It is then to the discretion of the receiving program to take an action.

It is important to mention that TCP’s urgent data is neither a priority service nor an
expedited data service. Rather, TCP urgent mode is a service by which the application
program at the sender side marks some portion of the byte stream as needing special
treatment by the application program at the receiver side.

Thus, signaling the presence of urgent data and marking its position in the data
stream are the only aspects that distinguish the delivery of urgent data from the delivery of
all other TCP data. For all other purposes, urgent data is treated identically to the rest
of the TCP byte stream. The application program at the receiver site must read every byte
of data exactly in the order it was submitted regardless of whether or not urgent mode is
used. The standard TCP, as implemented, does not ever deliver any data out of order.

Connection Termination

Any of the two parties involved in exchanging data (client or server) can close the con-
nection, although it is usually initiated by the client. Most implementations today allow
two options for connection termination: three-way handshaking and four-way hand-
shaking with a half-close option.

Three-Way Handshaking

Most implementations today allow

three-way handshaking

 for connection termination
as shown in Figure 15.11.

1.

In a common situation, the client TCP, after receiving a close command from the
client process, sends the first segment, a FIN segment in which the FIN flag is set.
Note that a FIN segment can include the last chunk of data sent by the client or it
can be just a control segment as shown in the figure. If it is only a control segment,
it consumes only one sequence number.

The FIN segment consumes one sequence number if it does not carry data.

for76042_ch15.fm Page 446 Tuesday, February 17, 2009 6:48 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 447

2. The server TCP, after receiving the FIN segment, informs its process of the situation
and sends the second segment, a FIN+ACK segment, to confirm the receipt of the
FIN segment from the client and at the same time to announce the closing of the con-
nection in the other direction. This segment can also contain the last chunk of data
from the server. If it does not carry data, it consumes only one sequence number.

3. The client TCP sends the last segment, an ACK segment, to confirm the receipt of
the FIN segment from the TCP server. This segment contains the acknowledgment
number, which is one plus the sequence number received in the FIN segment from
the server. This segment cannot carry data and consumes no sequence numbers.

Half-Close

In TCP, one end can stop sending data while still receiving data. This is called a half-
close. Either the server or the client can issue a half-close request. It can occur when the
server needs all the data before processing can begin. A good example is sorting. When
the client sends data to the server to be sorted, the server needs to receive all the data
before sorting can start. This means the client, after sending all data, can close the con-
nection in the client-to-server direction. However, the server-to-client direction must
remain open to return the sorted data. The server, after receiving the data, still needs
time for sorting; its outbound direction must remain open.

Figure 15.12 shows an example of a half-close. The data transfer from the client to
the server stops. The client half-closes the connection by sending a FIN segment. The
server accepts the half-close by sending the ACK segment. The server, however, can
still send data. When the server has sent all of the processed data, it sends a FIN
segment, which is acknowledged by an ACK from the client.

Figure 15.11 Connection termination using three-way handshaking

The FIN + ACK segment consumes one sequence
number if it does not carry data.

FIN

F: FIN flag A: ACK flag

FIN + ACK
U A P R S F

seq: y

ack: x + 1

U A P R S F

seq: x
ack: y

ACK

U A P R

seq: x
ack: y + 1

Time Time Time Time

Client
process

Server
process

Client transport
layer

Active
close

Connection
closed

Connection
closed

Passive
close

Server transport
layer

for76042_ch15.fm Page 447 Monday, February 16, 2009 5:10 PM

448 PART 3 TRANSPORT LAYER

After half closing the connection, data can travel from the server to the client and
acknowledgments can travel from the client to the server. The client cannot send any
more data to the server. Note the sequence numbers we have used. The second segment
(ACK) consumes no sequence number. Although the client has received sequence num-
ber y − 1 and is expecting y, the server sequence number is still y − 1. When the connec-
tion finally closes, the sequence number of the last ACK segment is still x, because no
sequence numbers are consumed during data transfer in that direction.

Connection Reset
TCP at one end may deny a connection request, may abort an existing connection, or
may terminate an idle connection. All of these are done with the RST (reset) flag.

Denying a Connection

Suppose the TCP on one side has requested a connection to a nonexistent port. The
TCP on the other side may send a segment with its RST bit set to deny the request. We
will show an example of this case in the next section.

Aborting a Connection

One TCP may want to abort an existing connection due to an abnormal situation. It can
send an RST segment to close the connection. We also show an example of this case in
the next section.

Figure 15.12 Half-close

A

FIN

ACK

FIN

U A

A

P R S F

seq: y _ 1

U A P R S F

seq: z

ack: x + 1

ack: x +1

U P R S F

seq: x
ack: y

ACK

U A

A

P R

seq: x
ack: z + 1

Time Time Time Time

Client
process

Server
process

Client transport
layer A: ACK flag F: FIN flag

Active
close

Connection
closed

Connection
closed

Passive
close

Server transport
layer

Data segments from server to client

Acknowledgment from client to server

for76042_ch15.fm Page 448 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 449

Terminating an Idle Connection

The TCP on one side may discover that the TCP on the other side has been idle for a
long time. It may send an RST segment to end the connection. The process is the same
as aborting a connection.

15.5 STATE TRANSITION DIAGRAM
To keep track of all the different events happening during connection establishment,
connection termination, and data transfer, TCP is specified as the finite state machine
shown in Figure 15.13.

The figure shows the two FSMs used by the TCP client and server combined in one
diagram. The ovals represent the states. The transition from one state to another is shown
using directed lines. Each line has two strings separated by a slash. The first string is the
input, what TCP receives. The second is the output, what TCP sends. The dotted black
lines in the figure represent the transition that a server normally goes through; the solid
black lines show the transitions that a client normally goes through. However, in some sit-
uations, a server transitions through a solid line or a client transitions through a dotted line.
The colored lines show special situations. Note that the oval marked as ESTABLISHED is

Figure 15.13 State transition diagram

LISTEN

SYN-RCVD SYN-SENT

ESTABLISHED

Data transfer

FIN-
WAIT-1

FIN-
WAIT-2

TIME-
WAIT

LAST
ACK

CLOSE-
WAITCLOSING

Active open / SYN

SYN +
ACK / ACK ACK / –

 ACK / –

 FIN / ACK

 FIN / ACK

 Close / FIN

Close /
FIN

Passive open / –

RST / –

ACK / –

Close / –

Close / FIN

Time-out /
RST

Close or
time-out

or RST/ –

SYN / SYN + ACK
Simultaneous open

Simultaneous
close

Three-way
Handshake

Send / SYN RST / –

FIN / ACK

FIN + ACK/ACK ACK / –

Time-out (2MSL)

SYN / SYN + ACK

CLOSED

Client transition

Client or server transition
Server transition

for76042_ch15.fm Page 449 Monday, February 16, 2009 5:10 PM

450 PART 3 TRANSPORT LAYER

in fact two sets of states, a set for the client and another for the server, that are used for flow
and error control as explained later in the chapter. We use several scenarios based on
Figure 15.13 and show the part of the figure in each case.

Table 15.2 shows the list of states for TCP.

Scenarios
To understand the TCP state machines and the transition diagrams, we go through some
scenarios in this section.

Connection Establishment and Half-Close Termination

We show a scenario where the server process issues a passive open and passive close,
and the client process issues an active open and active close. The half-close termination
allows us to show more states. Figure 15.14 shows two state transition diagrams for the
client and server.

 Figure 15.15 shows the same idea using a time-line diagram.

Client States The client process issues a command to its TCP to request a connec-
tion to a specific socket address. This called an active open. TCP sends a SYN segment
and moves to the SYN-SENT state. After receiving the SYN+ACK segment, TCP
sends an ACK segment and goes to the ESTABLISHED state. Data are transferred,
possibly in both directions, and acknowledged. When the client process has no more
data to send, it issues a command called an active close. The client TCP sends a FIN
segment and goes to the FIN-WAIT-1 state. When it receives the ACK for the sent FIN,
it goes to FIN-WAIT-2 state and remains there until it receives a FIN segment from the

The state marked as ESTBLISHED in the FSM is in fact two different
sets of states that the client and server undergo to transfer data.

Table 15.2 States for TCP

State Description

CLOSED No connection exists

LISTEN Passive open received; waiting for SYN

SYN-SENT SYN sent; waiting for ACK

SYN-RCVD SYN+ACK sent; waiting for ACK

ESTABLISHED Connection established; data transfer in progress

FIN-WAIT-1 First FIN sent; waiting for ACK

FIN-WAIT-2 ACK to first FIN received; waiting for second FIN

CLOSE-WAIT First FIN received, ACK sent; waiting for application to close

TIME-WAIT Second FIN received, ACK sent; waiting for 2MSL time-out

LAST-ACK Second FIN sent; waiting for ACK

CLOSING Both sides decided to close simultaneously

for76042_ch15.fm Page 450 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 451

Figure 15.14 Transition diagrams for connection establishment and half-close termination

Figure 15.15 Time-line diagram for connection establishment and half-close termination

FIN-WAIT-1FIN-WAIT-1

FIN-WAIT-2FIN-WAIT-2

TIME-WAITTIME-WAIT

ESTABLISHEDESTABLISHED

SNY-SENTSNY-SENT

SYN-RCVDSYN-RCVD

ESTABLISHEDESTABLISHED

LAST-ACKLAST-ACK

CLOSE- WAITCLOSE- WAIT

 ACK / –

 ACK / –

 FIN / ACK

 FIN / ACK

Close / FIN

Passive open / –

close / FIN

Active open / SYN

Time-out

ACK / –

SYN / SYN + ACK

SYN + ACK / ACK

Client States Server States

LISTENLISTEN

CLOSEDCLOSED

Time Time

C
L

O
SE

D

C
L

O
SE

D

SYN

ACK

SYN + ACK

Data
Transfer

Client Server

Passive
openActive

open

ProcessTransport
layerProcess Transport

layer

Active
close

E
ST

A
B

L
IS

H
E

D

E
ST

A
B

L
IS

H
E

D

S
Y

N
-S

E
N

T

L
IS

T
E

N
S

Y
N

-
R

C
V

D

FIN

ACK

ACK

FIN

Data Transfer

Acknowledgment

Client States Server States

Time-out

2MSL
timer

C
L

O
SE

D

C
L

O
SE

D

Inform process
and send data
in the queue

plus EOF

Passive
close

F
IN

-
W

A
IT

-1
F

IN
-

W
A

IT
-2 C
L

O
S

E
-

W
A

IT
L

A
S

T-
A

C
K

T
IM

E
-

W
A

IT

for76042_ch15.fm Page 451 Monday, February 16, 2009 5:10 PM

452 PART 3 TRANSPORT LAYER

server. When the FIN segment is received, the client sends an ACK segment and goes to
the TIME-WAIT state and sets a timer for a time-out value of twice the maximum
segment lifetime (MSL). The MSL is the maximum time a segment can exist in the
Internet before it is dropped. Remember that a TCP segment is encapsulated in an IP
datagram, which has a limited lifetime (TTL). When the IP datagram is dropped, the
encapsulated TCP segment is also dropped. The common value for MSL is between
30 seconds and 1 minute. There are two reasons for the existence of the TIME-WAIT
state and the 2SML timer:

1. If the last ACK segment is lost, the server TCP, which sets a timer for the last FIN,
assumes that its FIN is lost and resends it. If the client goes to the CLOSED state
and closes the connection before the 2MSL timer expires, it never receives this
resent FIN segment, and consequently, the server never receives the final ACK.
The server cannot close the connection. The 2MSL timer makes the client wait for
a duration that is enough time for an ACK to be lost (one SML) and a FIN to arrive
(another SML). If during the TIME-WAIT state, a new FIN arrives, the client
sends a new ACK and restarts the 2SML timer.

2. A duplicate segment from one connection might appear in the next one. Assume a
client and a server have closed a connection. After a short period of time, they open
a connection with the same socket addresses (same source and destination IP
addresses and same source and destination port numbers). This new connection is
called an incarnation of the old one. A duplicated segment from the previous con-
nection may arrive in this new connection and be interpreted as belonging to the
new connection if there is not enough time between the two connections. To prevent
this problem, TCP requires that an incarnation cannot occur unless 2MSL amount
of time has elapsed. Some implementations, however, ignore this rule if the initial
sequence number of the incarnation is greater than the last sequence number used
in the previous connection.

Server States In our scenario, the server process issues an open command. This
must happen before the client issues an open command. The server TCP goes to the
LISTEN state and remains there, passively, until it receives a SYN segment. When the
server TCP receives a SYN segment, it sends a SYN+ACK segment and goes to SYN-
RCVD state, waiting for the client to send an ACK segment. After receiving the ACK
segment, it goes to ESTABLISHED state, where data transfer can take place.

Note that although either side (client or server) may initiate the close, we assume
that the client initiates the close without loss of generality.

TCP remains in this state until it receives a FIN segment from the client TCP signi-
fying that there are no more data to be sent and that the connection can be closed. At this
moment, the server sends an ACK to the client, delivers outstanding data in its queue
to the application, and goes to the CLOSE-WAIT state. In our scenario, we assume a
half-close connection. The server TCP can still send data to the client and receive
acknowledgments, but no data can flow in the other direction. The server TCP remains
in this state until the application actually issues a close command. It then sends a FIN to
the client to show that it is closing the connection too, and goes to LAST-ACK state. It
remains in this state until it receives the final ACK, when it then goes to the CLOSED
state. The termination phase beginning with the first FIN is called a four-way handshake.

for76042_ch15.fm Page 452 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 453

A Common Scenario

As mentioned before, three-way handshake in the connection establishment and con-
nection terminations phases are common. Figure 15.16 shows the state transition dia-
gram for the client and server in this scenario.

Figure 15.17 shows the same scenario with states over the time line. The connec-
tion establishment phase is the same as the one in the previous scenario; we show only
the connection termination phase.

Figure 15.16 Transition diagram for a common scenario

Figure 15.17 Time-line diagram for a common scenario

FIN-WAIT-1FIN-WAIT-1

TIME-WAITTIME-WAIT

ESTABLISHEDESTABLISHED

SNY-SENTSNY-SENT

SYN-RCVDSYN-RCVD

ESTABLISHEDESTABLISHED

LAST-ACKLAST-ACK

CLOSE- WAITCLOSE- WAIT

 ACK / – FIN / ACK

Close / FIN

close / FIN

Active open / SYN
Passive open / _Time-out / ACK

ACK / –

SYN / SYN + ACKFIN + ACK /

SYN + ACK / ACK

Client States Server States

CLOSEDCLOSED

LISTENLISTEN

Client States

Server States

Time-out

2MSL
timer

Time Time

FIN

ACK

FIN + ACK

Data
Transfer

Inform and
send data

in the queue
plus EOF

Active
close

Passive
close

E
ST

A
B

L
IS

H
E

D

E
ST

A
B

L
IS

H
E

D

F
IN

-
W

A
IT

-1

C
L

O
S

E
-

W
A

IT
L

A
S

T-
A

C
K

T
IM

E
-

W
A

IT

for76042_ch15.fm Page 453 Monday, February 16, 2009 5:10 PM

454 PART 3 TRANSPORT LAYER

The figure shows that the client issues a close after the data transfer phase. The cli-
ent TCP sends a FIN segment and goes to FIN-WAIT-1 state. The server TCP, upon
receiving the FIN segment, sends all queued data to the server with a virtual EOF
marker, which means that the connection must be closed. It goes to the CLOSE-WAIT
state, but postpones acknowledging the FIN segment received from the client until it
receives a passive close from its process. After receiving the passive close command,
the server sends a FIN+ACK segment to the client and goes to the LAST-ACK state,
waiting for the final ACK. The client eliminates the FIN-WAIT-2 state and goes
directly to the TIME-WAIT state. The rest is the same as four-way handshaking.

Simultaneous Open

In a simultaneous open, both applications issue active opens. This is a rare situation in
which there is no client or server; communication is between two peers that know their
local port numbers. This case is allowed by TCP, but is unlikely to happen because both
ends need to send SYN segments to each other and the segments are in transit simulta-
neously. This means that the two applications must issue active opens almost at the
same time. Figure 15.18 shows the connection establishment phase for this scenario.
Both TCPs go through SYN-SENT and SYN-RCVD states before going to the
ESTABLISHED state. A close look shows that both processes act as client and server.
The two SYN+ACK segments acknowledge the SYN segments and open the connec-
tion. Note that connection establishment involves a four-way handshake. The data
transfer and the connection termination phases are the same as previous examples and
are not shown in the figure. We leave the state transition diagram for this scenario as an
exercise.

Figure 15.18 Simultaneous open

SYN SYN SYN

SYN + ACK
SYN

SYN + ACK

Time Time

Active
open

Active
open

ProcessTransport
layerProcess Transport

layer

C
L

O
SE

D

ESTABLISHED ESTABLISHED

S
Y

N
-S

E
N

T
S

Y
N

-
R

C
V

D

C
L

O
SE

D
S

Y
N

-S
E

N
T

S
Y

N
-

R
C

V
D

for76042_ch15.fm Page 454 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 455

Simultaneous Close

Another uncommon, but possible, scenario is the simultaneous close shown in
Figure 15.19.

In this situation, both ends issue an active close. Both TCPs go to the FIN-WAIT-1
state and send FIN segments that are in transit simultaneously. After receiving the
FIN segment, each end goes to the CLOSING state and sends an ACK segment. The
CLOSING state takes the place of FIN-WAIT-2 or CLOSE-WAIT in a common sce-
nario. After receiving the ACK segment, each end moves to the TIME-WAIT state. Note
that this duration is required for both ends because each end has sent an ACK that may get
lost. We have eliminated the connection establishment and the data transfer phases in the
figure. We leave the state transition diagram in this case as an exercise.

Denying a Connection

One common situation occurs when a server TCP denies the connection, perhaps
because the destination port number in the SYN segment defines a server that is not in
the LISTEN state at the moment. The server TCP, after receiving the SYN segment
sends an RST+ACK segment that acknowledges the SYN segment, and, at the same
time, resets (denies) the connection. It goes to the LISTEN state to wait for another
connection. The client, after receiving the RST+ACK, goes to the CLOSED state.
Figure 15.20 shows this situation.

Figure 15.19 Simultaneous close

Time Time

Active
close

Active
close

ProcessTransport
layerProcess Transport

layer

ESTABLISHED ESTABLISHED

Time-out

2MSL
timer

C
L

O
S

E
D

C
L

O
S

E
D

F
IN

-
W

A
IT

-1
C

lo
si

n
g

T
IM

E
-

W
A

IT

F
IN

-
W

A
IT

-1
C

lo
si

n
g

T
IM

E
-

W
A

IT

Time-out

2MSL
timer

FIN

FIN
ACK

ACK

for76042_ch15.fm Page 455 Monday, February 16, 2009 5:10 PM

456 PART 3 TRANSPORT LAYER

Aborting a Connection

Figure 15.21 shows a situation in which the client process has issued an abort. Note that
this feature is not shown in the general transition diagram of Figure 15.13 because it is
something that can be optionally implemented by the vendor.

A process can abort a connection instead of closing it. This can happen if the process
has failed (perhaps locked up in an infinite loop) or does not want the data in the queue to
be sent (due to some discrepancy in the data). TCP may also want to abort the connec-
tion. This can happen if it receives a segment belonging to a previous connection (incar-
nation). In all of these cases, the TCP can send an RST segment to abort the connection.

Figure 15.20 Denying a connection

Figure 15.21 Aborting a connection

SYN

RST
S

Y
N

-S
E

N
T

Time TimeClient states

Server state

Client Server

Active
open

Passive
open

ProcessTransport
layerProcess Transport

layer

C
L

O
S

E
D

C
L

O
S

E
D

C
L

O
S

E
D

C
L

O
S

E
D

L
IS

T
E

N

RST + ACK

Time Time
Client states Server states

Client Server

Abort

ProcessTransport
layerProcess Transport

layer

Error

ESTABLISHED ESTABLISHED

C
L

O
S

E
D

C
L

O
S

E
D

for76042_ch15.fm Page 456 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP)

457

Its TCP sends an RST+ACK segment and throws away all data in the queue. The server
TCP also throws away all queued data and informs the server process via an error mes-
sage. Both TCPs go to the

CLOSED

 state immediately. Note that no ACK segment is
generated in response to the RST segment.

15.6 WINDOWS IN TCP

Before discussing data transfer in TCP and the issues such as flow, error, and conges-
tion control, we describe the windows used in TCP. TCP uses two windows (send win-
dow and receive window) for each direction of data transfer, which means four
windows for a bidirectional communication. However, to make the discussion simple,
we make an unrealistic assumption that communication is only unidirectional (say from
client to server); the bidirectional communication can be inferred using two unidirec-
tional communications with piggybacking.

Send Window

Figure 15.22 shows an example of a send window. The window we have used is of size
100 bytes (normally thousands of bytes), but later we see that the send window size is
dictated by the receiver (flow control) and the congestion in the underlying network
(congestion control). The figure shows how a send window

opens

,

closes

, or

shrinks

.

The send window in TCP is similar to one used with the Selective Repeat protocol
(Chapter 13), but with some differences:

1.

One difference is the nature of entities related to the window. The window in SR
numbers pockets, but the window in the TCP numbers bytes. Although actual

Figure 15.22

Send window in TCP

Shrinks

Outstanding bytes
(sent by not acknowledged)

Bytes that are acknowledged
(can be purged from buffer)

Bytes that can be sent
(Usable window)

Bytes that cannot be
sent until the right edge

moves to the right

a. Send window

b. Opening, closing, and shrinking send window

Right wall Left wall

Timer

Send window size (advertised by the receiver)

OpensCloses

First
outstanding

byte

 Next byte
to send to

201200

Sf Sn

260 261 300 301

201200 260 261 300 301

for76042_ch15.fm Page 457 Monday, February 23, 2009 1:20 PM

458 PART 3 TRANSPORT LAYER

transmission in TCP occurs segment by segment, the variables that control the
window are expressed in bytes.

2. The second difference is that, in some implementations, TCP can store data
received from the process and send them later, but we assume that the sending TCP
is capable of sending segments of data as soon as it receives them from its process.

3. Another difference is the number of timers. The theoretical Selective Repeat proto-
col may use several timers for each packet sent, but the TCP protocol uses only one
timer. We later explain the use of this timer in error control.

Receive Window
Figure 15.23 shows an example of a receive window. The window we have used is of
size 100 bytes (normally thousands of bytes). The figure also shows how the receive
window opens and closes; in practice, the window should never shrink.

There are two differences between the receive window in TCP and the one we used
for SR in Chapter 13.

1. The first difference is that TCP allows the receiving process to pull data at its own
pace. This means that part of the allocated buffer at the receiver may be occupied
by bytes that have been received and acknowledged, but are waiting to be pulled by
the receiving process. The receive window size is then always smaller or equal to the
buffer size, as shown in the above figure. The receiver window size determines the
number of bytes that the receive window can accept from the sender before being

Figure 15.23 Receive window in TCP

Rn

Bytes received,
and acknowledged

waiting to be
consumed by process

Bytes that can be
received from sender

Receive window size (rwnd)

Allocated buffer

Next byte
to be pulled

by the process

Next byte
expected to

receive

Bytes that cannot be
received from sender

Bytes that have already
pulled by the process

201 260 261 300 301200

201 260 261 300 301200

a. Receive window and allocated buffer

b. Opening and closing of receive window

Right wall Left wall

Opens
Closes

for76042_ch15.fm Page 458 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 459

overwhelmed (flow control). In other words, the receive window size, normally
called rwnd, can be determined as:

2. The second difference is the way acknowledgments are used in the TCP protocol.
Remember that an acknowledgement in SR is selective, defining the uncorrupted
packets that have been received. The major acknowledgment mechanism in TCP is a
cumulative acknowledgment announcing the next expected byte to receive (in this
way TCP looks like GBN discussed in Chapter 13). The new versions of TCP, how-
ever, uses both cumulative and selective acknowledgements as we will discuss later
in the option section.

15.7 FLOW CONTROL
As discussed in Chapter 13, flow control balances the rate a producer creates data with
the rate a consumer can use the data. TCP separates flow control from error control. In
this section we discuss flow control, ignoring error control. We temporarily assume that
the logical channel between the sending and receiving TCP is error-free.

Figure 15.24 shows unidirectional data transfer between a sender and a receiver;
bidirectional data transfer can be deduced from unidirectional one as discussed in
Chapter 13.

The figure shows that data travel from the sending process down to the sending
TCP, from the sending TCP to the receiving TCP, and from receiving TCP up to the
receiving process (paths 1, 2, and 3). Flow control feedbacks, however, are traveling
from the receiving TCP to the sending TCP and from the sending TCP up to the sending
process (paths 4 and 5). Most implementations of TCP do not provide flow control feed-
back from the receiving process to the receiving TCP; they let the receiving process pull
data from the receiving TCP whenever it is ready to do so. In other words, the receiving
TCP controls the sending TCP; the sending TCP controls the sending process.

rwnd = buffer size − number of waiting bytes to be pulled

Figure 15.24 Data flow and flow control feedbacks in TCP

Sender Receiver

Flow control feedback

Flow control
feedback

Messages
are pushed

Messages
are pulled

Application
layer

Transport
layer

Producer

Consumer

Producer

Application
layer

Transport
layer

Consumer

Producer

Consumer
Segements are pushed

Flow control feedback

Data flow

1

2

3

4

5

for76042_ch15.fm Page 459 Monday, February 16, 2009 5:10 PM

460 PART 3 TRANSPORT LAYER

Flow control feedback from the sending TCP to the sending process (path 5) is
achieved through simple rejection of data by sending TCP when its window is full. This
means that our discussion of flow control concentrates on the feedback sent from the
receiving TCP to the sending TCP (path 4).

Opening and Closing Windows
To achieve flow control, TCP forces the sender and the receiver to adjust their window
sizes, although the size of the buffer for both parties is fixed when the connection is
established. The receive window closes (moves its left wall to the right) when more
bytes arrive from the sender; it opens (moves its right wal l to the right) when more
bytes are pulled by the process. We assume that it does not shrink (the right wall does
not move to the left).

The opening, closing, and shrinking of the send window is controlled by the
receiver. The send window closes (moves its left wall to the right) when a new
acknowledgement allows it to do so. The send window opens (its right wall moves to
the right) when the receive window size (rwnd) advertised by the receiver allows it to
do so. The send window shrinks on occasion. We assume that this situation does not
occur.

A Scenario

We show how the send and receive windows are set during the connection establish-
ment phase, and how their situations will change during data transfer. Figure 15.25
shows a simple example of unidirectional data transfer (from client to server). For the
time being, we ignore error control, assuming that no segment is corrupted, lost, dupli-
cated, or arrived out of order. Note that we have shown only two windows for unidirec-
tional data transfer.

Eight segments are exchanged between the client and server:

1. The first segment is from the client to the server (a SYN segment) to request con-
nection. The client announces its initial seqNo = 100. When this segment arrives at
the server, it allocates a buffer size of 800 (an assumption) and sets its window to
cover the whole buffer (rwnd = 800). Note that the number of the next byte to
arrive is 101.

2. The second segment is from the server to the client. This is an ACK + SYN seg-
ment. The segment uses ackNo = 101 to show that it expects to receive bytes start-
ing from 101. It also announces that the client can set a buffer size of 800 bytes.

3. The third segment is the ACK segment from the client to the server.

4. After the client has set its window with the size (800) dictated by the server, the
process pushes 200 bytes of data. The TCP client numbers these bytes 101 to 300.
It then creates a segment and sends it to the server. The segment shows the starting
byte number as 101 and the segment carries 200 bytes. The window of the client is
then adjusted to show 200 bytes of data are sent but waiting for acknowledgment.
When this segment is received at the server, the bytes are stored, and the receive
window closes to show that the next byte expected is byte 301; the stored bytes
occupy 200 bytes of buffer.

for76042_ch15.fm Page 460 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 461

5. The fifth segment is the feedback from the server to the client. The server acknowl-
edges bytes up to and including 300 (expecting to receive byte 301). The segment
also carries the size of the receive window after decrease (600). The client, after
receiving this segment, purges the acknowledged bytes from its window and closes
its window to show that the next byte to send is byte 301. The window size, however,
decreases to 600 bytes. Although the allocated buffer can store 800 bytes, the window
cannot open (moving its right wall to the right) because the receiver does not let it.

6. Segment 6 is sent by the client after its process pushes 300 more bytes. The seg-
ment defines seqNo as 301 and contains 300 bytes. When this segment arrives at
the server, the server stores them, but it has to reduce its window size. After its pro-
cess has pulled 100 bytes of data, the window closes from the left for the amount
of 300 bytes, but opens from the right for the amount of 100 bytes. The result is
that the size is only reduced 200 bytes. The receiver window size is now 400 bytes.

7. In segment 7, the server acknowledges the receipt of data, and announces that its
window size is 400. When this segment arrives at the client, the client has no choice
but to reduce its window again and set the window size to the value of rwnd = 400

Figure 15.25 An example of flow control

SYN
seqNo: 100

ACK
 ackNo: 1001

Data

Data: 200 bytes
seqNo: 101

 Data

Data: 300 bytes
seqNo: 301

SYN + ACK

rwnd: 800
ackNo: 101
seqNo: 1000

ACK

rwnd: 600
ackNo: 301

ACK

rwnd: 400
ackNo: 601

ACK

rwnd: 600
ackNo: 601

101 301 901

Receive window is set

Send window is set

rwnd = 800

rwnd = 600

rwnd = 400

rwnd = 600

Size = 800

Size = 800

Size = 600

Size = 600

Size = 400

Size = 600

Sender sends 200 bytes

200 bytes received, window closes.

Bytes acknowledged, window closes.

Window closes and opens

Window opens.

Sender sends 300 bytes.

300 bytes received, 100 bytes consumed.

200 bytes consumed, window opens

Note: We assume only unidirectional
communication from client to server.
Therefore, only one window at each

side is shown.

Client Server

901101 301

201 601 1001

401 601 1201

101 901

101 901

301 901

301 601 901

601 1201

601 1001

1

2

3

4

5

6

7

8

for76042_ch15.fm Page 461 Monday, February 16, 2009 5:10 PM

462 PART 3 TRANSPORT LAYER

advertised by the server. The send window closes from the left by 300 bytes, and
opens from the right by 100 bytes.

8. Segment 8 is also from the server after its process has pulled another 200 bytes. Its
window size increases. The new rwnd value is now 600. The segment informs the
client that the server still expects byte 601, but the server window size has expanded
to 600. We need to mention that the sending of this segment depends on the policy
imposed by the implementation. Some implementations may not allow advertise-
ment of the rwnd at this time; the server then needs to receive some data before doing
so. After this segment arrives at the client, the client opens its window by 200 bytes
without closing it. The result is that its window size increases to 600 bytes.

Shrinking of Windows
As we said before, the receive window cannot shrink. But the send window can shrink
if the receiver defines a value for rwnd that results in shrinking the window. Some
implementations do not allow the shrinking of the send window. The limitation does
not allow the right wall of the send window to move to the left. In other words, the
receiver needs to keep the following relationship between the last and new acknowledg-
ment and the last and new rwnd values to prevent the shrinking of the send window:

The left side of the inequality represents the new position of the right wall with
respect to the sequence number space; the right side shows the old position of the right
wall. The relationship shows that the right wall should not move to the left. The inequality
is a mandate for the receiver to check its advertisment. However, note that the inequality
is valid only if Sf < Sn; we need to remember that all calculations are in modulo 232.

Example 15.2

Figure 15.26 shows the reason for this mandate by some implementations. Part a of the figure
shows values of last acknowledgment and rwnd. Part b shows the situation in which the sender
has sent bytes 206 to 214. Bytes 206 to 209 are acknowledged and purged. The new advertis-
ment, however, defines the new value of rwnd as 4, in which 210 + 4 < 206 + 12. When the send
window shrinks, it creates a problem: byte 214 which has been already sent is outside the win-
dow. The relation discussed before forces the receiver to maintain the right-hand wall of the win-
dow to be as shown in part a because the receiver does not know which of the bytes 210 to 217
has already been sent. One way to prevent this situation is to let the receiver postpone its feed-
back until enough buffer locations are available in its window. In other words, the receiver should
wait until more bytes are consumed by its process to meet the relationship described above.

Window Shutdown

We said that shrinking the send window by moving its right wall to the left is strongly
discouraged. However, there is one exception: the receiver can temporarily shut down
the window by sending a rwnd of 0. This can happen if for some reason the receiver
does not want to receive any data from the sender for a while. In this case, the sender
does not actually shrink the size of the window, but stops sending data until a new
advertisement has arrived. As we will see later, even when the window is shut down by

new ackNo + new rwnd ≥ last ackNo ++++ last rwnd

for76042_ch15.fm Page 462 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 463

an order from the receiver, the sender can always send a segment with 1 byte of data.
This is called probing and is used to prevent a deadlock (see the section on TCP timers).

Silly Window Syndrome
A serious problem can arise in the sliding window operation when either the sending
application program creates data slowly or the receiving application program consumes
data slowly, or both. Any of these situations results in the sending of data in very small
segments, which reduces the efficiency of the operation. For example, if TCP sends
segments containing only 1 byte of data, it means that a 41-byte datagram (20 bytes of
TCP header and 20 bytes of IP header) transfers only 1 byte of user data. Here the over-
head is 41/1, which indicates that we are using the capacity of the network very ineffi-
ciently. The inefficiency is even worse after accounting for the data link layer and
physical layer overhead. This problem is called the silly window syndrome. For each
site, we first describe how the problem is created and then give a proposed solution.

Syndrome Created by the Sender

The sending TCP may create a silly window syndrome if it is serving an application
program that creates data slowly, for example, 1 byte at a time. The application pro-
gram writes 1 byte at a time into the buffer of the sending TCP. If the sending TCP does
not have any specific instructions, it may create segments containing 1 byte of data. The
result is a lot of 41-byte segments that are traveling through an internet.

The solution is to prevent the sending TCP from sending the data byte by byte. The
sending TCP must be forced to wait and collect data to send in a larger block. How long
should the sending TCP wait? If it waits too long, it may delay the process. If it does not
wait long enough, it may end up sending small segments. Nagle found an elegant solution.

Figure 15.26 Example 15.2

211 212 213 214 215 216 217206 207 208 209 210

Last advertised rwnd = 12

Last advertised
ackNo = 206

218199198 205

211 212 213 214 215 216 217206 207 208 209 210

New advertised
rwnd = 4

New advertised
ackNo = 216

a. The window after the last advertisement

b. The window after the new advertisement; window has shrunk

218199198 205

for76042_ch15.fm Page 463 Monday, February 16, 2009 5:10 PM

464 PART 3 TRANSPORT LAYER

Nagle’s Algorithm Nagle’s algorithm is simple:

1. The sending TCP sends the first piece of data it receives from the sending applica-
tion program even if it is only 1 byte.

2. After sending the first segment, the sending TCP accumulates data in the output
buffer and waits until either the receiving TCP sends an acknowledgment or until
enough data has accumulated to fill a maximum-size segment. At this time, the
sending TCP can send the segment.

3. Step 2 is repeated for the rest of the transmission. Segment 3 is sent immediately if
an acknowledgment is received for segment 2, or if enough data have accumulated
to fill a maximum-size segment.

The elegance of Nagle’s algorithm is in its simplicity and in the fact that it takes into
account the speed of the application program that creates the data and the speed of the
network that transports the data. If the application program is faster than the network,
the segments are larger (maximum-size segments). If the application program is slower
than the network, the segments are smaller (less than the maximum segment size).

Syndrome Created by the Receiver

The receiving TCP may create a silly window syndrome if it is serving an application
program that consumes data slowly, for example, 1 byte at a time. Suppose that
the sending application program creates data in blocks of 1 kilobyte, but the receiving
application program consumes data 1 byte at a time. Also suppose that the input buffer
of the receiving TCP is 4 kilobytes. The sender sends the first 4 kilobytes of data. The
receiver stores it in its buffer. Now its buffer is full. It advertises a window size of zero,
which means the sender should stop sending data. The receiving application reads the
first byte of data from the input buffer of the receiving TCP. Now there is 1 byte of
space in the incoming buffer. The receiving TCP announces a window size of 1 byte,
which means that the sending TCP, which is eagerly waiting to send data, takes this
advertisement as good news and sends a segment carrying only 1 byte of data. The pro-
cedure will continue. One byte of data is consumed and a segment carrying 1 byte of
data is sent. Again we have an efficiency problem and the silly window syndrome.

Two solutions have been proposed to prevent the silly window syndrome created
by an application program that consumes data slower than they arrive.

Clark’s Solution Clark’s solution is to send an acknowledgment as soon as the data
arrive, but to announce a window size of zero until either there is enough space to accom-
modate a segment of maximum size or until at least half of the receive buffer is empty.

Delayed Acknowledgment The second solution is to delay sending the acknowledg-
ment. This means that when a segment arrives, it is not acknowledged immediately.
The receiver waits until there is a decent amount of space in its incoming buffer before
acknowledging the arrived segments. The delayed acknowledgment prevents the send-
ing TCP from sliding its window. After the sending TCP has sent the data in the win-
dow, it stops. This kills the syndrome.

Delayed acknowledgment also has another advantage: it reduces traffic. The receiver
does not have to acknowledge each segment. However, there also is a disadvantage in

for76042_ch15.fm Page 464 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 465

that the delayed acknowledgment may result in the sender unnecessarily retransmitting
the unacknowledged segments.

TCP balances the advantages and disadvantages. It now defines that the acknowl-
edgment should not be delayed by more than 500 ms.

15.8 ERROR CONTROL
TCP is a reliable transport layer protocol. This means that an application program that
delivers a stream of data to TCP relies on TCP to deliver the entire stream to the appli-
cation program on the other end in order, without error, and without any part lost or
duplicated.

TCP provides reliability using error control. Error control includes mechanisms for
detecting and resending corrupted segments, resending lost segments, storing out-of-
order segments until missing segments arrive, and detecting and discarding duplicated
segments. Error control in TCP is achieved through the use of three simple tools:
checksum, acknowledgment, and time-out.

Checksum
Each segment includes a checksum field, which is used to check for a corrupted segment.
If a segment is corrupted as deleted by an invalid checksum, the segment is discarded by
the destination TCP and is considered as lost. TCP uses a 16-bit checksum that is manda-
tory in every segment. We discussed how to calculate checksums earlier in the chapter.

Acknowledgment
TCP uses acknowledgments to confirm the receipt of data segments. Control segments
that carry no data, but consume a sequence number, are also acknowledged. ACK seg-
ments are never acknowledged.

Acknowledgment Type

In the past, TCP used only one type of acknowledgment: cumulative acknowledgment.
Today, some TCP implementations also use selective acknowledgment.

Cumulative Acknowledgment (ACK) TCP was originally designed to acknowl-
edge receipt of segments cumulatively. The receiver advertises the next byte it expects
to receive, ignoring all segments received and stored out of order. This is sometimes
referred to as positive cumulative acknowledgment or ACK. The word “positive” indi-
cates that no feedback is provided for discarded, lost, or duplicate segments. The 32-bit
ACK field in the TCP header is used for cumulative acknowledgments and its value is
valid only when the ACK flag bit is set to 1.

Selective Acknowledgment (SACK) More and more implementations are adding
another type of acknowledgment called selective acknowledgment or SACK. A

ACK segments do not consume sequence numbers and
are not acknowledged.

for76042_ch15.fm Page 465 Monday, February 16, 2009 5:10 PM

466 PART 3 TRANSPORT LAYER

SACK does not replace ACK, but reports additional information to the sender. A SACK
reports a block of data that is out of order, and also a block of segments that is dupli-
cated, i.e. received more than once. However, since there is no provision in the TCP
header for adding this type of information, SACK is implemented as an option at the
end of the TCP header. We discuss this new feature when we discuss options in TCP.

Generating Acknowledgments

When does a receiver generate acknowledgments? During the evolution of TCP, several
rules have been defined and used by several implementations. We give the most com-
mon rules here. The order of a rule does not necessarily define its importance.

1. When end A sends a data segment to end B, it must include (piggyback) an
acknowledgment that gives the next sequence number it expects to receive. This
rule decreases the number of segments needed and therefore reduces traffic.

2. When the receiver has no data to send and it receives an in-order segment (with
expected sequence number) and the previous segment has already been acknowl-
edged, the receiver delays sending an ACK segment until another segment
arrives or until a period of time (normally 500 ms) has passed. In other words,
the receiver needs to delay sending an ACK segment if there is only one out-
standing in-order segment. This rule reduces ACK segment traffic.

3. When a segment arrives with a sequence number that is expected by the receiver,
and the previous in-order segment has not been acknowledged, the receiver imme-
diately sends an ACK segment. In other words, there should not be more than two
in-order unacknowledged segments at any time. This prevents the unnecessary
retransmission of segments that may create congestion in the network.

4. When a segment arrives with an out-of-order sequence number that is higher than
expected, the receiver immediately sends an ACK segment announcing the
sequence number of the next expected segment. This leads to the fast retransmis-
sion of missing segments (discussed later).

5. When a missing segment arrives, the receiver sends an ACK segment to announce
the next sequence number expected. This informs the receiver that segments
reported missing have been received.

6. If a duplicate segment arrives, the receiver discards the segment, but immediately
sends an acknowledgment indicating the next in-order segment expected. This
solves some problems when an ACK segment itself is lost.

Retransmission
The heart of the error control mechanism is the retransmission of segments. When a
segment is sent, it is stored in a queue until it is acknowledged. When the retransmis-
sion timer expires or when the sender receives three duplicate ACKs for the first seg-
ment in the queue, that segment is retransmitted.

Retransmission after RTO

The sending TCP maintains one retransmission time-out (RTO) for each connection.
When the timer matures, i.e. times out, TCP sends the segment in the front of the queue
(the segment with the smallest sequence number) and restarts the timer. Note that again

for76042_ch15.fm Page 466 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP)

467

we assume S

f

 < S

n

. This version of TCP is sometimes referred to as

Tahoe

. We will see
later that the value of RTO is dynamic in TCP and is updated based on the round-trip
time (RTT) of segments. RTT is the time needed for a segment to reach a destination
and for an acknowledgment to be received.

Retransmission after Three Duplicate ACK Segments

The previous rule about retransmission of a segment is sufficient if the value of RTO is
not large. To help throughput by allowing sender to retransmit sooner than waiting for
a time out, most implementations today follow the three duplicate ACKs rule and
retransmit the missing segment immediately. This feature is called

fast retransmis-
sion,

 and the version of TCP that uses this feature is referred to as Reno. In this version,
if three duplicate acknowledgments (i.e., an original ACK plus three exactly identical
copies) arrives for a segment, the next segment is retransmitted without waiting for the
time-out.

Out-of-Order Segments

TCP implementations today do not discard out-of-order segments. They store them
temporarily and flag them as out-of-order segments until the missing segments arrive.
Note, however, that out-of-order segments are never delivered to the process. TCP
guarantees that data are delivered to the process in order.

FSMs for Data Transfer in TCP

Data transfer in TCP is close to the Selective Repeat protocol (discussed in Chapter 13)
with a slight similarity to GBN. Since TCP accepts out-of-order segments, TCP can be
thought of as behaving like the SR protocol, but since the original acknowledgments
are cumulative, it looks like GBN. However, if the TCP implementation uses SACKs,
as discussed later, then TCP is closest to SR.

Sender-Side FSM

Let us show a simplified FSM for the sender side of the TCP protocol similar to the one
we discussed for SR protocol with some changes specific to TCP. We assume that the
communication is unidirectional and the segments are acknowledged using ACK seg-
ments. We also ignore selective acknowledgments and congestion control for the
moment. Figure 15.27 shows the simplified FSM for the sender site. Note that the FSM
is rudimentary; it does not include issues such as silly window syndrome (Nagle’s algo-
rithm) or window shutdown (discussed later). It defines a unidirectional communica-
tion, ignoring all issues that affect bidirectional communication.

Data may arrive out of order and be temporarily stored by the receiving TCP,
but TCP guarantees that no out-of-order data are delivered to the process.

TCP can be best modeled as a Selective Repeat protocol.

for76042_ch15.fm Page 467 Monday, February 23, 2009 1:23 PM

468 PART 3 TRANSPORT LAYER

There are some differences between the above FSM and the one we discussed for
an SR protocol in Chapter 13. One difference is the fast transmission (three duplicate
ACKs). The other is the window size adjustment based on the value of rwnd (ignoring
congestion control for the moment).

Receiver-Side FSM

Now let us show a simplified FSM for the receiver-side TCP protocol similar to the one
we discuss for SR protocol with some changes specific to TCP. We assume that the com-
munication is unidirectional and the segments are acknowledged using ACK segments.
We also ignore the selective acknowledgment and congestion control for the moment.
Figure 15.28 shows the simplified FSM for the receiver. Note that we ignore some issues
such as silly window syndrome (Clark’s solution) and window shutdown.

Again, there are some differences between this FSM and the one we discussed for
an SR protocol in Chapter 13. One difference is the ACK delaying in unidirectional
communication. The other difference is the sending of duplicate ACKs to allow the
sender to implement fast transmission policy.

We also need to emphasize that bidirectional FSM for the receiver is not as simple
as the one for SR; we need to consider some policies such as sending an immediate
ACK if the receiver has some data to return.

Some Scenarios
In this section we give some examples of scenarios that occur during the operation of
TCP, considering only error control issues. In these scenarios, we show a segment by a
rectangle. If the segment carries data, we show the range of byte numbers and the value

Figure 15.27 Simplified FSM for the TCP sender side

A chunk of bytes accepted from the
process.

Make a segment (seqNo = Sn).
Store a copy of segment in the
queue and send it..
If it is the first segment in the queue,
start the timer.
Set Sn = Sn + data length.

[true]
[false]

BlockingReady

Time-out occured.

Resend the segement
in front of the queue.
Reset the timer.

Time-out occured.

Resend the first segement
in the queue.
Reset the timer.

Discard it.

A corrupted
ACK arrived.

Discard it.

A corrupted
ACK arrived.

Remove the segment from the queue.
 If (any segment left in the queue),
restart the timer.

Slide the window (Sf = ackNo) and
adjust window size.

An error-free ACK arrived that
acknowledges the segement in
fron of the queue.

If (dupNo = 3) resend the
segment in front of the queue,
restart the timer, and
set dupNo = 0.

Set dupNo = dupNo + 1.

A duplicate ACK arrived.

If (dupNo = 3) resend the
segment in front of the queue,
restart the timer, and
set dupNo = 0.

Set dupNo = dupNo + 1.

A duplicate ACK arrived.

Window full?

Note:

All calculations are in
modulo 232.

for76042_ch15.fm Page 468 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 469

of the acknowledgment field. If it carries only an acknowledgment, we show only the
acknowledgment number in a smaller box.

Normal Operation

The first scenario shows bidirectional data transfer between two systems as shown in
Figure 15.29. The client TCP sends one segment; the server TCP sends three. The
figure shows which rule applies to each acknowledgment. For the client’s first segment
and all three server segments, rule 1 applies. There are data to be sent so the segment
displays the next byte expected. When the client receives the first segment from the
server, it does not have any more data to send; it needs to send only an ACK segment.
However, according to rule 2, the acknowledgment needs to be delayed for 500 ms to
see if any more segments arrive. When the ACK-delaying timer matures, it triggers an
acknowledgment. This is because the client has no knowledge if other segments are
coming; it cannot delay the acknowledgment forever. When the next segment arrives
another ACK-delaying timer is set. However, before it matures, the third segment
arrives. The arrival of the third segment triggers another acknowledgment based on
rule 3. We have not shown the RTO timer because no segment is lost or delayed. We
just assume that this timer performs its duty.

Lost Segment

In this scenario, we show what happens when a segment is lost or corrupted. A lost or
corrupted segment is treated the same way by the receiver. A lost segment is discarded
somewhere in the network; a corrupted segment is discarded by the receiver itself. Both

Figure 15.28 Simplified FSM for the TCP receiver side

Store the segment if not duplicate.
Send an ACK with ackNo equal
to the sequence number of expected
segment (duplicate ACK).

Send an ACK with ackNo equal
to the sequence number of expected
segment (duplicate ACK).

An error-free, but out-of
order segment arrived

An expected error-free segment arrived.

Buffer the message.
Rn = Rn + data length.

If the ACK-delaying timer is running, stop
the timer and send a cummulative ACK. Else,
start the ACK-delaying timer.

ACK-delaying timer expired.

Send the delayed ACK.

An error-free duplicate segment
or an error-free segment with
sequence number ouside
window arrived

Discard the segment.

A corrupted segment arrived

Discard the segment.

Deliver the data.
Slide the window and adjust
window size.

A request for delivery of
k bytes of data from
process came

Ready

Note:

All calculations are in
modulo 232.

for76042_ch15.fm Page 469 Monday, February 16, 2009 5:10 PM

470 PART 3 TRANSPORT LAYER

are considered lost. Figure 15.30 shows a situation in which a segment is lost (probably
discarded by some router in the network due to congestion).

We are assuming that data transfer is unidirectional: one site is sending, the other
receiving. In our scenario, the sender sends segments 1 and 2, which are acknowledged
immediately by an ACK (rule 3). Segment 3, however, is lost. The receiver receives
segment 4, which is out of order. The receiver stores the data in the segment in its buffer
but leaves a gap to indicate that there is no continuity in the data. The receiver immedi-
ately sends an acknowledgment to the sender displaying the next byte it expects (rule 4).
Note that the receiver stores bytes 801 to 900, but never delivers these bytes to the
application until the gap is filled.

Figure 15.29 Normal operation

Figure 15.30 Lost segment

The receiver TCP delivers only ordered data to the process.

Time

500 ms

ACK-delaying
timer

< 500 ms

Client Server

Time

Rule 1

Rule 2

Rule 1

Rule 3

Seq: 1201–1400Ack: 4001

Seq: 6001–7000
Ack: 1401

Seq: 4001–5000
Ack: 1401

Seq: 5001–6000
Ack: 1401

Ack: 5001

Ack: 7001

Rule 1

Rule 1
Start

Start

Stop

Time-out

Time

Out of order

lost

Client Server
RTO Receiver

buffer

Time

Seq: 501–600
Ack: x

Seq: 601–700
Ack: x

Seq: 701–800
Ack: x

Seq: 801–900
Ack: x

Seq: 701– 800
Ack: x

Ack: 701

Ack: 701

Ack: 901

Start

Start

Stop

Time-out/restart

Stop

Rule 4

Rule 5
Resent

for76042_ch15.fm Page 470 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 471

The sender TCP keeps one RTO timer for the whole period of connection. When
the third segment times out, the sending TCP resends segment 3, which arrives this
time and is acknowledged properly (rule 5).

Fast Retransmission

In this scenario, we want to show fast retransmission. Our scenario is the same as the
second except that the RTO has a larger value (see Figure 15.31).

Each time the receiver receives the fourth, fifth, and sixth segments, it triggers an
acknowledgment (rule 4). The sender receives four acknowledgments with the same
value (three duplicates). Although the timer has not matured, the rule for fast transmission
requires that segment 3, the segment that is expected by all of these duplicate acknowl-
edgments, be resent immediately. After resending this segment, the timer is restarted.

Delayed Segment

The fourth scenario features a delayed segment. TCP uses the services of IP, which is a
connectionless protocol. Each IP datagram encapsulating a TCP segment may reach the
final destination through a different route with a different delay. Hence TCP segments
may be delayed. Delayed segments sometimes may time out. If the delayed segment
arrives after it has been resent, it is considered a duplicate segment and discarded.

Duplicate Segment

A duplicate segment can be created, for example, by a sending TCP when a segment is
delayed and treated as lost by the receiver. Handling the duplicated segment is a simple
process for the destination TCP. The destination TCP expects a continuous stream of

Figure 15.31 Fast retransmission

Time

Lost

resent

Receiver
buffer

Time

Resent

Client Server

Seq: 101–200
Ack: x

Seq: 201–300
Ack: x

Seq: 301–400
Ack: x

Seq: 401–500
Ack: x

Ack: 301

Ack: 301

Seq: 501–600
Ack: x

Ack: 301

Seq: 601–700
Ack: x

Ack: 301

Seq: 301–400
Ack: x

Ack: 701

All in order

Fast
retransmit

Start

RTO timer

Restart

Stop

Original

First
duplicate

Second
duplicate

Third
duplicate

Stop

Start

for76042_ch15.fm Page 471 Monday, February 16, 2009 5:10 PM

472 PART 3 TRANSPORT LAYER

bytes. When a segment arrives that contains a sequence number equal to an already
received and stored segment, it is discarded. An ACK is sent with ackNo defining the
expected segment.

Automatically Corrected Lost ACK

This scenario shows a situation in which information in lost acknowledgment is contained
in the next one, a key advantage of using cumulative acknowledgments. Figure 15.32
shows a lost acknowledgment sent by the receiver of data. In the TCP acknowledgment
mechanism, a lost acknowledgment may not even be noticed by the source TCP. TCP
uses an accumulative acknowledgment system. We can say that the next acknowledgment
automatically corrects the loss of the acknowledgment.

Lost Acknowledgment Corrected by Resending a Segment

Figure 15.33 shows a scenario in which an acknowledgment is lost.

If the next acknowledgment is delayed for a long time or there is no next acknowl-
edgment (the lost acknowledgment is the last one sent), the correction is triggered by
the RTO timer. A duplicate segment is the result. When the receiver receives a duplicate

Figure 15.32 Lost acknowledgment

Figure 15.33 Lost acknowledgment corrected by resending a segment

lost

Seq: 501–600
Ack: x

Seq: 601–700
Ack: x

Seq: 701–800
Ack: x

Seq: 801–900
Ack: x Ack: 901

Ack: 701

Client Server

Time Time

RTO
Start

Stop

Lost

Resent

Seq: 501–600
Ack: x

Seq: 601–700
Ack: x

Seq: 501–600
Ack: x

Ack: 701

Ack: 701

Client Server
RTO

Time Time

Start

Restart

Stop

Rule 6

for76042_ch15.fm Page 472 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 473

segment, it discards it, and resends the last ACK immediately to inform the sender that
the segment or segments have been received.

Note that only one segment is retransmitted although two segments are not
acknowledged. When the sender receives the retransmitted ACK, it knows that both
segments are safe and sound because acknowledgment is cumulative.

Deadlock Created by Lost Acknowledgment

There is one situation in which loss of an acknowledgment may result in system dead-
lock. This is the case in which a receiver sends an acknowledgment with rwnd set to 0
and requests that the sender shut down its window temporarily. After a while, the
receiver wants to remove the restriction; however, if it has no data to send, it sends an
ACK segment and removes the restriction with a nonzero value for rwnd. A problem
arises if this acknowledgment is lost. The sender is waiting for an acknowledgment that
announces the nonzero rwnd. The receiver thinks that the sender has received this and is
waiting for data. This situation is called a deadlock; each end is waiting for a response
from the other end and nothing is happening. A retransmission timer is not set. To pre-
vent deadlock, a persistence timer was designed that we will study later in the chapter.

15.9 CONGESTION CONTROL
We briefly discussed congestion control in Chapter 13. Congestion control in TCP is
based on both open-loop and closed-loop mechanisms. TCP uses a congestion window
and a congestion policy that avoid congestion and detect and alleviate congestion after it
has occurred.

Congestion Window
Previously, we talked about flow control and tried to discuss solutions when the receiver is
overwhelmed with data. We said that the sender window size is determined by the avail-
able buffer space in the receiver (rwnd). In other words, we assumed that it is only the
receiver that can dictate to the sender the size of the sender’s window. We totally ignored
another entity here, the network. If the network cannot deliver the data as fast as it is cre-
ated by the sender, it must tell the sender to slow down. In other words, in addition to the
receiver, the network is a second entity that determines the size of the sender’s window.

The sender has two pieces of information: the receiver-advertised window size and
the congestion window size. The actual size of the window is the minimum of these two.

We show shortly how the size of the congestion window (cwnd) is determined.

Lost acknowledgments may create deadlock if they are not
properly handled.

Actual window size ==== minimum (rwnd, cwnd)

for76042_ch15.fm Page 473 Monday, February 16, 2009 5:10 PM

474 PART 3 TRANSPORT LAYER

Congestion Policy
TCP’s general policy for handling congestion is based on three phases: slow start, con-
gestion avoidance, and congestion detection. In the slow start phase, the sender starts
with a slow rate of transmission, but increases the rate rapidly to reach a threshold.
When the threshold is reached, the rate of increase is reduced. Finally if ever conges-
tion is detected, the sender goes back to the slow start or congestion avoidance phase,
based on how the congestion is detected.

Slow Start: Exponential Increase

The slow start algorithm is based on the idea that the size of the congestion window
(cwnd) starts with one maximum segment size (MSS). The MSS is determined during
connection establishment using an option of the same name. The size of the window
increases one MSS each time one acknowledgement arrives. As the name implies, the
algorithm starts slowly, but grows exponentially. To show the idea let us look at
Figure 15.34. We assume that rwnd is much longer than cwnd, so that the sender win-
dow size always equals cwnd. For simplicity, we ignore delayed-ACK policy and
assume that each segment is acknowledged individually.

 The sender starts with cwnd = 1 MSS. This means that the sender can send only
one segment. After the first ACK arrives, the size of the congestion window is increased
by 1, which means that cwnd is now 2. Now two more segments can be sent. When two
more ACKs arrive, the size of the window is increased by 1 MSS for each ACK, which
means cwnd is now 4. Now four more segments can be sent. When four ACKs arrive,
the size of the window increases by 4, which means that cwnd is now 8.

Figure 15.34 Slow start, exponential increase

Time

cwnd

cwnd

cwnd

cwnd

Sender Receiver

1

2

4

8

Time

RTT

RTT

RTT

Segment
ACK

for76042_ch15.fm Page 474 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 475

If we look at the size of the cwnd in terms of round-trip times (RTTs), we find that
the growth rate is exponential as shown below:

We need, however, to mention that the slow start strategy is slower in the case of
delayed acknowledgments. Remember, for each ACK, the cwnd is increased by only 1
MSS. Hence, if three segments are acknowledged accummlatively, the size of the cwnd
increases by only 1 MSS, not 3 MSS. The growth is still exponential, but it is not a
power of 2. With one ACK for every 2 segments, the power is closer to 1.5.

Slow start cannot continue indefinitely. There must be a threshold to stop this phase.
The sender keeps track of a variable named ssthresh (slow start threshold). When the
size of window in bytes reaches this threshold, slow start stops and the next phase starts.

Congestion Avoidance: Additive Increase

If we start with the slow start algorithm, the size of the congestion window increases
exponentially. To avoid congestion before it happens, one must slow down this expo-
nential growth. TCP defines another algorithm called congestion avoidance, which
increases the cwnd additively instead of exponentially. Figure 15.35 shows the idea.

Start → cwnd ==== 1

After 1 RTT → cwnd ==== 1 ×××× 2 ==== 2 → 21

After 2 RTT → cwnd ==== 2 ×××× 2 ==== 4 → 22

After 3 RTT → cwnd ==== 4 ×××× 2 ==== 8 → 23

In the slow start algorithm, the size of the congestion
window increases exponentially until it reaches a threshold.

Figure 15.35 Congestion avoidance, additive increase

Time

cwnd

cwnd

cwnd

cwnd

Sender Receiver

RTT

RTT

RTT

Segment
ACK

i = 4

i + 1

i + 2

i + 3

Time

for76042_ch15.fm Page 475 Monday, February 16, 2009 5:10 PM

476 PART 3 TRANSPORT LAYER

When the size of the congestion window reaches the slow start threshold in the
case where cwnd = i, the slow start phase stops and the additive phase begins. In this
algorithm, each time the whole “window” of segments is acknowledged, the size of the
congestion window is increased by one. A window is the number of segments transmitted
during RTT. In other words, the increase is based on RTT, not on the number of arrived
ACKs. To show the idea, we apply this algorithm to the same scenario as slow start. In
this case, after the sender has received acknowledgments for a complete window-size of
segments, the size of the window is increased one segment. If we look at the size of cwnd
in terms of round-trip time (RTT), we find that the rate is additive as shown below:

Congestion Detection: Multiplicative Decrease

If congestion occurs, the congestion window size must be decreased. The only way a sender
can guess that congestion has occurred is the need to retransmit a segment. This is a major
assumption made by TCP. Retransmission is needed to recover a missing packet which is
assumed to have been dropped (i.e., lost) by a router that had so many incoming packets,
that had to drop the missing segment, i.e., the router/network became overloaded or con-
gested. However, retransmission can occur in one of two cases: when the RTO timer times
out or when three duplicate ACKs are received. In both cases, the size of the threshold is
dropped to half (multiplicative decrease). Most TCP implementations have two reactions:

1. If a time-out occurs, there is a stronger possibility of congestion; a segment has
probably been dropped in the network and there is no news about the following
sent segments. In this case TCP reacts strongly:

a. It sets the value of the threshold to half of the current window size.

b. It reduces cwnd back to one segment.

c. It starts the slow start phase again.

2. If three duplicate ACKs are received, there is a weaker possibility of congestion; a
segment may have been dropped but some segments after that have arrived safely
since three duplicate ACKs are received. This is called fast transmission and fast
recovery. In this case, TCP has a weaker reaction as shown below:

a. It sets the value of the threshold to half of the current window size.

b. It sets cwnd to the value of the threshold (some implementations add three seg-
ment sizes to the threshold).

c. It starts the congestion avoidance phase.

Summary

In Figure 15.36, we summarize the congestion policy of TCP and the relationships
between the three phases. We give an example in Figure 15.37. We assume that the

Start → cwnd = i

After 1 RTT → cwnd = i + 1

After 2 RTT → cwnd = i + 2

After 3 RTT → cwnd = i + 3

In the congestion avoidance algorithm the size of the congestion window
increases additively until congestion is detected.

for76042_ch15.fm Page 476 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 477

maximum window size is initially 32 segments. The threshold is initially set to 16 seg-
ments (half of the maximum window size). In the slow start phase the window size
starts from 1 and grows exponentially until it reaches the threshold. After reaching the
threshold, the congestion avoidance (additive increase) procedure allows the window
size to increase linearly until a time-out occurs or the maximum window size is
reached. In the figure, a time-out occurs when the window size is 20. At this moment,
the multiplicative decrease procedure takes over and reduces the threshold to half of the
window size. The window size was 20 when the time-out happened so the new thresh-
old is now 10.

TCP moves to slow start again and starts with a window size of 1, and moves to addi-
tive increase when the new threshold is reached. When the window size is 12, a three-
ACKs event happens. The multiplicative decrease procedure takes over again. The thresh-
old and window size set to 6 and TCP enters the additive increase phase this time. TCP
remains in this phase until another time-out or another three-ACKs event happens.

Figure 15.36 TCP congestion policy summary

Figure 15.37 Congestion example

Connection
establishment

Connection
termination

Slow start

Congestion

Congestion

Congestion

Congestion

Congestion
avoidance

Time-out

ssthresh = 1/2 window
cwnd = ssthresh

ssthresh = 1/2 window
cwnd = ssthresh

ssthresh = 1/2 window
cwnd = 1 MSS

Time-out
3 duplicate

 ACKs

3 duplicate
 ACKs

cwnd > ssthresh

RTTs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cwnd

Threshold = 16

Threshold = 10

Time-out

SS

SS: Slow Start
AI: Additive Increase
MD: Multiplicative Decrease

SS
AI

AI
AI

AI

3 ACKs

26
24
22
20
18
16
14
12
10
08
06
04
02

M
D

M
D

for76042_ch15.fm Page 477 Monday, February 16, 2009 5:10 PM

478 PART 3 TRANSPORT LAYER

15.10 TCP TIMERS
To perform its operation smoothly, most TCP implementations use at least four timers
as shown in Figure 15.38.

Retransmission Timer
To retransmit lost segments, TCP employs one retransmission timer (for the whole con-
nection period) that handles the retransmission time-out (RTO), the waiting time for an
acknowledgment of a segment. We can define the following rules for the retransmission
timer:

1. When TCP sends the segment in front of the sending queue, it starts the timer.

2. When the timer expires, TCP resends the first segment in front of the queue, and
restarts the timer.

3. When a segment (or segments) are cumulatively acknowledged, the segment (or
segments) are purged from the queue.

4. If the queue is empty, TCP stops the timer; otherwise, TCP restarts the timer.

Round-Trip Time (RTT)

To calculate the retransmission time-out (RTO), we first need to calculate the round-
trip time (RTT). However, calculating RTT in TCP is an involved process that we
explain step by step with some examples.

Measured RTT We need to find how long it takes to send a segment and receive an
acknowledgment for it. This is the measured RTT. We need to remember that the seg-
ments and their acknowledgments do not have a one-to-one relationship; several seg-
ments may be acknowledged together. The measured round-trip time for a segment is
the time required for the segment to reach the destination and be acknowledged,
although the acknowledgment may include other segments. Note that in TCP, only one
RTT measurement can be in progress at any time. This means that if an RTT measure-
ment is started, no other measurement starts until the value of this RTT is finalized. We
use the notation RTTM to stand for measured RTT.

Smoothed RTT The measured RTT, RTTM, is likely to change for each round trip.
The fluctuation is so high in today’s Internet that a single measurement alone cannot

Figure 15.38 TCP timers

In TCP, there can be only one RTT measurement in progress at any time.

Persistence TIME-WAITKeepaliveRetransmission

Timers

for76042_ch15.fm Page 478 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 479

be used for retransmission time-out purposes. Most implementations use a smoothed
RTT, called RTTS, which is a weighted average of RTTM and the previous RTTS as
shown below:

The value of α is implementation-dependent, but it is normally set to 1/8. In other
words, the new RTTS is calculated as 7/8 of the old RTTS and 1/8 of the current RTTM.

RTT Deviation Most implementations do not just use RTTS; they also calculate
the RTT deviation, called RTTD, based on the RTTS and RTTM using the following
formulas:

The value of β is also implementation-dependent, but is usually is set to 1/4.

Retransmission Time-out (RTO)

The value of RTO is based on the smoothed round-trip time and its deviation. Most
implementations use the following formula to calculate the RTO:

In other words, take the running smoothed average value of RTTS, and add four
times the running smoothed average value of RTTD (normally a small value).

Example 15.3

Let us give a hypothetical example. Figure 15.39 shows part of a connection. The figure shows
the connection establishment and part of the data transfer phases.

1. When the SYN segment is sent, there is no value for RTTM, RTTS, or RTTD. The
value of RTO is set to 6.00 seconds. The following shows the value of these vari-
ables at this moment:

Initially → No value

After first measurement → RTTS = RTTM

After each measurement → RTTS = (1 − α) RTTS + α × RTTM

Initially → No value

After first measurement → RTTD = RTTM /2

After each measurement → RTTD = (1 − β) RTTD + β × | RTTS − RTTM |

Original → Initial value

After any measurement → RTO = RTTS + 4 × RTT

RTO = 6

for76042_ch15.fm Page 479 Monday, February 16, 2009 5:10 PM

480 PART 3 TRANSPORT LAYER

2. When the SYN+ACK segment arrives, RTTM is measured and is equal to 1.5 seconds.
The following shows the values of these variables:

3. When the first data segment is sent, a new RTT measurement starts. Note that the
sender does not start an RTT measurement when it sends the ACK segment,
because it does not consume a sequence number and there is no time-out. No RTT
measurement starts for the second data segment because a measurement is already
in progress. The arrival of the last ACK segment is used to calculate the next value
of RTTM. Although the last ACK segment acknowledges both data segments
(accumulative), its arrival finalizes the value of RTTM for the first segment. The
values of these variables are now as shown below.

Karn’s Algorithm

Suppose that a segment is not acknowledged during the retransmission timeout period
and is therefore retransmitted. When the sending TCP receives an acknowledgment for
this segment, it does not know if the acknowledgment is for the original segment or for
the retransmitted one. The value of the new RTT is based on the departure of the seg-
ment. However, if the original segment was lost and the acknowledgment is for the
retransmitted one, the value of the current RTT must be calculated from the time the
segment was retransmitted. This ambiguity was solved by Karn. Karn’s algorithm is

Figure 15.39 Example 15.3

RTTM = 1.5
RTTS = 1.5
RTTD = (1.5) / 2 = 0.75
RTO = 1.5 + 4 × 0.75 = 4.5

RTTM = 2.5
RTTS = 7/8 ×1.5 + (1/8) × 2.5 = 1.625
RTTD = 3/4 (7.5) + (1/4) × |1.625 − 2.5| = 0.78
RTO = 1.625 + 4 × 0.78 = 4.74

Time

1.50 s

2.50 s

Time

RTTS = RTTM =
RTTD = RTO = 6.00

RTTS = 1.50RTTM = 1.5
RTTD = 0.75 RTO = 4.50

 RTTS = 1.625RTTM = 2.50
RTTD = 0.78 RTO = 4.74

SYN + ACK
Seq: 4000 Ack: 1401

ACK
Seq: 4000 Ack: 1601

SYN
Seq: 1400 Ack:

ACK
Seq: 1400 Ack: 4001

Data
Seq: 1401 Ack: 4001

Data: 1401–1500

Data
Seq: 1501 Ack: 4001

Data: 1501–1600

Sender Receiver

for76042_ch15.fm Page 480 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 481

simple. Do not consider the round-trip time of a retransmitted segment in the
calculation of RTTs. Do not update the value of RTTs until you send a segment and
receive an acknowledgment without the need for retransmission.

Exponential Backoff

What is the value of RTO if a retransmission occurs? Most TCP implementations use
an exponential backoff strategy. The value of RTO is doubled for each retransmission.
So if the segment is retransmitted once, the value is two times the RTO. If it transmitted
twice, the value is four times the RTO, and so on.

Example 15.4

Figure 15.40 is a continuation of the previous example. There is retransmission and Karn’s algo-
rithm is applied.

The first segment in the figure is sent, but lost. The RTO timer expires after 4.74 seconds.
The segment is retransmitted and the timer is set to 9.48, twice the previous value of RTO. This
time an ACK is received before the time-out. We wait until we send a new segment and receive
the ACK for it before recalculating the RTO (Karn’s algorithm).

Persistence Timer
To deal with a zero-window-size advertisement, TCP needs another timer. If the receiving
TCP announces a window size of zero, the sending TCP stops transmitting segments until
the receiving TCP sends an ACK segment announcing a nonzero window size. This ACK
segment can be lost. Remember that ACK segments are not acknowledged nor retransmit-
ted in TCP. If this acknowledgment is lost, the receiving TCP thinks that it has done its job
and waits for the sending TCP to send more segments. There is no retransmission timer for

TCP does not consider the RTT of a retransmitted
segment in its calculation of a new RTO.

Figure 15.40 Example 15.4

Time Time

RTTM = 2.50 RTTS = 1.625
RTTD = 0.78 RTO = 4.74

RTO = 2 + 4.74 = 9.48

RTO = 2 + 4.74 = 9.48

RTTM = 4.00 RTTS = 1.92
RTTD = 1.105 RTO = 6.34

4.
00

ACK
Seq: 4000 Ack: 1701

ACK
Seq: 4000 Ack: 1801

Data
Seq: 1601 Ack: 4001

Data: 1601–1700

Data

resent

Seq: 1601 Ack: 4001
Data: 1601–1700

Data
Seq: 1701 Ack: 4001

Data: 1701–1800

9.
48

Lost

Exponential Backoff of RTO

Values from previous example

No change, Karn's algorithm

New values based on new RTTM

Time-out

Stop

Start

Stop

Start

for76042_ch15.fm Page 481 Monday, February 16, 2009 5:10 PM

482 PART 3 TRANSPORT LAYER

a segment containing only an acknowledgment. The sending TCP has not received an
acknowledgment and waits for the other TCP to send an acknowledgment advertising the
size of the window. Both TCPs might continue to wait for each other forever (a deadlock).

To correct this deadlock, TCP uses a persistence timer for each connection. When
the sending TCP receives an acknowledgment with a window size of zero, it starts a
persistence timer. When the persistence timer goes off, the sending TCP sends a special
segment called a probe. This segment contains only 1 byte of new data. It has a
sequence number, but its sequence number is never acknowledged; it is even ignored in
calculating the sequence number for the rest of the data. The probe causes the receiving
TCP to resend the acknowledgment.

 The value of the persistence timer is set to the value of the retransmission time.
However, if a response is not received from the receiver, another probe segment is sent
and the value of the persistence timer is doubled and reset. The sender continues send-
ing the probe segments and doubling and resetting the value of the persistence timer
until the value reaches a threshold (usually 60 s). After that the sender sends one probe
segment every 60 s until the window is reopened.

Keepalive Timer
A keepalive timer is used in some implementations to prevent a long idle connection
between two TCPs. Suppose that a client opens a TCP connection to a server, transfers
some data, and becomes silent. Perhaps the client has crashed. In this case, the connec-
tion remains open forever.

To remedy this situation, most implementations equip a server with a keepalive
timer. Each time the server hears from a client, it resets this timer. The time-out is usu-
ally 2 hours. If the server does not hear from the client after 2 hours, it sends a probe
segment. If there is no response after 10 probes, each of which is 75 s apart, it assumes
that the client is down and terminates the connection.

TIME-WAIT Timer
The TIME-WAIT (2MSL) timer is used during connection termination. We discussed
the reasons for this timer in Section 15.5 (State Transition Diagram).

15.11 OPTIONS
The TCP header can have up to 40 bytes of optional information. Options convey addi-
tional information to the destination or align other options. We can define two catego-
ries of options: 1-byte options and multiple-byte options. The first category contains
two types of options: end of option list and no operation. The second category, in most
implementations, contains five types of options: maximum segment size, window scale
factor, timestamp, SACK-permitted, and SACK (see Figure 15.41).

End of Option (EOP)

The end-of-option (EOP) option is a 1-byte option used for padding at the end of the
option section. It can only be used as the last option. Only one occurrence of this option is
allowed. After this option, the receiver looks for the payload data. Figure 15.42 shows an
example. A 3-byte option is used after the header; the data section follows this option.
One EOP option is inserted to align the data with the boundary of the next word.

for76042_ch15.fm Page 482 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 483

The EOP option imparts two pieces of information to the destination:

1. There are no more options in the header.

2. Data from the application program starts at the beginning of the next 32-bit word.

No Operation (NOP)

The no-operation (NOP) option is also a 1-byte option used as a filler. However, it
normally comes before another option to help align it in a four-word slot. For example,
in Figure 15.43 it is used to align one 3-byte option such as the window scale factor and
one 10-byte option such as the timestamp.

Figure 15.41 Options

Figure 15.42 End-of-option

EOP can be used only once.

Figure 15.43 No-operation option

NOP can be used more than once.

Options

Single-byte

Multiple-byte

Maximum segment size

Window scale factor

Timestamp

SACK-permitted

SACK

End of option list

No operation

Kind: 0
00000000

a. End of option list

b. Used for padding

EOP3-byte option

Data

Kind: 1
00000001

a. No operation option

b. Used to align beginning of an option

NOP
NOP NOP

10-byte option

3-byte option

Data

for76042_ch15.fm Page 483 Monday, February 16, 2009 5:10 PM

484 PART 3 TRANSPORT LAYER

Maximum Segment Size (MSS)

The maximum-segment-size option defines the size of the biggest unit of data that can
be received by the destination of the TCP segment. In spite of its name, it defines the
maximum size of the data, not the maximum size of the segment. Since the field is 16 bits
long, the value can be 0 to 65,535 bytes. Figure 15.44 shows the format of this option.

MSS is determined during connection establishment. Each party defines the MSS
for the segments it will receive during the connection. If a party does not define this, the
default values is 536 bytes.

Window Scale Factor

The window size field in the header defines the size of the sliding window. This field is
16 bits long, which means that the window can range from 0 to 65,535 bytes. Although
this seems like a very large window size, it still may not be sufficient, especially if the
data are traveling through a long fat pipe, a long channel with a wide bandwidth.

To increase the window size, a window scale factor is used. The new window size
is found by first raising 2 to the number specified in the window scale factor. Then this
result is multiplied by the value of the window size in the header.

Figure 15.45 shows the format of the window-scale-factor option.

The scale factor is sometimes called the shift count because multiplying a number by
a power of 2 is the same as a left shift in a bitwise operation. In other words, the actual
value of the window size can be determined by taking the value of the window size adver-
tisement in the packet and shifting it to the left in the amount of the window scale factor.

For example, suppose the value of the window scale factor is 3. An end point
receives an acknowledgment in which the window size is advertised as 32,768. The size
of window this end can use is 32,768 × 23 or 262,144 bytes. The same value can be
obtained if we shift the number 32,768 three bits to the left.

Figure 15.44 Maximum-segment-size option

The value of MSS is determined during connection establishment
and does not change during the connection.

New window size ==== window size defined in the header ×××× 2 window scale factor

Figure 15.45 Window-scale-factor option

Kind: 2
00000010

1 byte 1 byte 2 bytes

Maximum segment sizeLength: 4
00000100

Kind: 3
00000011

Length: 3
00000011

1 byte 1 byte 1 byte

Scale factor

for76042_ch15.fm Page 484 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 485

Although the scale factor could be as large as 255, the largest value allowed by
TCP/IP is 14, which means that the maximum window size is 216 × 214 = 230, which is
less than the maximum value for the sequence number. Note that the size of the window
cannot be greater than the maximum value of the sequence number.

The window scale factor can also be determined only during the connection estab-
lishment phase. During data transfer, the size of the window (specified in the header)
may be changed, but it must be multiplied by the same window scale factor.

Note that one end may set the value of the window scale factor to 0, which means
that although it supports this option, it does not want to use it for this connection.

Timestamp

This is a 10-byte option with the format shown in Figure 15.46. Note that the end with
the active open announces a timestamp in the connection request segment (SYN seg-
ment). If it receives a timestamp in the next segment (SYN + ACK) from the other end,
it is allowed to use the timestamp; otherwise, it does not use it any more. The time-
stamp option has two applications: it measures the round-trip time and prevents wrap-
around sequence numbers.

Measuring RTT Timestamp can be used to measure the round-trip time (RTT).
TCP, when ready to send a segment, reads the value of the system clock and inserts this
value, a 32-bit number, in the timestamp value field. The receiver, when sending an
acknowledgment for this segment or an accumulative acknowledgment that covers the
bytes in this segment, copies the timestamp received in the timestamp echo reply. The
sender, upon receiving the acknowledgment, subtracts the value of the timestamp echo
reply from the time shown by the clock to find RTT.

Note that there is no need for the sender’s and receiver’s clocks to be synchronized
because all calculations are based on the sender clock. Also note that the sender does
not have to remember or store the time a segment left because this value is carried by
the segment itself.

The receiver needs to keep track of two variables. The first, lastack, is the value of the
last acknowledgment sent. The second, tsrecent, is the value of the recent timestamp that
has not yet echoed. When the receiver receives a segment that contains the byte matching
the value of lastack, it inserts the value of the timestamp field in the tsrecent variable.
When it sends an acknowledgment, it inserts the value of tsrecent in the echo reply field.

The value of the window scale factor can be determined only during connection
establishment; it does not change during the connection.

Figure 15.46 Timestamp option

Kind: 8
00001000

Timestamp value

Timestamp echo reply

Length: 10
00001010

for76042_ch15.fm Page 485 Monday, February 16, 2009 5:10 PM

486 PART 3 TRANSPORT LAYER

Example 15.5

Figure 15.47 shows an example that calculates the round-trip time for one end. Everything must
be flipped if we want to calculate the RTT for the other end.

The sender simply inserts the value of the clock (for example, the number of seconds past
midnight) in the timestamp field for the first and second segment. When an acknowledgment
comes (the third segment), the value of the clock is checked and the value of the echo reply field
is subtracted from the current time. RTT is 12 s in this scenario.

The receiver’s function is more involved. It keeps track of the last acknowledgment sent
(12000). When the first segment arrives, it contains the bytes 12000 to 12099. The first byte is the
same as the value of lastack. It then copies the timestamp value (4720) into the tsrecent variable.
The value of lastack is still 12000 (no new acknowledgment has been sent). When the second
segment arrives, since none of the byte numbers in this segment include the value of lastack, the
value of the timestamp field is ignored. When the receiver decides to send an accumulative
acknowledgment with acknowledgment 12200, it changes the value of lastack to 12200 and
inserts the value of tsrecent in the echo reply field. The value of tsrecent will not change until it is
replaced by a new segment that carries byte 12200 (next segment).

Note that as the example shows, the RTT calculated is the time difference between sending
the first segment and receiving the third segment. This is actually the meaning of RTT: the time
difference between a packet sent and the acknowledgment received. The third segment carries the
acknowledgment for the first and second segments.

PAWS The timestamp option has another application, protection against wrapped
sequence numbers (PAWS). The sequence number defined in the TCP protocol is
only 32 bits long. Although this is a large number, it could be wrapped around in a
high-speed connection. This implies that if a sequence number is n at one time, it could
be n again during the lifetime of the same connection. Now if the first segment is

One application of the timestamp option is the calculation of
round-trip time (RTT).

Figure 15.47 Example 15.5

Sender

RTT = 4732 _ 4720 = 12

Receiver

Timestamp: 4720
Timestamp echo reply:

12000:12099

12100:12199

ACK:

Timestamp: 4725
Timestamp echo reply:

ACK:

Timestamp:

Timestamp echo reply: 4720

SN: ACK: 12200

12000
4720

lastack

lastack

lastack

lastack

tsrecent

tsrecent

tsrecent

tsrecent

12000

12000
4720

12200
4720

Time: 4720

Time: 4725

Time: 4732

for76042_ch15.fm Page 486 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 487

duplicated and arrives during the second round of the sequence numbers, the segment
belonging to the past is wrongly taken as the segment belonging to the new round.

One solution to this problem is to increase the size of the sequence number, but this
involves increasing the size of the window as well as the format of the segment and
more. The easiest solution is to include the timestamp in the identification of a segment. In
other words, the identity of a segment can be defined as the combination of timestamp
and sequence number. This means increasing the size of the identification. Two seg-
ments 400:12,001 and 700:12,001 definitely belong to different incarnations. The first
was sent at time 400, the second at time 700.

SACK-Permitted and SACK Options

As we discussed before, the acknowledgment field in the TCP segment is designed as an
accumulative acknowledgment, which means it reports the receipt of the last consecutive
byte: it does not report the bytes that have arrived out of order. It is also silent about dupli-
cate segments. This may have a negative effect on TCP’s performance. If some packets are
lost or dropped, the sender must wait until a time-out and then send all packets that have not
been acknowledged. The receiver may receive duplicate packets. To improve performance,
selective acknowledgment (SACK) was proposed. Selective acknowledgment allows the
sender to have a better idea of which segments are actually lost and which have arrived out
of order. The new proposal even includes a list for duplicate packets. The sender can then
send only those segments that are really lost. The list of duplicate segments can help the
sender find the segments which have been retransmitted by a short time-out.

The proposal defines two new options: SACK-permitted and SACK as shown in
Figure 15.48.

The SACK-permitted option of two bytes is used only during connection estab-
lishment. The host that sends the SYN segment adds this option to show that it can sup-
port the SACK option. If the other end, in its SYN + ACK segment, also includes this

The timestamp option can also be used for PAWS.

Figure 15.48 SACK

SACK-permitted option

SACK option

Kind: 4

Kind: 5

Left edge of 1st Block

Left edge of nth Block

Right edge of 1st Block

Right edge of nth Block

Length: 2

Length

for76042_ch15.fm Page 487 Monday, February 16, 2009 5:10 PM

488 PART 3 TRANSPORT LAYER

option, then the two ends can use the SACK option during data transfer. Note that the
SACK-permitted option is not allowed during the data transfer phase.

The SACK option, of variable length, is used during data transfer only if both
ends agree (if they have exchanged SACK-permitted options during connection estab-
lishment). The option includes a list for blocks arriving out of order. Each block occu-
pies two 32-bit numbers that define the beginning and the end of the blocks. We will
show the use of this option in examples; for the moment, remember that the allowed
size of an option in TCP is only 40 bytes. This means that a SACK option cannot define
more than 4 blocks. The information for 5 blocks occupies (5 × 2) × 4 + 2 or 42 bytes,
which is beyond the available size for the option section in a segment. If the SACK
option is used with other options, then the number of blocks may be reduced.

The first block of the SACK option can be used to report the duplicates. This is
used only if the implementation allows this feature.

Example 15.6

Let us see how the SACK option is used to list out-of-order blocks. In Figure 15.49 an end has
received five segments of data.

The first and second segments are in consecutive order. An accumulative acknowledgment
can be sent to report the reception of these two segments. Segments 3, 4, and 5, however, are out
of order with a gap between the second and third and a gap between the fourth and the fifth. An
ACK and a SACK together can easily clear the situation for the sender. The value of ACK is 2001,
which means that the sender need not worry about bytes 1 to 2000. The SACK has two blocks.
The first block announces that bytes 4001 to 6000 have arrived out of order. The second block
shows that bytes 8001 to 9000 have also arrived out of order. This means that bytes 2001 to 4000
and bytes 6001 to 8000 are lost or discarded. The sender can resend only these bytes.

Example 15.7

Figure 15.50 shows how a duplicate segment can be detected with a combination of ACK and
SACK. In this case, we have some out-of-order segments (in one block) and one duplicate
segment. To show both out-of-order and duplicate data, SACK uses the first block, in this case, to
show the duplicate data and other blocks to show out-of-order data. Note that only the first block
can be used for duplicate data. The natural question is how the sender, when it receives these
ACK and SACK values, knows that the first block is for duplicate data (compare this example
with the previous example). The answer is that the bytes in the first block are already acknowl-
edged in the ACK field; therefore, this block must be a duplicate.

Figure 15.49 Example 15.6

0001:1000

 2001

Consecutive segments

ACK

Accumulative
ACK

Out-of-order segments

Block 1 Block 2

1001:2000 4001:5000

SACK

4001
5 18

6001
8001
9001

5001:6000 8001:9000

for76042_ch15.fm Page 488 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 489

Example 15.8

Figure 15.51 shows what happens if one of the segments in the out-of-order section is also dupli-
cated. In this example, one of the segments (4001:5000) is duplicated.

The SACK option announces this duplicate data first and then the out-of-order
block. This time, however, the duplicated block is not yet acknowledged by ACK, but
because it is part of the out-of-order block (4001:5000 is part of 4001:6000), it is
understood by the sender that it defines the duplicate data.

15.12 TCP PACKAGE
TCP is a complex protocol. It is a stream-service, connection-oriented protocol with an
involved state transition diagram. It uses flow and error control. It is so complex that
actual code involves tens of thousands of lines.

In this section, we present a simplified, bare-bones TCP package. Our purpose is to
show how we can simulate the heart of TCP, as represented by the state transition
diagram.

Figure 15.50 Example 15.7

Figure 15.51 Example 15.8

0001:1000

1001

ACK

Duplicate
block

Accumulative
ACK

Out-of-order segments

Block 1 Duplicate

4001:5000

SACK

0001
5 18

1001
4001
6001

5001:6000 0001:1000

0001:1000

1001
ACK

Duplicate
block

Accumulative
ACK

Out-of-order segments

Block 1 Duplicate

4001:5000

SACK

4001
5001
4001
6001

5001:6000 4001:5000

5 18

for76042_ch15.fm Page 489 Monday, February 16, 2009 5:10 PM

490 PART 3 TRANSPORT LAYER

The package involves tables called transmission control blocks, a set of timers, and
three software modules: a main module, an input processing module, and an output
processing module. Figure 15.52 shows these five components and their interactions.

Transmission Control Blocks (TCBs)
TCP is a connection-oriented transport protocol. A connection may be open for a long
period of time. To control the connection, TCP uses a structure to hold information
about each connection. This is called a transmission control block (TCB). Because at
any time there can be several connections, TCP keeps an array of TCBs in the form of a
table. The table is usually referred to as the TCB (see Figure 15.53).

Many fields can be included in each TCB. We mention only the most common
ones here.

❑ State. This field defines the state of the connection according to the state transition
diagram.

❑ Process. This field defines the process using this connection at this machine as a
client or a server.

Figure 15.52 TCP package

Figure 15.53 TCBs

Input
processing

module

Output
processing

module

TCBs
Timers

TCP segment TCP segment

Application layer
T
C
P

IP layer

Messages to and from
application

Main
module

State Process Pointer Buffers

for76042_ch15.fm Page 490 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 491

❑ Local IP address. This field defines the IP address of the local machine used by
this connection.

❑ Local port number. This field defines the local port number used by this connection.

❑ Remote IP address. This field defines the IP address of the remote machine used
by this connection.

❑ Remote port number. This field defines the remote port number used by this
connection.

❑ Interface. This field defines the local interface.

❑ Local window. This field, which can comprise several subfields, holds information
about the window at the local TCP.

❑ Remote window. This field, which can comprise several subfields, holds informa-
tion about the window at the remote TCP.

❑ Sending sequence number. This field holds the sending sequence number.

❑ Receiving sequence number. This field holds the receiving sequence number.

❑ Sending ACK number. This field holds the value of the ACK number sent.

❑ Round-trip time. Several fields may be used to hold information about the RTT.

❑ Time-out values. Several fields can be used to hold the different time-out values
such as the retransmission time-out, persistence time-out, keepalive time-out, and
so on.

❑ Buffer size. This field defines the size of the buffer at the local TCP.

❑ Buffer pointer. This field is a pointer to the buffer where the received data are kept
until they are read by the application.

Timers
We have previously discussed the several timers TCP needs to keep track of its
operations.

Main Module
The main module (Table 15.3) is invoked by an arriving TCP segment, a time-out event,
or a message from an application program. This is a very complicated module because
the action to be taken depends on the current state of the TCP. Several approaches have
been used to implement the state transition diagram including using a process for each
state, using a table (two-dimensional array), and so on. To keep our discussion simple, we
use cases to handle the state. We have 11 states; we use 11 different cases. Each state is
implemented as defined in the state transition diagram. The ESTABLISHED state needs
further explanation. When TCP is in this state and data or an acknowledgment segment
arrives, another module, the input processing module, is called to handle the situation.
Also, when TCP is in this state and a “send data” message is issued by an application pro-
gram, another module, the output processing module, is called to handle the situation.

for76042_ch15.fm Page 491 Monday, February 16, 2009 5:10 PM

492 PART 3 TRANSPORT LAYER

Table 15.3 Main Module

1 TCP_Main_Module (Segment)

2 {

3 Search the TCB Table

4 if (corresponding TCB is not found)

5 Create a TCB with the state CLOSED

6 Find the state of the entry in the TCB table

7 Switch (state)

8 {

9 case CLOSED state:

10 if (“passive open” message received)

11 go to LISTEN state.

12 if (“active open” message received)

13 {

14 send a SYN segment

15 go to SYN-SENT state

16 }

17 if (any segment received)

18 send an RST segment

19 if (any other message received)

20 issue an error message

21 break

22

23 case LISTN state:

24 if (“send data” message received)

25 {

26 Send a SYN segment

27 Go to SYN-SENT state

28 }

29 if (any SYN segment received)

30 {

31 Send a SYN + ACK segment

32 Go to SYN-RCVD state

33 }

34 if (any other segment or message received)

35 Issue an error message

36 break

37

38 case SYN-SENT state:

for76042_ch15.fm Page 492 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 493

39 if (time-out)

40 Go to CLOSED state

41 if (SYN segment received)

42 {

43 Send a SYN + ACK segment

44 Go to SYN-RCVD state

45 }

46 if (SYN + ACK segment received)

47 {

48 Send an ACK segment

49 Go to ESTABLISHED state

50 }

51 if (any other segment or message received)

52 Issue an error message

53 break

54

55 case SYN-RCVD state:

56 if (an ACK segment received)

57 Go to ESTABLISHID state

58 if (time-out)

59 {

60 Send an RTS segment

61 Go to CLOSED state

62 }

63 if (“close” message received)

64 {

65 Send a FIN segment

66 Go to FIN-WAIT-I state

67 }

68 if (RTS segment received)

69 Go to LISTEN state

70 if (any other segment or message received)

71 Issue an error message

72 break

73

74 case ESTABLISHED state:

75 if (a FIN segment received)

76 {

Table 15.3 Main Module (continued)

for76042_ch15.fm Page 493 Monday, February 16, 2009 5:10 PM

494 PART 3 TRANSPORT LAYER

77 Send an ACK segment

78 Go to CLOSED-WAIT state

79 }

80 if ("close" message received)

81 {

82 Send a FIN segment

83 Go to FIN-WAIT-I

84 }

85 if (a RTS or an SYN segment received)

86 Issue an error message

87 if (data or ACK segment received)

88 call the input module

89 if ("send" message received)

90 call the output module

91 break

92

93 case FIN-WAIT-1 state:

94 if (a FIN segment received)

95 {

96 Send an ACK segment

97 Go to CLOSING state

98 }

99 if (a FIN + ACK segment received)

100 {

101 Send an ACK segment

102 Go to FIN-WAIT state

103 }

104 if (an ACK segment received)

105 Go to FIN-WAIT-2 state

106 if (any other segment or message received)

107 Issue an error message

108 break

109

110 case FIN-WAIT-2 state:

111 if (a FIN segment received)

112 {

113 Send an ACK segment

114 Go to TIME-WAIT state

115 }

Table 15.3 Main Module (continued)

for76042_ch15.fm Page 494 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 495

Input Processing Module
In our design, the input processing module handles all the details needed to process
data or an acknowledgment received when TCP is in the ESTABLISHED state. This
module sends an ACK if needed, takes care of the window size announcement, does error
checking, and so on. The details of this module are not needed for an introductory textbook.

116 break

117

118 case CLOSING state:

119 if (an ACK segment received)

120 Go to TIME-WAIT state

121 if (any other message or segment received)

122 Issue an error message

123 break

124

125 case TIME-WAIT state:

126 if (time-out)

127 Go to CLOSED state

128 if (any other message or segment received)

129 Issue an error message

130 break

131

132 case CLOSED-WAIT state:

133 if ("close" message received)

134 {

135 Send a FIN segment

136 Go to LAST-ACK state

137 }

138 if (any other message or segment received)

139 Issue an error message

140 break

141

142 case LAST-ACK state:

143 if (an ACK segment received)

144 Go to CLOSED state

145 if (any other message or segment received)

146 Issue an error message

147 break

148 } // end module

Table 15.3 Main Module (continued)

for76042_ch15.fm Page 495 Monday, February 16, 2009 5:10 PM

496 PART 3 TRANSPORT LAYER

Output Processing Module
In our design, the output processing module handles all the details needed to send out
data received from application program when TCP is in the ESTABLISHED state.
This module handles retransmission time-outs, persistent time-outs, and so on. One
of the ways to implement this module is to use a small transition diagram to handle
different output conditions. Again, the details of this module are not needed for an
introductory textbook.

15.13 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give a thorough coverage of TCP including [Pet & Dav 03], [Com 06],
[Tan 03], and [Ste 94].

RFCs
Several RFCs discuss TCP protocol including RFC 793, RFC 813, RFC 879, RFC 889,
RFC 896, RFC 1122, RFC 1975, RFC 1987, RFC 1988, RFC 1993, RFC 2018,
RFC 2581, RFC 3168, and RFC 3782.

15.14 KEY TERMS
Clark’s solution
congestion avoidance
cookie
data transfer
deadlock
denial-of-service attack
end-of-option (EOP) option
fast retransmission
half-close
initial sequence number
Karn’s algorithm
keepalive timer
maximum-segment-size option
multiplicative decrease
Nagle’s algorithm
no-operation (NOP) option
persistence time

protection against wrapped sequence
numbers (PAWS)

retransmission time-out (RTO)
round-trip time (RTT)
SACK option
SACK-permitted option
segment
selective acknowlegment (SACK)
silly window syndrome
simultaneous close
simultaneous open
slow start
SYN flooding attack
three-way handshaking
timestamp option
window scale factor

for76042_ch15.fm Page 496 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 497

15.15 SUMMARY
❑ Transmission Control Protocol (TCP) is one of the transport layer protocols in the

TCP/IP protocol suite. TCP provides process-to-process, full-duplex, and connec-
tion-oriented service. The unit of data transfer between two devices using TCP
software is called a segment; it has 20 to 60 bytes of header, followed by data from
the application program.

❑ A TCP connection consists of three phases: connection establishment, data trans-
fer, and connection termination. Connection establishment requires three-way
handshaking; connection termination requires three- or four-way handshaking.
TCP software is normally implemented as a finite state machine (FSM).

❑ TCP uses flow control, implemented as a sliding window mechanism, to avoid
overwhelming a receiver with data. The TCP window size is determined by the
receiver-advertised window size (rwnd) or the congestion window size (cwnd),
whichever is smaller. The window can be opened or closed by the receiver, but
should not be shrunk. The bytes of data being transferred in each connection are
numbered by TCP. The numbering starts with a randomly generated number.

❑ TCP uses error control to provide a reliable service. Error control is handled by check-
sums, acknowledgment, and time-outs. Corrupted and lost segments are eventually
retransmitted and duplicate segments are discarded. Data may arrive out of order and
temporarily stored by the receiving TCP, but TCP guarantees that no out-of-order seg-
ment is delivered to the process. In modern implementations, a retransmission occurs
if the retransmission timer expires or three duplicate ACK segments have arrived.

❑ TCP uses congestion control to avoid and detect congestion in the network. The
slow start (exponential increase), congestion avoidance (additive increase), and
congestion detection (multiplicative decrease) strategies are used for congestion
control. In the slow start algorithm the size of the congestion window increases
exponentially until it reaches a threshold. In the congestion avoidance algorithm
the size of the congestion window increases additively until congestion is detected.
Different TCP implementations react differently to congestion detection. If detec-
tion is by time-out, a new slow start phase starts. If detection is by three duplicate
ACKs, a new congestion avoidance phase starts.

❑ TCP uses four timers (retransmission, persistence, keepalive, and time-wait) in its
operation. In TCP, there can be only be one RTT measurement in progress at any
time. TCP does not consider the RTT of a retransmitted segment in its calculation
of an RTT.

❑ TCP uses options to provide more services. The maximum segment size option is
used in connection setup to define the largest allowable TCP segment. The value of
MSS is determined during connection establishment and does not change during the
connection. The window scale factor is a multiplier that increases the window size.
The timestamp option shows how much time it takes for data to travel between
sender and receiver. One application of the timestamp option is in the calculation of
round-trip time (RTT). Another application is for PAWS. Recent implementations of

for76042_ch15.fm Page 497 Monday, February 16, 2009 5:10 PM

498 PART 3 TRANSPORT LAYER

TCP use two more options, SACK-permitted option and SACK option. These two
options allow the selective acknowledgment of the received segments by the
receiver.

15.16 PRACTICE SET

Exercises
1. Compare the TCP header and the UDP header. List the fields in the TCP header

that are not part of the UDP header. Give the reason for each missing field.
2. An IP datagram is carrying a TCP segment destined for address 130.14.16.17. The

destination port address is corrupted and it arrives at destination 130.14.16.19.
How does the receiving TCP react to this error?

3. One ICMP message, discussed in Chapter 9, reports a destination port unreachable
error. How can TCP detect the error in the destination port?

4. UDP is a message-oriented protocol. TCP is a byte-oriented protocol. If an appli-
cation needs to protect the boundaries of its message, which protocol should be
used, UDP or TCP?

5. What is the maximum size of the TCP header? What is the minimum size of the
TCP header?

6. If the value of HLEN is 0111, how many bytes of option are included in the segment?

7. Show the entries for the header of a TCP segment that carries a message from an
FTP client to an FTP server. Fill the checksum field with 0s. Choose an appropriate
ephemeral port number and the correct well-known port number. The length of
data is 40 bytes.

8. What can you say about the TCP segment in which the value of the control field is
one of the following:

a. 000000

b. 000001

c. 010001

d. 000100

e. 000010

f. 010010
9. The following is a dump of a TCP header in hexadecimal format.

a. What is the source port number?

b. What is the destination port number?

c. What the sequence number?

d. What is the acknowledgment number?

e. What is the length of the header?

f. What is the type of the segment?

g. What is the window size?

(05320017 00000001 00000000 500207FF 00000000)16

for76042_ch15.fm Page 498 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 499

10. The control field in a TCP segment is 6 bits. We can have 64 different combina-
tions of bits. List some combinations that are valid.

11. To make the initial sequence number a random number, most systems start the
counter at 1 during bootstrap and increment the counter by 64,000 every half second.
How long does it take for the counter to wrap around?

12. In a TCP connection, the initial sequence number at the client site is 2,171. The cli-
ent opens the connection, sends only one segment carrying 1,000 bytes of data, and
closes the connection. What is the value of the sequence number in each of the fol-
lowing segments sent by the client?

a. The SYN segment?

b. The data segment?

c. The FIN segment?

13. In a connection, the value of cwnd is 3000 and the value of rwnd is 5000. The host
has sent 2,000 bytes, which have not been acknowledged. How many more bytes
can be sent?

14. TCP opens a connection using an initial sequence number (ISN) of 14,534. The
other party opens the connection with an ISN of 21,732.

a. Show the three TCP segments during the connection establishment.

b. Show the contents of the segments during the data transmission if the initiator
sends a segment containing the message “Hello dear customer” and the other
party answers with a segment containing “Hi there seller.”

c. Show the contents of the segments during the connection termination.

15. A client uses TCP to send data to a server. The data consist of 16 bytes. Calculate
the efficiency of this transmission at the TCP level (ratio of useful bytes to total
bytes). Calculate the efficiency of transmission at the IP level. Assume no options
for the IP header. Calculate the efficiency of transmission at the data link layer.
Assume no options for the IP header and use Ethernet at the data link layer.

16. TCP is sending data at 1 megabyte per second. If the sequence number starts with
7,000, how long does it take before the sequence number goes back to zero?

17. A TCP connection is using a window size of 10,000 bytes and the previous
acknowledgment number was 22,001. It receives a segment with acknowledgment
number 24,001 and window size advertisement of 12,000. Draw a diagram to show
the situation of the window before and after.

18. A window holds bytes 2001 to 5000. The next byte to be sent is 3001. Draw a fig-
ure to show the situation of the window after the following two events.

a. An ACK segment with the acknowledgment number 2500 and window size
advertisement 4000 is received.

b. A segment carrying 1,000 bytes is sent.

19. A TCP connection is in the ESTABLISHED state. The following events occur one
after another:

a. A FIN segment is received.

b. The application sends a “close” message.

What is the state of the connection after each event? What is the action after each
event?

for76042_ch15.fm Page 499 Monday, February 16, 2009 5:10 PM

500 PART 3 TRANSPORT LAYER

20. A TCP connection is in the ESTABLISHED state. The following events occur one
after another:

a. The application sends a “close” message.

b. An ACK segment is received.

What is the state of the connection after each event? What is the action after each
event?

21. A host has no data to send. It receives the following segments at the times shown
(hour:minute:second:milliseconds after midnight). Show the acknowledgments
sent by the host.

a. Segment 1 received at 0:0:0:000.

b. Segment 2 received at 0:0:0:027.

c. Segment 3 received at 0:0:0:400.

d. Segment 4 received at 0:0:1:200.

e. Segment 5 received at 0:0:1:208.
22. A host sends five packets and receives three acknowledgments. The time is shown

as hour:minute:seconds.

a. Segment 1 was sent at 0:0:00.

b. Segment 2 was sent at 0:0:05.

c. ACK for segments 1 and 2 received at 0:0:07.

d. Segment 3 was sent at 0:0:20.

e. Segment 4 was sent at 0:0:22.

f. Segment 5 was sent at 0:0:27.

g. ACK for segments 1 and 2 received at 0:0:45.

h. ACK for segment 3 received at 0:0:65.

Calculate the values of RTTM, RTTS, RTTD, and RTO if the original RTO is 6 sec-
onds. Did the sender miss the retransmission of any segment? Show which seg-
ments should have been retransmitted and when. Rewrite the events including the
retransmission time.

23. Show the contents of a SACK option to be sent if a host has received bytes 2001 to 3000
in order. Bytes 4001 to 6000 are out of order, and bytes 3501 to 4000 are duplicate.

24. Show a congestion control diagram like Figure 15.37 using the following scenario.
Assume a maximum window size of 64 segments.

a. Three duplicate ACKs are received after the fourth RTT.

b. A time-out occurs after the sixth RTT.
25. Show the transition diagrams (FSMs) for simultaneous-close scenario (See

Figure 15.19).
26. Show the transition diagrams (FSMs) for denying-a-connection scenario (See

Figure 15.20).

27. Show the transition diagrams (FSMs) for aborting-a-connection scenario (See
Figure 15.21).

28. In a send window, Sf = 401 and Sn = 701. If window size is 1,000 bytes, show the
send window before and after the station receives an ACK segment with ackNo = 601

for76042_ch15.fm Page 500 Monday, February 16, 2009 5:10 PM

CHAPTER 15 TRANSMISSION CONTROL PROTOCOL (TCP) 501

and rwnd = 700. Ignore congestion control. Does this situation means shrinking
the window?

29. Draw a figure similar to Figure 15.25 for the following scenario (ignore error con-
trol and congestion control):

a. Time 1: The client sends a SYN segment with seqNo = 301.

b. Time 2: The server sets its buffer size to 2,000 bytes.

c. Time 3: The server acknowledges the SYN segment.

d. Time 4: The client sends a segment of 300 bytes in the SYN + ACK segment.

e. Time 5: The client sends a segment of 400 bytes.

f. Time 6: The server process pulls 400 bytes.

g. Time 7: The server sends an ACK.

h. Time 8: The client sends a segment of 300 bytes.

i. Time 9: The server process pulls 300 bytes.

j. Time 10: The server sends an ACK.

30. Show time-line diagram for the following scenario (similar to Figure 15.29).

a. The client sends a segment carrying bytes 1401 to 1700, which arrives at the
sender site.

b. The server sends a segment carrying bytes 2001 to 2100 and acknowledging the
first segment from the client, which arrives.

c. The client sends a segment carrying bytes 1701 to 1900 and acknowledging the
segment received, but the segment is lost.

d. The client sends a segment carrying bytes 1901 to 2100, but the segment is lost.

e. Time out occurs at the client site.

f. The client resends a segment in response to time-out, this packet arrived.

g. The server sends an acknowledgment after ACK-delaying timer expires.

h. Another time-out occurs at the client site.

i. The client resends a segment in response to time-out, which arrives at the sender.

j. The server sends an acknowledgment after ACK-delaying timer expires.

31. Redraw the time-line diagram of Figure 15.34 that allow the server to delay
acknowledgements and send one ACK for each full cwnd window worth of data.

Research Activities
32. We have not given all the rules about the transition diagram and TCP states. To be

complete, we should show the next state for any state with the arrival of any type of
segment. TCP should know what action to take if any of the segment types arrive
when it is in any of the states. What are some of these rules?

33. What is the “half-open” case in TCP?

34. What is the “half-duplex close” case in TCP?

35. The tcpdump command in UNIX or LINUX can be used to print the headers of pack-
ets of a network interface. Use tcpdump to see the segments sent and received.

for76042_ch15.fm Page 501 Monday, February 16, 2009 5:10 PM

C H A P T E R

16

502

16

Stream Control Transmission
Protocol (SCTP)

n this chapter, we describe the new transport-layer protocol called
SCTP. SCTP is designed as a general-purpose transport layer protocol

that can handle multimedia and stream traffic, which are increasing every
day on the Internet.

OBJECTIVES

The chapter has several objectives:

❑

To introduce SCTP as a new transport-layer protocol.

❑

To discuss SCTP services and compare them with TCP.

❑

To list and explain different packet types used in SCTP and discuss
the purpose and of each field in each packet.

❑

To discuss SCTP association and explain different scenarios such as
association establishment, data transfer, association termination, and
association abortion.

❑

To compare and contrast the state transition diagram of SCTP with
the corresponding diagram of TCP.

❑

To explain the flow control mechanism in SCTP and discuss the
behavior of the sender site and the receiver site.

❑

To explain the error control mechanism in SCTP and discuss the
behavior of the sender site and the receiver site.

❑

To explain the congestion control mechanism in SCTP and compare
with the similar mechanism in TCP.

I

for76042_ch16.fm Page 502 Tuesday, February 17, 2009 11:17 AM

503

16.1 INTRODUCTION

Stream Control Transmission Protocol (SCTP) is a new reliable, message-oriented
transport-layer protocol. Figure 16.1 shows the relationship of SCTP to the other proto-
cols in the Internet protocol suite. SCTP lies between the application layer and the net-
work layer and serves as the intermediary between the application programs and the
network operations.

SCTP, however, is mostly designed for Internet applications that have recently been
introduced. These new applications, such as IUA (ISDN over IP), M2UA and M3UA
(telephony signaling), H.248 (media gateway control), H.323 (IP telephony), and SIP (IP
telephony), need a more sophisticated service than TCP can provide. SCTP provides this
enhanced performance and reliability. We briefly compare UDP, TCP, and SCTP:

❑

UDP is a

message-oriented

 protocol. A process delivers a message to UDP, which is
encapsulated in a user datagram and sent over the network. UDP

conserves the mes-
sage boundaries;

 each message is independent from any other message. This is a
desirable feature when we are dealing with applications such as IP telephony and
transmission of real-time data as we will see later in the text. However, UDP is unre-
liable; the sender cannot know the destiny of messages sent. A message can be lost,
duplicated, or received out of order. UDP also lacks some other features, such as con-
gestion control and flow control, needed for a friendly transport-layer protocol.

Figure 16.1

TCP/IP protocol suite

Application
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

SMTP FTP H.248 DHCPH.323

IP

......

ICMPIGMP

ARP

Underlying LAN or WAN
technology

SCTP TCP UDP

for76042_ch16.fm Page 503 Tuesday, February 17, 2009 11:17 AM

504

PART 3 TRANSPORT LAYER

❑

TCP is a

byte-oriented

 protocol. It receives a message or messages from a pro-
cess, stores them as a stream of bytes, and sends them in segments. There is no
preservation of the message boundaries. However, TCP is a reliable protocol.
The duplicate segments are detected, the lost segments are resent, and the bytes
are delivered to the end process in order. TCP also has congestion control and
flow control mechanisms.

❑

SCTP combines the best features of UDP and TCP. SCTP is a reliable message-
oriented protocol. It preserves the message boundaries and at the same time detects
lost data, duplicate data, and out-of-order data. It also has congestion control and
flow control mechanisms. Later we will see that SCTP has other innovative features
unavailable in UDP and TCP.

16.2 SCTP SERVICES

Before discussing the operation of SCTP, let us explain the services offered by SCTP to
the application layer processes.

Process-to-Process Communication

SCTP uses all well-known ports in the TCP space. Table 16.1 lists some extra port
numbers used by SCTP.

Multiple Streams

We learned in Chapter 15 that TCP is a stream-oriented protocol. Each connection
between a TCP client and a TCP server involves one single stream. The problem with
this approach is that a loss at any point in the stream blocks the delivery of the rest of
the data. This can be acceptable when we are transferring text; it is not when we are
sending real-time data such as audio or video. SCTP allows

multistream service

 in
each connection, which is called

association

 in SCTP terminology. If one of the streams
is blocked, the other streams can still deliver their data.The idea is similar to multiple
lanes on a highway. Each lane can be used for a different type of traffic. For example,
one lane can be used for regular traffic, another for car pools. If the traffic is blocked for

SCTP is a

message-oriented,

reliable

 protocol that combines the
best features of UDP and TCP.

Table 16.1

Some SCTP applications

Protocol Port Number Description

IUA 9990 ISDN over IP
M2UA 2904 SS7 telephony signaling
M3UA 2905 SS7 telephony signaling
H.248 2945 Media gateway control
H.323 1718, 1719, 1720, 11720 IP telephony
SIP 5060 IP telephony

for76042_ch16.fm Page 504 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)

505

regular vehicles, car pool vehicles can still reach their destinations. Figure 16.2 shows
the idea of multiple-stream delivery.

Multihoming

A TCP connection involves one source and one destination IP address. This means that
even if the sender or receiver is a multihomed host (connected to more than one physi-
cal address with multiple IP addresses), only one of these IP addresses per end can be
utilized during the connection. An SCTP association, on the other hand, supports

multihoming service.

 The sending and receiving host can define multiple IP addresses
in each end for an association. In this fault-tolerant approach, when one path fails,
another interface can be used for data delivery without interruption. This fault-tolerant
feature is very helpful when we are sending and receiving a real-time payload such as
Internet telephony. Figure 16.3 shows the idea of multihoming.

In the figure, the client is connected to two local networks with two IP addresses.
The server is also connected to two networks with two IP addresses. The client and the
server can make an association using four different pairs of IP addresses. However,
note that in the current implementations of SCTP, only one pair of IP addresses can be
chosen for normal communication; the alternative is used if the main choice fails. In
other words, at present, SCTP does not allow load sharing between different paths.

Figure 16.2

Multiple-stream concept

An association in SCTP can involve multiple streams.

Figure 16.3

Multihoming concept

SCTP association allows multiple IP addresses for each end.

SCTP SCTP

Sending
Process

Receiving
Process

Stream of data chunks

Stream of data chunks

Client

IP1 IP3

IP4IP2

Server

Internet

for76042_ch16.fm Page 505 Tuesday, February 17, 2009 11:17 AM

506

PART 3 TRANSPORT LAYER

Full-Duplex Communication

Like TCP, SCTP offers

full-duplex service,

 where data can flow in both directions at
the same time. Each SCTP then has a sending and receiving buffer and packets are sent
in both directions.

Connection-Oriented Service

Like TCP, SCTP is a connection-oriented protocol. However, in SCTP, a connection is
called an

association.

 When a process at site A wants to send and receive data from
another process at site B, the following occurs:

1.

The two SCTPs establish an association between each other.

2.

Data are exchanged in both directions.

3.

The association is terminated.

Reliable Service

SCTP, like TCP, is a reliable transport protocol. It uses an acknowledgment mechanism
to check the safe and sound arrival of data. We will discuss this feature further in the
section on error control.

16.3 SCTP FEATURES

Let us first discuss the general features of SCTP and then compare them with those of TCP.

Transmission Sequence Number (TSN)

The unit of data in TCP is a byte. Data transfer in TCP is controlled by numbering
bytes using a sequence number. On the other hand, the unit of data in SCTP is a data
chunk, which may or may not have a one-to-one relationship with the message coming
from the process because of fragmentation (discussed later). Data transfer in SCTP is
controlled by numbering the data chunks. SCTP uses a

transmission sequence num-
ber

(TSN)

 to number the data chunks.

In other words, the TSN in SCTP plays the analogous
role as the sequence number in TCP. TSNs are 32 bits long and randomly initialized
between 0 and 2

32

−

1. Each data chunk must carry the corresponding TSN in its header.

Stream Identifier (SI)

In TCP, there is only one stream in each connection. In SCTP, there may be several streams
in each association. Each stream in SCTP needs to be identified using a

stream identifier
(SI)

.

Each data chunk must carry the SI in its header so that when it arrives at the destina-
tion, it can be properly placed in its stream. The SI is a 16-bit number starting from 0.

In SCTP, a data chunk is numbered using a TSN.

To distinguish between different streams, SCTP uses an SI.

for76042_ch16.fm Page 506 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)

507

Stream Sequence Number (SSN)

When a data chunk arrives at the destination SCTP, it is delivered to the appropriate
stream and in the proper order. This means that, in addition to an SI, SCTP defines each
data chunk in each stream with a

stream sequence number (SSN).

Packets

In TCP, a segment carries data and control information. Data are carried as a collection
of bytes; control information is defined by six control flags in the header. The design of
SCTP is totally different: data are carried as data chunks, control information as control
chunks. Several control chunks and data chunks can be packed together in a packet. A
packet in SCTP plays the same role as a segment in TCP. Figure 16.4 compares a seg-
ment in TCP and a packet in SCTP.

We will discuss the format of the SCTP packet in the next section. For the moment, let
us briefly list the differences between an SCTP packet and a TCP segment:

1.

The control information in TCP is part of the header; the control information in
SCTP is included in the control chunks. There are several types of control chunks;
each is used for a different purpose.

2.

The data in a TCP segment treated as one entity; an SCTP packet can carry several
data chunks; each can belong to a different stream.

3.

The options section, which can be part of a TCP segment, does not exist in an
SCTP packet. Options in SCTP are handled by defining new chunk types.

4.

The mandatory part of the TCP header is 20 bytes, while the general header in
SCTP is only 12 bytes. The SCTP header is shorter due to the following:

a.

An SCTP sequence number (TSN) belongs to each data chunk, and hence is
located in the chunk’s header.

To distinguish between different data chunks belonging to the same stream,
SCTP uses SSNs.

Figure 16.4

Comparison between a TCP segment and an SCTP packet

TCP has segments; SCTP has packets.

Destination port addressSource port address

Sequence number
Acknowledgment number

Window size

Urgent pointerChecksum

Options

Control flags

Destination port addressSource port address

Verification tag
Checksum

Control chunks

Data chunks
Data bytes

A segment in TCP

HL

H
ea

de
r

an
d

op
ti

on
s

H
ea

de
r

C
on

tr
ol

D
at

a

D
at

a

A packet in SCTP

for76042_ch16.fm Page 507 Tuesday, February 17, 2009 11:17 AM

508

PART 3 TRANSPORT LAYER

b.

The acknowledgment number and window size are part of each control chunk.

c.

There is no need for a header length field (shown as HL in the TCP segment)
because there are no options to make the length of the header variable; the
SCTP header length is fixed (12 bytes).

d.

There is no need for an urgent pointer in SCTP, as we will see later.

5.

The checksum in TCP is 16 bits; in SCTP, it is 32 bits.

6.

The verification tag in SCTP is an association identifier, which does not exist in
TCP. In TCP, the combination of IP and port addresses define a connection; in
SCTP we may have multihoming using different IP addresses. A unique verifica-
tion tag is needed to define each association.

7.

TCP includes one sequence number in the header, which defines the number of the
first byte in the data section. An SCTP packet can include several different data
chunks. TSNs, ISs, and SSNs define each data chunk.

8.

Some segments in TCP that carry control information (such as SYN and FIN),
need to consume one sequence number; control chunks in SCTP never use a TSN,
IS, or SSN number. These three identifiers belong only to data chunks, not to the
whole packet.

In SCTP, we have data chunks, streams, and packets. An association may send
many packets, a packet may contain several chunks, and chunks may belong to differ-
ent streams. To make the definitions of these terms clear, let us suppose that process A
needs to send 11 messages to process B in three streams. The first four messages are in
the first stream, the second three messages are in the second stream, and the last four
messages are in the third stream.

Although a message, if long, can be carried by several data chunks, we assume that
each message fits into one data chunk. Therefore, we have 11 data chunks in three
streams.

The application process delivers 11 messages to SCTP, where each message is ear-
marked for the appropriate stream. Although the process could deliver one message
from the first stream and then another from the second, we assume that it delivers all
messages belonging to the first stream first, all messages belonging to the second
stream next, and finally, all messages belonging to the last stream.

We also assume that the network allows only 3 data chunks per packet, which
means that we need 4 packets as shown in Figure 16.5. Data chunks in stream 0 are
carried in the first and part of the second packet; those in stream 1 are carried in the
second and the third packet; those in stream 2 are carried in the third and fourth
packet.

Note that each data chunk needs three identifiers: TSN, SI, and SSN. TSN is a
cumulative number and used, as we will see later, for flow control and error control. SI
defines the stream to which the chunk belongs. SSN defines the chunk’s order in a par-
ticular stream. In our example, SSN starts from 0 for each stream.

In SCTP, control information and data information are
carried in separate chunks.

for76042_ch16.fm Page 508 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)

509

Acknowledgment Number

TCP acknowledgment numbers are byte-oriented and refer to the sequence numbers.
SCTP acknowledgment numbers are chunk-oriented. They refer to the TSN. A second
difference between TCP and SCTP acknowledgments is the control information. Recall
that this information is part of the segment header in TCP. To acknowledge segments
that carry only control information, TCP uses a sequence number and acknowledgment
number (for example, a SYN segment needs to be acknowledged by an ACK segment).
In SCTP, however, the control information is carried by control chunks, which do not
need a TSN. These control chunks are acknowledged by another control chunk of the
appropriate type (some need no acknowledgment). For example, an INIT control chunk
is acknowledged by an INIT-ACK chunk. There is no need for a sequence number or an
acknowledgment number.

Flow Control

Like TCP, SCTP implements flow control to avoid overwhelming the receiver. We will
discuss SCTP flow control later in the chapter.

Error Control

Like TCP, SCTP implements error control to provide reliability. TSN numbers and
acknowledgment numbers are used for error control. We will discuss error control later
in the chapter.

Figure 16.5

 Packet, data chunks, and streams

Data chunks are identified by three identifiers: TSN, SI, and SSN.
TSN is a cumulative number identifying the association; SI defines the stream;

SSN defines the chunk in a stream.

In SCTP, acknowledgment numbers are used to acknowledge only data chunks;
control chunks are acknowledged by other control chunks if necessary.

Flow of packets from sender to receiver

S
tr

ea
m

 0

S
tr

ea
m

 1

S
tr

ea
m

 2

First packetSecond packetThird packetFourth packet

TSN: 101
SSN: 0SI: 0

TSN: 102
SSN: 1SI: 0

TSN: 103
SSN: 2 SI: 0

TSN: 104
SSN: 3SI: 0

TSN: 105
SSN: 0SI: 1

TSN: 106
SSN: 1SI: 1

TSN: 107
SSN: 2SI: 1

TSN: 108
SSN: 0SI: 2

TSN: 109
SSN: 1SI: 2

TSN: 110
SSN: 2SI: 2

TSN: 111
SSN: 3SI: 2

Header
Control chunksControl chunksControl chunksControl chunks

HeaderHeaderHeader

for76042_ch16.fm Page 509 Tuesday, February 17, 2009 11:17 AM

510

PART 3 TRANSPORT LAYER

Congestion Control

Like TCP, SCTP implements congestion control to determine how many data chunks
can be injected into the network. We will discuss congestion control later in the
chapter.

16.4 PACKET FORMAT

In this section, we show the format of a packet and different types of chunks. Most of
the information presented in this section will become clear later; this section can be
skipped in the first reading or used only as the reference. An SCTP packet has a manda-
tory general header and a set of blocks called chunks. There are two types of chunks:
control chunks and data chunks. A control chunk controls and maintains the associa-
tion; a data chunk carries user data. In a packet, the control chunks come before the
data chunks. Figure 16.6 shows the general format of an SCTP packet.

General Header

The

general header

 (packet header) defines the end points of each association to which
the packet belongs, guarantees that the packet belongs to a particular association, and
preserves the integrity of the contents of the packet including the header itself. The for-
mat of the general header is shown in Figure 16.7.

Figure 16.6

SCTP packet format

In an SCTP packet, control chunks come before data chunks.

Figure 16.7

General header

Chunk 1
(variable length)

Chunk N
(variable length)

General header
(12 bytes)

Destination port address
16 bits

Source port address
16 bits

Verification tag
32 bits

Checksum
32 bits

for76042_ch16.fm Page 510 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)

511

There are four fields in the general header:

❑

Source port address.

This is a 16-bit field that defines the port number of the pro-
cess sending the packet.

❑

Destination port address.

 This is a 16-bit field that defines the port number of the
process receiving the packet.

❑

Verification tag.

 This is a number that matches a packet to an association. This
prevents a packet from a previous association from being mistaken as a packet in
this association. It serves as an identifier for the association; it is repeated in every
packet during the association. There is a separate verification used for each direc-
tion in the association.

❑

Checksum.

This 32-bit field contains a CRC-32 checksum (see Appendix D).
Note that the size of the checksum is increased from 16 bits (in UDP, TCP, and IP)
to 32 bits in SCTP to allow the use of the CRC-32 checksum.

Chunks

Control information or user data are carried in chunks. Chunks have a common layout
as shown in Figure 16.8.

The first three fields are common to all chunks; the information field depends on
the type of chunk. The important point to remember is that SCTP requires the informa-
tion section to be a multiple of 4 bytes; if not, padding bytes (eight 0s) are added at the
end of the section.

The description of the common fields are as follows:

❑

Type.

 This 8-bit field can define up to 256 types of chunks. Only a few have been
defined so far; the rest are reserved for future use. See Table 16.2 for a list of
chunks and their descriptions.

❑

Flag.

 This 8-bit field defines special flags that a particular chunk may need. Each
bit has a different meaning depending on the type of chunk.

❑

Length.

 Since the size of the information section is dependent on the type of
chunk, we need to define the chunk boundaries. This 16-bit field defines the total

Figure 16.8

Common layout of a chunk

Chunks need to terminate on a 32-bit (4-byte) boundary.

Type Flag Length

0 7 8 15 16 31

Chunk Information
(multiple of 4 bytes)

for76042_ch16.fm Page 511 Tuesday, February 17, 2009 11:17 AM

512

PART 3 TRANSPORT LAYER

size of the chunk, in bytes, including the type, flag, and length fields. If a chunk
carries no information, the value of the length field is 4 (4 bytes). Note that the
length of the padding, if any, is not included in the calculation of the length field.
This helps the receiver find out how many useful bytes a chunk carries. If the value
is not a multiple of 4, the receiver knows there is padding. For example, when the
receiver sees a length of 17, it knows the next number that is a multiple of 4 is 20,
so there are 3 bytes of padding that must be discarded. But if the receiver sees a
length of 16, it knows that there is no padding.

DATA

The

DATA chunk

 carries the user data. A packet may contain zero or more data
chunks. Figure 16.9 shows the format of a DATA chunk.

Table 16.2 Chunks

Type Chunk Description
0 DATA User data
1 INIT Sets up an association
2 INIT ACK Acknowledges INIT chunk
3 SACK Selective acknowledgment
4 HEARTBEAT Probes the peer for liveliness
5 HEARTBEAT ACK Acknowledges HEARTBEAT chunk
6 ABORT Abort an association
7 SHUTDOWN Terminates an association
8 SHUTDOWN ACK Acknowledges SHUTDOWN chunk
9 ERROR Reports errors without shutting down

10 COOKIE ECHO Third packet in association establishment
11 COOKIE ACK Acknowledges COOKIE ECHO chunk
14 SHUTDOWN COMPLETE Third packet in association termination

192 FORWARD TSN For adjusting cumulating TSN

The number of padding bytes is not included in the value of the length field.

Figure 16.9 DATA chunk

Type: 0 Reserved Length

Protocol identifier

User data

Stream identifier Stream sequence number

Transmission sequence number

0 7 8 1513 14 16 31

U B E

for76042_ch16.fm Page 512 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 513

The descriptions of the common fields are the same. The type field has a value of 0.
The flag field has 5 reserved bits and 3 defined bits: U, B, and E. The U (unordered)
field, when set to 1, signals unordered data (explained later). In this case, the value of
the stream sequence number is ignored. The B (beginning) and E (end) bits together
define the position of a chunk in a message that is fragmented. When B = 1 and E = 1,
there is no fragmentation (first and last); the whole message is carried in one chunk.
When B = 1 and E = 0, it is the first fragment. When B = 0 and E = 1, it is the last
fragment. When B = 0 and E = 0, it is a middle fragment (neither the first nor the last).
Note that the value of the length field does not include padding. This value cannot be
less than 17 because a DATA chunk must always carry at least one byte of data.

❑ Transmission sequence number (TSN). This 32-bit field defines the transmission
sequence number. It is a sequence number that is initialized in an INIT chunk for
one direction and in the INIT ACK chunk for the opposite direction.

❑ Stream identifier (SI). This 16-bit field defines each stream in an association.
All chunks belonging to the same stream in one direction carry the same stream
identifier.

❑ Stream sequence number (SSN). This 16-bit field defines a chunk in a particular
stream in one direction.

❑ Protocol identifier. This 32-bit field can be used by the application program to
define the type of data. It is ignored by the SCTP layer.

❑ User data. This field carries the actual user data. SCTP has some specific rules
about the user data field. First, no chunk can carry data belonging to more than one
message, but a message can be spread over several data chunks. Second, this field
cannot be empty; it must have at least one byte of user data. Third, if the data can-
not end at a 32-bit boundary, padding must be added. These padding bytes are not
included in the value of the length field.

INIT

The INIT chunk (initiation chunk) is the first chunk sent by an end point to establish
an association. The packet that carries this chunk cannot carry any other control or data
chunks. The value of the verification tag for this packet is 0, which means no tag has yet
been defined. The format is shown in Figure 16.10.

The three common fields (type, flag, and length) are as before. The value of the
type field is 1. The value of the flag field is zero (no flags); and the value of the length
field is a minimum of 20 (more if there are optional parameters). The other fields are
explained below:

❑ Initiation tag. This 32-bit field defines the value of the verification tag for packets
traveling in the opposite direction. As we mentioned before, all packets have a ver-
ification tag in the general header; this tag is the same for all packets traveling
in one direction in an association. The value of this tag is determined during

A DATA chunk cannot carry data belonging to more than one message, but a message
can be split into several chunks. The data field of the DATA chunk must carry at least

one byte of data, which means the value of length field cannot be less than 17.

for76042_ch16.fm Page 513 Tuesday, February 17, 2009 11:17 AM

514 PART 3 TRANSPORT LAYER

association establishment. The end point that initiates the association defines the
value of this tag in the initiation tag field. This value is used as the verification tag
in the rest of the packets sent from the other direction. For example, when end point
A starts an association with end point B, A defines an initiation tag value, say x,
which is used as the verification tag for all packets sent from B to A. The initiation
tag is a random number between 0 and 232 − 1. The value of 0 defines no association
and is permitted only by the general header of the INIT chunk.

❑ Advertised receiver window credit. This 32-bit field is used in flow control and
defines the initial amount of data in bytes that the sender of the INIT chunk can
allow. It is the rwnd value that will be used by the receiver to know how much data
to send. Note that, in SCTP, sequence numbers are in terms of chunks.

❑ Outbound stream. This 16-bit field defines the number of streams that the initia-
tor of the association suggests for streams in the outbound direction. It may be
reduced by the other end point.

❑ Maximum inbound stream. This 16-bit field defines the maximum number of
streams that the initiator of the association can support in the inbound direction. Note
that this is a maximum number and cannot be increased by the other end point.

❑ Initial TSN. This 32-bit field initializes the transmission sequence number (TSN)
in the outbound direction. Note that each data chunk in an association has to have
one TSN. The value of this field is also a random number less than 232.

❑ Variable-length parameters. These optional parameters may be added to the
INIT chunk to define the IP address of sending end point, the number of IP
addresses the end point can support (multihome), the preservation of the cookie
state, the type of addresses, and support of explicit congestion notification (ECN).

INIT ACK

The INIT ACK chunk (initiation acknowledgment chunk) is the second chunk sent
during association establishment. The packet that carries this chunk cannot carry any

Figure 16.10 INIT chunk

No other chunk can be carried in a packet that carries an INIT chunk.

Type: 1 Flag: 0 Length

Advertised receiver window credit

Initial TSN

Variable-length parameters
(optional)

Outbound streams Maximum inbound streams

Initiation tag

0 7 8 15 16 31

for76042_ch16.fm Page 514 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 515

other control or data chunks. The value of the verification tag for this packet (located in
the general header) is the value of the initiation tag defined in the received INIT chunk.
The format is shown in Figure 16.11.

Note that the fields in the main part of the chunk are the same as those defined in
the INIT chunk. However, a mandatory parameter is required for this chunk. The
parameter of type 7 defines the state cookie sent by the sender of this chunk. We discuss
the use of cookies later in the chapter. The chunk can also have optional parameters.
Note that the initiation tag field in this chunk initiates the value of the verification tag
for future packets traveling from the opposite direction.

COOKIE ECHO

The COOKIE ECHO chunk is the third chunk sent during association establishment.
It is sent by the end point that receives an INIT ACK chunk (normally the sender of the
INIT chunk). The packet that carries this chunk can also carry user data. The format is
shown in Figure 16.12.

Note that this is a very simple chunk of type 10. In the information section it echoes
the state cookie that the end point has previously received in the INIT ACK. The
receiver of the INIT ACK cannot open the cookie.

Figure 16.11 INIT ACK chunk

No other chunk can be carried in a packet that carries an INIT ACK chunk.

Figure 16.12 COOKIE ECHO chunk

Type: 2 Flag: 0 Length

Advertised receiver window credit

Initial TSN

Variable-length parameters
(optional)

M
an

da
to

ry
pa

ra
m

et
er

 f
ie

ld
s

Outbound streams Maximum inbound streams

Initiation tag

State cookie

Parameter type: 7 Parameter length

0 7 8 15 16 31

Type: 10 Flag: 0 Length

State cookie

0 7 8 15 16 31

for76042_ch16.fm Page 515 Tuesday, February 17, 2009 11:17 AM

516 PART 3 TRANSPORT LAYER

COOKIE ACK

The COOKIE ACK chunk is the fourth and last chunk sent during association estab-
lishment. It is sent by an end point that receives a COOKIE ECHO chunk. The packet
that carries this chunk can also carry user data. The format is shown in Figure 16.13.

Note that this is a very simple chunk of type 11. The length of the chunk is exactly
4 bytes.

SACK

The SACK chunk (selective ACK chunk) acknowledges the receipt of data packets.
Figure 16.14 shows the format of the SACK chunk.

The common fields are the same as discussed previously. The type field has a value
of 3. The flag bits are all set to 0s.

❑ Cumulative TSN acknowledgment. This 32-bit field defines the TSN of the last
data chunk received in sequence.

❑ Advertised receiver window credit. This 32-bit field is the updated value for the
receiver window size.

❑ Number of gap ACK blocks. This 16-bit field defines the number of gaps in the
data chunk received after the cumulative TSN. Note that the term gap is mislead-
ing here: the gap defines the sequence of received chunks, not the missing chunks.

❑ Number of duplicates. This 16-bit field defines the number of duplicate chunks
following the cumulative TSN.

Figure 16.13 COOKIE ACK

Figure 16.14 SACK chunk

Type: 11 Flag: 0 Length: 4
0 7 8 15 16 31

Type: 3 Flag: 0 Length

Advertised receiver window credit

Gap ACK block #1 start TSN offset

Gap ACK block #N start TSN offset

Duplicate TSN 1

Duplicate TSN M

Cumulative TSN acknowledgement

Number of gap ACK blocks: N Number of duplicates: M

0 7 8 15 16 31

Gap ACK block #1 end TSN offset

Gap ACK block #N end TSN offset

for76042_ch16.fm Page 516 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 517

❑ Gap ACK block start offset. For each gap block, this 16-bit field gives the start-
ing TSN relative to the cumulative TSN.

❑ Gap ACK block end offset. For each gap block, this 16-bit field gives the ending
TSN relative to the cumulative TSN.

❑ Duplicate TSN. For each duplicate chunk, this 32-bit field gives the TSN of the
duplicate chunk.

HEARTBEAT and HEARTBEAT ACK

The HEARTBEAT chunk and HEARTBEAT ACK chunk are similar except for the
type field. The first has a type of 4 and the second a type of 5. Figure 16.15 shows the
format of these chunks. These two chunks are used to periodically probe the condition
of an association. An end point sends a HEARTBEAT chunk; the peer responds with a
HEARTBEAT ACK if it is alive. The format has the common three fields and manda-
tory parameter fields that provide sender-specific information. This information in the
HEARTBEAT chunk includes the local time and the address of the sender. It is copied
without change into the HEARTBEAT ACK chunk.

SHUTDOWN, SHUTDOWN ACK, and SHUTDOWN COMPLETE

These three chunks (used for closing an association) are similar. The SHUTDOWN
chunk, type 7, is eight bytes in length; the second four bytes define the cumulative
TSN. The SHUTDOWN ACK chunk, type 8, is four bytes in length. The SHUT-
DOWN COMPLETE chunk, type 14, is also 4 bytes long, and has a one bit flag, the
T flag. The T flag shows that the sender does not have a TCB table (see Chapter 15).
Figure 16.16 shows the formats.

Figure 16.15 HEARTBEAT and HEARTBEAT ACK chunks

Figure 16.16 SHUTDOWN, SHUTDOWN ACK, and SHUTDOWN COMPLETE chunks

Type: 4 or 5 Flag = 0 Length
0 7 8 15 16 31

M
an

da
to

ry
pa

ra
m

et
er

 f
ie

ld

Sender-specific information

Parameter type: 1 Parameter Length

Type: 7 Flag Length: 8

Cumulative TSN ACK

SHUTDOWN

SHUTDOWN ACK

SHUTDOWN COMPLETE

0 7 8 15 16 31

Type: 8 Flag Length: 4

0 7 8 15 16 31

Type: 14 Flag Length: 4

0 7 8 1514 16 31

T

for76042_ch16.fm Page 517 Tuesday, February 17, 2009 11:17 AM

518 PART 3 TRANSPORT LAYER

ERROR

The ERROR chunk is sent when an end point finds some error in a received packet.
Note that the sending of an ERROR chunk does not imply the aborting of the associa-
tion. (This would require an ABORT chunk.) Figure 16.17 shows the format of the
ERROR chunk.

The errors are defined in Table 16.3.

ABORT

The ABORT chunk is sent when an end point finds a fatal error and needs to abort the
association. The error types are the same as those for the ERROR chunk (see Table 16.3).
Figure 16.18 shows the format of an ABORT chunk.

FORWARD TSN

This is a chunk recently added to the standard (see RFC 3758) to inform the receiver to
adjust its cumulative TSN. It provides partial reliable service.

Figure 16.17 ERROR chunk

Table 16.3 Errors

Code Description
1 Invalid stream identifier
2 Missing mandatory parameter
3 State cookie error
4 Out of resource
5 Unresolvable address
6 Unrecognized chunk type
7 Invalid mandatory parameters
8 Unrecognized parameter
9 No user data

10 Cookie received while shutting down

Figure 16.18 ABORT chunk

Type: 9 Flag Length

One or more error causes

0 7 8 15 16 31

Type: 6 Flag: 6 Length

One or more error causes
(optional)

0 7 8 15 16 31

for76042_ch16.fm Page 518 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 519

16.5 AN SCTP ASSOCIATION
SCTP, like TCP, is a connection-oriented protocol. However, a connection in SCTP is
called an association to emphasize multihoming.

Association Establishment
Association establishment in SCTP requires a four-way handshake. In this proce-
dure, a process, normally a client, wants to establish an association with another process,
normally a server, using SCTP as the transport layer protocol. Similar to TCP, the
SCTP server needs to be prepared to receive any association (passive open). Associa-
tion establishment, however, is initiated by the client (active open). SCTP association
establishment is shown in Figure 16.19.

The steps, in a normal situation, are as follows:

1. The client sends the first packet, which contains an INIT chunk. The verification
tag (VT) of this packet (defined in the general header) is 0 because no verification
tag has yet been defined for this direction (client to server).The INIT tag includes
an initiation tag to be used for packets from the other direction (server to client).
The chunk also defines the initial TSN for this direction and advertises a value for
rwnd. The value of rwnd is normally advertised in a SACK chunk; it is done here
because SCTP allows the inclusion of a DATA chunk in the third and fourth packets;
the server must be aware of the available client buffer size. Note that no other chunks
can be sent with the first packet.

2. The server sends the second packet, which contains an INIT ACK chunk. The veri-
fication tag is the value of the initial tag field in the INIT chunk. This chunk ini-
tiates the tag to be used in the other direction, defines the initial TSN, for data flow
from server to client, and sets the servers’ rwnd. The value of rwnd is defined to
allow the client to send a DATA chunk with the third packet. The INIT ACK also

A connection in SCTP is called an association.

Figure 16.19 Four-way handshaking

Client

Active
open

TimeTime

INIT
Init tag: 1200 rwnd: 1000
Init TSN: 100

VT:0

VT:1200INIT ACK
Init tag: 5000
Init TSN: 1700

rwnd: 2000

Cookie

COOKIE ACK VT:1200

COOKIE ECHO VT:5000

Cookie

Server

1

2

3

4

for76042_ch16.fm Page 519 Tuesday, February 17, 2009 11:17 AM

520 PART 3 TRANSPORT LAYER

sends a cookie that defines the state of the server at this moment. We will discuss
the use of the cookie shortly.

3. The client sends the third packet, which includes a COOKIE ECHO chunk. This is
a very simple chunk that echoes, without change, the cookie sent by the server.
SCTP allows the inclusion of data chunks in this packet.

4. The server sends the fourth packet, which includes the COOKIE ACK chunk that
acknowledges the receipt of the COOKIE ECHO chunk. SCTP allows the inclu-
sion of data chunks with this packet.

Number of Packets Exchanged

The number of packets exchanged is three in a TCP connection establishment, and four
in an SCTP association establishment. It might seem that SCTP is less efficient than
TCP, but we need to consider that SCTP allows the exchange of data in the third and
fourth packets and, as we shall see, provides better security against SYN denial-of-
service attacks. After two packets are exchanged, data can be transferred.

Verification Tag

When we compare TCP and SCTP, we find that the verification tag in SCTP does not
exist in TCP. In TCP, a connection is identified by a combination of IP addresses and
port numbers which is part of each segment. This has created two problems:

1. A blind attacker (not an interceptor) can send segments to a TCP server using ran-
domly chosen source and destination port numbers such as those we discussed in a
SYN flooding attack.

2. A delayed segment from a previous connection can show up in a new connection
that uses the same source and destination port addresses (incarnation). This was
one of the reasons that TCP needs a TIME-WAIT timer when terminating a
connection.

SCTP solves these two problems by using a verification tag, a common value that is
carried in all packets traveling in one direction in an association. A blind attacker can-
not inject a random packet into an association because the packet would most likely not
carry the appropriate tag (odds are 1 out of 232). A packet from an old association can-
not show up in an incarnation because, even if the source and destination port addresses
are the same, the verification tag would surely be different. Two verification tags, one
for each direction, identify an association.

Cookie

We discussed a SYN flooding attack in Chapter 15. With TCP, a malicious attacker can
flood a TCP server with a huge number of phony SYN segments using different forged
IP addresses. Each time the server receives a SYN segment, it sets up a TCB and allo-
cates other resources while waiting for the next segment to arrive. After a while, how-
ever, the server may collapse due to the exhaustion of resources.

No other chunk is allowed in a packet carrying
an INIT or INIT ACK chunk.

A COOKIE ECHO or a COOKIE ACK chunk can carry data chunks.

for76042_ch16.fm Page 520 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 521

The designers of SCTP have a strategy to prevent this type of attack. The strategy
is to postpone the allocation of resources until the reception of the third packet, when
the IP address of the sender is verified. The information received in the first packet
must somehow be saved until the third packet arrives. But if the server saves the infor-
mation, that would require the allocation of resources (memory); this is the dilemma.
The solution is to pack the information and send it back to the client. This is called
generating a cookie. The cookie is sent with the second packet to the address received
in the first packet. There are two potential situations.

1. If the sender of the first packet is an attacker, the server never receives the third
packet; the cookie is lost and no resources are allocated. The only effort for the
server is “baking” the cookie.

2. If the sender of the first packet is an honest client that needs to make a connection,
it receives the second packet, with the cookie. It sends a packet (third in the series)
with the cookie, with no changes. The server receives the third packet and knows
that it has come from an honest client because the cookie that the sender has sent is
there. The server can now allocate resources.

The above strategy works if no entity can “eat” a cookie “baked” by the server. To guar-
antee this, the server creates a digest (see Chapter 29) from the information using its
own secret key. The information and the digest, together make the cookie, which is sent
to the client in the second packet. When the cookie is returned in the third packet, the
server calculates the digest from the information. If the digest matches the one that is
sent, the cookie has not been changed by any other entity.

Data Transfer
The whole purpose of an association is to transfer data between two ends. After the
association is established, bidirectional data transfer can take place. The client and the
server can both send data. Like TCP, SCTP supports piggybacking.

There is a major difference, however, between data transfer in TCP and SCTP. TCP
receives messages from a process as a stream of bytes without recognizing any bound-
ary between them. The process may insert some boundaries for its peer use, but TCP
treats that mark as part of the text. In other words, TCP takes each message and
appends it to its buffer. A segment can carry parts of two different messages. The only
ordering system imposed by TCP is the byte numbers.

SCTP, on the other hand, recognizes and maintains boundaries. Each message
coming from the process is treated as one unit and inserted into a DATA chunk unless it
is fragmented (discussed later). In this sense, SCTP is like UDP, with one big advan-
tage: data chunks are related to each other.

A message received from a process becomes a DATA chunk, or chunks if frag-
mented, by adding a DATA chunk header to the message. Each DATA chunk formed by
a message or a fragment of a message has one TSN. We need to remember that only
DATA chunks use TSNs and only DATA chunks are acknowledged by SACK chunks.

In SCTP, only data chunks consume TSNs;
data chunks are the only chunks that are acknowledged.

for76042_ch16.fm Page 521 Tuesday, February 17, 2009 11:17 AM

522 PART 3 TRANSPORT LAYER

Let us show a simple scenario in Figure 16.20. In this figure a client sends four
DATA chunks and receives two DATA chunks from the server. Later, we will discuss, in
more detail, the use of flow and error control in SCTP. For the moment, we assume that
everything goes well in this scenario. The client uses the verification tag 85, the server
700. The packets sent are described below:

1. The client sends the first packet carrying two DATA chunks with TSNs 7105 and 7106.

2. The client sends the second packet carrying two DATA chunks with TSNs 7107
and 7108.

3. The third packet is from the server. It contains the SACK chunk needed to
acknowledge the receipt of DATA chunks from the client. Contrary to TCP, SCTP
acknowledges the last in-order TSN received, not the next expected. The third
packet also includes the first DATA chunk from the server with TSN 121.

4. After a while, the server sends another packet carrying the last DATA chunk with
TSN 122, but it does not include a SACK chunk in the packet because the last
DATA chunk received from the client was already acknowledged.

5. Finally, the client sends a packet that contains a SACK chunk acknowledging the
receipt of the last two DATA chunks from the server.

Multihoming Data Transfer

We discussed the multihoming capability of SCTP, a feature that distinguishes SCTP
from UDP and TCP. Multihoming allows both ends to define multiple IP addresses for

Figure 16.20 Simple data transfer

The acknowledgment in SCTP defines the cumulative TSN,
the TSN of the last data chunk received in order.

Client

TimeTime

Server

DATA chunk

DATA chunk

TSN: 7105

TSN: 7106

VT: 85

VT: 85

SACK chunk

DATA chunk

cumTSN: 7108

TSN: 121

DATA chunk
TSN: 122

VT: 700

VT: 700

VT: 85

SACK chunk
cumTSN: 122

VT: 85

DATA chunk

DATA chunk

TSN: 7107

TSN: 7108

VT: 85

1

2

3

4

5

for76042_ch16.fm Page 522 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 523

communication. However, only one of these addresses can be defined as the primary
address; the rest are alternative addresses. The primary address is defined during asso-
ciation establishment. The interesting point is that the primary address of an end is
determined by the other end. In other words, a source defines the primary address for a
destination.

Data transfer, by default, uses the primary address of the destination. If the primary
is not available, one of the alternative addresses is used. The process, however, can
always override the primary address and explicitly request that a message be sent to one
of the alternative addresses. A process can also explicitly change the primary address of
the current association.

A logical question that arises is where to send a SACK. SCTP dictates that a
SACK be sent to the address from which the corresponding SCTP packet originated.

Multistream Delivery

One interesting feature of SCTP is the distinction between data transfer and data deliv-
ery. SCTP uses TSN numbers to handle data transfer, movement of data chunks
between the source and destination. The delivery of the data chunks are controlled by
SIs and SSNs. SCTP can support multiple streams, which means that the sender pro-
cess can define different streams and a message can belong to one of these streams.
Each stream is assigned a stream identifier (SI) which uniquely defines that stream.
However, SCTP supports two types of data delivery in each stream: ordered (default)
and unordered. In ordered data delivery, data chunks in a stream use stream sequence
numbers (SSNs) to define their order in the stream. When the chunks arrive at the desti-
nation, SCTP is responsible for message delivery according to the SSN defined in the
chunk. This may delay the delivery because some chunks may arrive out of order. In
unordered data delivery, the data chunks in a stream have the U flag set, but their SSN
field value is ignored. They do not consume SSNs. When an unordered data chunk
arrives at the destination SCTP, it delivers the message carrying the chunk to the appli-
cation without waiting for the other messages. Most of the time, applications use the
ordered-delivery service, but occasionally some applications need to send urgent data
that must be delivered out of order (recall the urgent data and urgent pointer facility of
TCP). In these cases, the application can define the delivery as unordered.

Fragmentation

Another issue in data transfer is fragmentation. Although SCTP shares this term with
IP, fragmentation in IP and SCTP belong to different levels: the former at the network
layer, the latter at the transport layer.

SCTP preserves the boundaries of the message from process to process when cre-
ating a DATA chunk from a message if the size of the message (when encapsulated in
an IP datagram) does not exceed the MTU of the path. The size of an IP datagram car-
rying a message can be determined by adding the size of the message, in bytes, to the
four overheads: data chunk header, necessary SACK chunks, SCTP general header, and
IP header. If the total size exceeds the MTU, the message needs to be fragmented.

Fragmentation at the source SCTP takes place using the following steps:

1. The message is broken into smaller fragments to meet the size requirement.

2. A DATA chunk header is added to each fragment that carries a different TSN. The
TSN needs to be in sequence.

for76042_ch16.fm Page 523 Tuesday, February 17, 2009 11:17 AM

524 PART 3 TRANSPORT LAYER

3. All header chunks carry the same stream identifier (SI), the same stream sequence
number (SSN), the same payload protocol identifier, and the same U flag.

4. The combination of B and E are assigned as follows:

a. First fragment: 10

b. Middle fragments: 00

c. Last fragment: 01.

The fragments are reassembled at the destination. If a DATA chunk arrives with its B/E
bits not equal to 11, it is not fragmented. The receiver knows how to reassemble all
chunks with the same SIs and SSNs. The number of fragments is determined by the
TSN number of the first and the last fragments.

Association Termination
In SCTP, like TCP, either of the two parties involved in exchanging data (client or
server) can close the connection. However, unlike TCP, SCTP does not allow a “half-
closed” association. If one end closes the association, the other end must stop sending
new data. If any data are left over in the queue of the recipient of the termination
request, they are sent and the association is closed. Association termination uses three
packets as shown in Figure 16.21. Note that although the figure shows the case in
which termination is initiated by the client, it can also be initiated by the server.

There can be several scenarios of association termination. We discuss some of
them later.

Association Abortion
The termination of association discussed in the previous section is sometimes referred
to as “graceful termination.” An association in SCTP can also be aborted. The abortion
may be requested by the process at either end or by SCTP. A process may wish to abort
the association if there is a problem in the process itself (receiving wrong data from
the other end, going into an infinite loop, and so on). The server may wish to abort the
association because it has received an INIT chunk with wrong parameters, the

Figure 16.21 Association termination

Client

Active
close

Passive
close

Server

TimeTime

SHUTDOWN VT: x

VT: y SHUTDOWN ACK

SHUTDOWN
COMPLETE VT:x

cum TSN
1

2

3

for76042_ch16.fm Page 524 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 525

requested resources are not available after receiving the cookie, the operating system
needs to shut down, and so on.

The abortion process in SCTP is very simple. Either end can send an ABORT chunk
and abort the association as shown in Figure 16.22. No further chunks are needed.

16.6 STATE TRANSITION DIAGRAM
To keep track of all the different events happening during association establishment, associ-
ation termination, and data transfer, the SCTP software, like TCP, is implemented as a finite
state machine. Figure 16.23 shows the state transition diagram for both client and server.

The dotted black lines of the figure represent the normal transitions for the server;
the solid black lines represent the normal transitions for the client, and the colored lines

Figure 16.22 Association abortion

Figure 16.23 State transition diagram

An end An end

TimeTime

ABORT VT: x

Causes (optional)
1

COOKIE-
WAIT

COOKIE-
ECHOED

SHUTDOWN-
PENDING

SHUTDOWN-
RECEIVED

SHUTDOWN-
ACK-SENT

SHUTDOWN-
SENT

ESTABLISHED

CLOSED

Active open / INIT

SHUTDOWN
/ leftover data

Close
/ leftover data

 / SHUTDOWN / SHUTDOWN ACK
 SHUTDOWN /

SHUTDOWN ACK

SHUTDOWN
COMPLETE /

SHUTDOWN ACK/
SHUTDOWN COMPLETE

S
H

U
T

D
O

W
N

 A
C

K
/

S
H

U
T

D
O

W
N

 C
O

M
P

L
E

T
E

INIT / INIT-ACK

COOKIE ACK /

INIT ACK / COOKIE ECHO

C
O

O
K

IE
 E

C
H

O
 /

 C
O

O
K

IE
 A

C
K

for76042_ch16.fm Page 525 Tuesday, February 17, 2009 11:17 AM

526 PART 3 TRANSPORT LAYER

represent unusual situations. In special situations, a server can go through a transition
shown by a solid line; a client can go through a transition shown by a broken line.
Table 16.4 shows the states for SCTP.

Scenarios
To understand the SCTP state machines and the transition diagrams, we go through
some scenarios in this section.

A Common Scenario

Figure 16.24 shows a typical scenario. This is a routine situation in which the open and
close commands come from the client. We have shown the states as we did for the

Table 16.4 States for SCTP

State Description
CLOSED No connection
COOKIE-WAIT Waiting for a cookie
COOKIE-ECHOED Waiting for cookie acknowledgment
ESTABLISHED Connection is established; data are being transferred
SHUTDOWN-PENDING Sending data after receiving close
SHUTDOWN-SENT Waiting for SHUTDOWN acknowledgment
SHUTDOWN-RECEIVED Sending data after receiving SHUTDOWN
SHUTDOWN-ACK-SENT Waiting for termination completion

Figure 16.24 A common scenario of states

States

States

Client
process

A
ct

iv
e

op
en

A
ct

iv
e

cl
os

e

SHUTDOWN-
PENDING

Server
process

INIT

SHUTDOWN

SHUTDOWN COMPLETE

COOKIE ECHO

INIT ACK

COOKIE ACK

SHUTDOWN ACK

Data
Transfer

Leftover data are sent.

In
fo

rm
 th

e
pr

oc
es

s
th

at
 n

o
m

or
e

da
ta

 w
il

l b
e

ac
ce

pt
ed

.

Leftover data are sent.

C
L

O
SE

D
C

L
O

SE
D

C
L

O
SE

D
C

L
O

SE
D

C
O

O
K

IE
-

W
A

IT
C

O
O

K
IE

-
E

C
H

O
E

D

ESTABLISHED
ESTABLISHED

SHUTDOWN
-ACK-SENT

SHUTDOWN
-RECEIVED

SHUTDOWN-
SENT

for76042_ch16.fm Page 526 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 527

corresponding TCP scenario. The figure specifically shows association establishment
(the first four packets) and association termination (the last three packets) and the states
the client and server go through. Note that the server remains in the CLOSED state
during association establishment, but the client goes through two states (COOKIE-
WAIT and COOKIE-ECHOED).

When the client SCTP receives an active close, it goes to the SHUTDOWN-
PENDING state. It remains in this state until all leftover data is sent. It then sends a
SHUTDOWN chunk and goes to SHUTDOWN-SENT state. The server, after receiv-
ing the SHUTDOWN chunk, informs its process that no more data will be accepted.
It then goes to SHUTDOWN-RECEIVED state. While in this state, it sends all left-
over data to the client and then sends a SHUTDOWN ACK chunk. It then goes to
SHUTDOWN-ACK-SENT state. After receiving the last chunk, the client sends a
SHUTDOWN COMPLETE chunk and closes the association. The server closes the
association after receiving the last chunk.

Simultaneous Open

The cookie has created some complexity in association establishment. When an end
receives an INIT chunk and sends an INIT-ACK chunk, it is still in the CLOSED state;
it does not remember what it has received or sent. This creates a problem if an end
process issues an active open, and, before the association is established, the other end
process also issues an active open. Figure 16.25 shows a scenario.

The process at site A issues an active open and sends an INIT chunk. Site B
receives the INIT chunk and sends an INIT-ACK chunk. Before site B receives a
COOKIE-ECHO chunk from site A, the process at site B issues an active open. SCTP

Figure 16.25 Simultaneous open

Process A Process B

ac
tiv

e
op

en

ac
tiv

e
op

en

ESTABLISHED

ESTABLISHED

INIT IT: 2000

Tag: 0

COOKIE ECHO

Tag: 500

Tag: 600

Tag: 600

INIT-ACK IT: 3000

COOKIE-ACK

Tag: 2000

IT: 600

Tag: 0

Tag: 3000

INIT

COOKIE ECHO

Discard

L
oc

al
 ta

g:
 3

00
0

L
oc

al
 ta

g:
 2

00
0

L
oc

al
 ta

g:
 6

00
L

oc
al

 ta
g:

 5
00

C
L

O
SE

D

C
L

O
SE

D
C

L
O

SE
D

C
O

O
K

IE
-

W
A

IT

C
O

O
K

IE
-

W
A

ITC
O

O
K

IE
-

E
C

H
O

E
D

C
O

O
K

IE
-

E
C

H
O

E
D

for76042_ch16.fm Page 527 Tuesday, February 17, 2009 11:17 AM

528 PART 3 TRANSPORT LAYER

at site B, not remembering that an association has started, sends an INIT chunk to site
A and starts a new association. The two associations collide.

To handle this type of problem, SCTP requires that each site, when sending an
INIT or an INIT-ACT chunk, also send an initiation tag. This tag is saved in a variable,
say local tag. At any time, only one local tag value is held in this variable. Each time a
packet arrives with a verification tag that does not match the value of the local tag, it is
discarded. SCTP can also start a new association when it is in the middle of association
setup and a new INIT chunk arrives.

Our scenario shows the use of these tags. Site A starts with an INIT chunk and ini-
tiation tag of 2000; the value of local tag is now 2000. Site B sends an INIT-ACK with
an initialization tag of 500; the value of local tag for this site is 500. When site B sends
an INIT chunk, the initialization tag and the local tag change to 600. Site B discards the
COOKIE-ECHO received because the tag on the packet is 500, which does not match
the local tag of 600. The unfinished first association is aborted here. The new associa-
tion, however, continues with site B as the initiator.

Simultaneous Close

Two end points can close the association simultaneously. This happens when a client’s
SHUTDOWN chunk reaches the server that has already sent a SHUTDOWN chunk
itself. In this case both the client and the server can go to different states to terminate
the association as shown in Figure 16.26.

The figure shows that both the client and the server issue an active close. We
assume that none of the SCTPs has leftover data to send. So the SHUTDOWN
PENDING state is skipped. Both SCTPs go to the SHUTDOWN-SENT state after
receiving the SHUTDOWN chunks. Both send a SHUTDOWN ACK chunk and go to
SHUTDOWN-ACK-SENT state. Both remain in this state until they receive the

Figure 16.26 Simultaneous close

States States

Client
Processactive close

active close

SHUTDOWN
-ACK-SENT

SHUTDOWN
-ACK-SENT

SHUTDOWN-
SENT

SHUTDOWN-
SENT

Server
Process

SHUTDOWN

SHUTDOWN ACK

SHUTDOWN COMPLETE

SHUTDOWN

SHUTDOWN ACK

SHUTDOWN COMPLETE

ESTABLISHED

ESTABLISHED

C
L

O
SE

D

C
L

O
SE

D

for76042_ch16.fm Page 528 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 529

SHUTDOWN ACK chunk from the other party. They then send SHUTDOWN COM-
PLETE chunks and go to the closed state. Note that when they receive the last
chunks, both SCTPs are already in the CLOSED state. If we look at the state transi-
tion diagram of Figure 16.23, we see that both the client and server follow the same
path after the ESTABLISHED state. This is the path the client follows. However,
after reaching the SHUTDOWN-SENT state, both turn to the right, instead of the
left. When each of them reach the SHUTDOWN-ACK-SENT state, they go down-
ward instead of straight.

Other Scenarios

There are many scenarios that neither space nor time allows us to discuss. We would
need to present information about timers as well as the procedures for the receipt of
unexpected chunks. We would need additional information on SCTP including appro-
priate RFCs. We leave these scenarios as exercises or research activities.

16.7 FLOW CONTROL
Flow control in SCTP is similar to that in TCP. In TCP, we need to deal with only one
unit of data, the byte. In SCTP, we need to handle two units of data, the byte and the
chunk. The values of rwnd and cwnd are expressed in bytes; the values of TSN and
acknowledgments are expressed in chunks. To show the concept, we make some unre-
alistic assumptions. We assume that there is never congestion in the network and that
the network is error free. In other words, we assume that cwnd is infinite and no packet
is lost, delayed, or arrives out of order. We also assume that data transfer is unidirec-
tional. We correct our unrealistic assumptions in later sections. Current SCTP imple-
mentations still use a byte-oriented window for flow control. We, however, show a
buffer in terms of chunks to make the concept easier to understand.

Receiver Site
The receiver has one buffer (queue) and three variables. The queue holds the received
data chunks that have not yet been read by the process. The first variable holds the last
TSN received, cumTSN. The second variable holds the available buffer size, winsize.
The third variable holds the last accumulative acknowledgment, lastACK. Figure 16.27
shows the queue and variables at the receiver site.

Figure 16.27 Flow control, receiver site

Receiving queue

To process

winSize

winSize

lastACK

cumTSN
cumTSN

2223242526

26

20
1000

Received

for76042_ch16.fm Page 529 Tuesday, February 17, 2009 11:17 AM

530 PART 3 TRANSPORT LAYER

1. When the site receives a data chunk, it stores it at the end of the buffer (queue) and
subtracts the size of the chunk from winSize. The TSN number of the chunk is
stored in the cumTSN variable.

2. When the process reads a chunk, it removes it from the queue and adds the size of
the removed chunk to winSize (recycling).

3. When the receiver decides to send a SACK, it checks the value of lastAck; if it is
less than cumTSN, it sends a SACK with a cumulative TSN number equal to the
cumTSN. It also includes the value of winSize as the advertised window size. The
value of lastACK is then updated to hold the value of cumTSN.

Sender Site
The sender has one buffer (queue) and three variables: curTSN, rwnd, and inTransit, as
shown in Figure 16.28. We assume each chunk is 100 bytes long.

The buffer holds the chunks produced by the process that have either been sent or
are ready to be sent. The first variable, curTSN, refers to the next chunk to be sent. All
chunks in the queue with a TSN less than this value have been sent, but not acknowl-
edged; they are outstanding. The second variable, rwnd, holds the last value advertised
by the receiver (in bytes). The third variable, inTransit, holds the number of bytes in
transit, bytes sent but not yet acknowledged. The following is the procedure used by the
sender.

1. A chunk pointed to by curTSN can be sent if the size of the data is less than or
equal to the quantity (rwnd − inTransit). After sending the chunk, the value of
curTSN is incremented by one and now points to the next chunk to be sent. The
value of inTransit is incremented by the size of the data in the transmitted chunk.

2. When a SACK is received, the chunks with a TSN less than or equal to the cumu-
lative TSN in the SACK are removed from the queue and discarded. The sender
does not have to worry about them any more. The value of inTransit is reduced by
the total size of the discarded chunks. The value of rwnd is updated with the value
of the advertised window in the SACK.

A Scenario
Let us give a simple scenario as shown in Figure 16.29. At the start the values of rwnd
at the sender site and winSize at the receiver site are both 2000 (advertised during

Figure 16.28 Flow control, sender site

Sending queue

rwnd
inTransit

curTSN

Outstanding chunks

To send

From process

29 28 27 26303536373839404142

37
2000
700

for76042_ch16.fm Page 530 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 531

association establishment). Originally, there are four messages in the sender queue. The
sender sends one data chunk and adds the number of bytes (1000) to the inTransit vari-
able. After awhile, the sender checks the difference between the rwnd and inTransit,
which is 1000 bytes, so it can send another data chunk. Now the difference between the
two variables is 0 and no more data chunks can be sent. After a while, a SACK arrives
that acknowledges data chunks 1 and 2. The two chunks are removed from the queue.
The value of inTransit is now 0. The SACK however, advertised a receiver window of
value 0, which makes the sender update rwnd to 0. Now the sender is blocked; it cannot
send any data chunks (with one exception explained later).

At the receiver site, the queue is empty at the beginning. After the first data chunk
is received, there is one message in the queue and the value of cumTSN is 1. The value
of winSize is reduced to 1000 because the first message occupies 1000 bytes. After the
second data chunk is received, the value of window size is 0 and the cumTSN is 2.
Now, as we will see, the receiver is required to send a SACK with cumulative TSN of 2.
After the first SACK was sent, the process reads the two messages, which means that
there is now room in the queue; the receiver advertises the situation with a SACK to
allow the sender to send more data chunks. The remaining events are not shown in the
figure.

16.8 ERROR CONTROL
SCTP, like TCP, is a reliable transport-layer protocol. It uses a SACK chunk to report
the state of the receiver buffer to the sender. Each implementation uses a different set of
entities and timers for the receiver and sender sites. We use a very simple design to con-
vey the concept to the reader.

Figure 16.29 Flow control scenario

Sender

TimeTime

Receiver

SACK

ACK: 2 rwnd: 0

SACK

ACK: 2 rwnd: 2000

DATA

DATA

1000 bytes TSN: 2

winSize
lastACK

cumTSN
2000

winSize
lastACK

cumTSN
1000

1
1

winSize
lastACK

cumTSN
0
2

12

winSize
lastACK

cumTSN

2
2000

2

rwnd
inTransit

curTSN

0
2000

1
1234

rwnd
inTransit

curTSN

1000
2000

2
1234

rwnd
inTransit

curTSN

0
0
3

3456

process writes
5 and 6

Process reads
1 and 2

rwnd
inTransit

curTSN

2000
2000

3
1234

1000 bytes TSN: 11

2

3

4

for76042_ch16.fm Page 531 Tuesday, February 17, 2009 11:17 AM

532 PART 3 TRANSPORT LAYER

Receiver Site
In our design, the receiver stores all chunks that have arrived in its queue including the out-
of-order ones. However, it leaves spaces for any missing chunks. It discards duplicate mes-
sages, but keeps track of them for reports to the sender. Figure 16.30 shows a typical
design for the receiver site and the state of the receiving queue at a particular point in time.

The last acknowledgment sent was for data chunk 20. The available window size is
1000 bytes. Chunks 21 to 23 have been received in order. The first out-of-order block
contains chunks 26 to 28. The second out-of-order block contains chunks 31 to 34. A
variable holds the value of cumTSN. An array of variables keeps track of the beginning
and the end of each block that is out of order. An array of variables holds the duplicate
chunks received. Note that there is no need for storing duplicate chunks in the queue,
they will be discarded. The figure also shows the SACK chunk that will be sent to
report the state of the receiver to the sender. The TSN numbers for out-of-order chunks
are relative (offsets) to the cumulative TSN.

Sender Site
At the sender site, our design demands two buffers (queues): a sending queue and a
retransmission queue. We also use three variables: rwnd, inTransit, and curTSN as
described in the previous section. Figure 16.31 shows a typical design.

The sending queue holds chunks 23 to 40. The chunks 23 to 36 have already been
sent, but not acknowledged; they are outstanding chunks. The curTSN points to the
next chunk to be sent (37). We assume that each chunk is 100 bytes, which means that
1400 bytes of data (chunks 23 to 36) are in transit. The sender at this moment has a
retransmission queue. When a packet is sent, a retransmission timer starts for that

Figure 16.30 Error control, receiver site

Receiving queue

OutOfOrderDuplicate

SACK chunk

To process

Received

winSize
lastACK

cumTSN
cumTSN

212223

23

20
1000

26272832 31

31, 34
26, 2822

31

3334

Type: 3

Numbers are
relative to
cumTSN

Flag: 0 Length: 32

Advertised receiver window credit: 1000

Gap ACK block #1 start: 3

Duplicate TSN: 22
Duplicate TSN: 31

Cumulative TSN: 23

Number of gap ACK blocks: 2 Number of duplicates: 2
Gap ACK block #1 end: 5

Gap ACK block #2 start: 8 Gap ACK block #2 end: 11

for76042_ch16.fm Page 532 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 533

packet (all data chunks in that packet). Some implementations use one single timer for
the entire association, but we continue with our tradition of one timer for each packet for
simplification. When the retransmission timer for a packet expires, or three SACKs
arrive that declare a packet as missing (fast retransmission was discussed in Chapter 12),
the chunks in that packet are moved to the retransmission queue to be resent. These
chunks are considered lost, rather than outstanding. The chunks in the retransmission
queue have priority. In other words, the next time the sender sends a chunk, it would be
chunk 21 from the retransmission queue.

To see how the state of the sender changes, assume that the SACK in Figure 16.30
arrives at the sender site in Figure 16.31. Figure 16.32 shows the new state.

1. All chunks having a TSN equal to or less than the cumTSN in the SACK are
removed from the sending or retransmission queue. They are no longer outstanding
or marked for retransmission. Chunks 21 and 22 are removed from the retransmis-
sion queue and 23 is removed from the sending queue.

2. Our design also removes all chunks from the sending queue that are declared in the
gap blocks; some conservative implementations, however, save these chunks until
a cumTSN arrives that includes them. This precaution is needed for the rare occa-
sion when the receiver finds some problem with these out-of-order chunks. We
ignore these rare occasions. Chunks 26 to 28 and chunks 31 to 34, therefore, are
removed from the sending queue.

Figure 16.31 Error control, sender site

Figure 16.32 New state at the sender site after receiving a SACK chunk

Sending Queue

Retransmission
Queue

rwnd
inTransit

curTSN

outstanding chunks

To send

To send

From process

add when timer
expires or three SACKs

received.

23

2122

2425353637383940

37
2000
1400

Sending queue

Retransmission
queue

rwnd
inTransit

curTSN

Outstanding
chunks

To send

To send

From process

Add when timer
expires or three SACKs

received.
2425

29303536373839404142

37
1000
400

for76042_ch16.fm Page 533 Tuesday, February 17, 2009 11:17 AM

534 PART 3 TRANSPORT LAYER

3. The list of duplicate chunks does not have any effect.

4. The value of rwnd is changed to 1000 as advertised in the SACK chunk.

5. We also assume that the transmission timer for the packet that carried chunks 24
and 25 has expired. These move to the retransmission queue and a new retransmis-
sion timer is set according to the exponential backoff rule discussed in Chapter 15.

6. The value of inTransit becomes 400 because only 4 chunks are now in transit. The
chunks in the retransmission queue are not counted because they are assumed lost,
not in transit.

Sending Data Chunks
An end can send a data packet whenever there are data chunks in the sending queue
with a TSN greater than or equal to curTSN or if there are data chunks in the retrans-
mission queue. The retransmission queue has priority. However, the total size of the
data chunk or chunks included in the packet must not exceed the (rwnd − inTransit)
value and the total size of the frame must not exceed the MTU size as we discussed in
previous sections. If we assume in our previous scenario, that our packet can take
3 chunks (due to the MTU restriction), then chunks 24 and 25 from the retransmission
queue and chunk 37, the next chunk ready to be sent in the sending queue, can be sent.
Note that the outstanding chunks in the sending queue cannot be sent; they are assumed
to be in transit. Note also that any chunk sent from the retransmission queue is also
timed for retransmission again. The new timer affects chunks 24, 25, and 37. We need
to mention here that some implementations may not allow mixing chunks from the
retransmission queue and the sending queue. In this case, only chunks 24 and 25 can be
sent in the packet.

Retransmission

To control a lost or discarded chunk, SCTP, like TCP, employs two strategies: using
retransmission timers and receiving four SACKs with the same missing chunks.

Retransmission Timer SCTP uses a retransmission timer, which handles the retrans-
mission time, the waiting time for an acknowledgment of a segment. The procedures
for calculating RTO and RTT in SCTP are the same as we described for TCP. SCTP
uses a measured RTT (RTTM), a smoothed RTT (RTTS), and an RTT deviation (RTTD)
to calculate the RTO. SCTP also uses Karn’s algorithm to avoid acknowledgment ambi-
guity. Note that if a host is using more than one IP address (multihoming), separate
RTOs must be calculated and kept for each path.

Four Missing Reports Whenever a sender receives four SACKs whose gap ack
information indicate one or more specific data chunks are missing, the sender needs to
consider those chunks as lost and immediately move them to the retransmission queue.
This behavior is analogous to “fast retransmission” in TCP, discussed in Chapter 15.

Generating SACK Chunks
Another issue in error control is the generation of SACK chunks. The rules for generat-
ing SCTP SACK chunks are similar to the rules used for acknowledgment with the
TCP ACK flag. We summarize the rules as listed below.

for76042_ch16.fm Page 534 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 535

1. When an end sends a DATA chunk to the other end, it must include a SACK chunk
advertising the receipt of unacknowledged DATA chunks.

2. When an end receives a packet containing data, but has no data to send, it needs to
acknowledge the receipt of the packet within a specified time (usually 500 ms).

3. An end must send at least one SACK for every other packet it receives. This rule
overrides the second rule.

4. When a packet arrives with out-of-order data chunks, the receiver needs to imme-
diately send a SACK chunk reporting the situation to the sender.

5. When an end receives a packet with duplicate DATA chunks and no new DATA
chunks, the duplicate data chunks must be reported immediately with a SACK
chunk.

16.9 CONGESTION CONTROL
SCTP, like TCP, is a transport layer protocol with packets subject to congestion in the
network. The SCTP designers have used the same strategies we described for congestion
control in Chapter 15 for TCP. SCTP has slow start (exponential increase), congestion
avoidance (additive increase), and congestion detection (multiplicative decrease)
phases. Like TCP, SCTP also uses fast retransmission and fast recovery.

Congestion Control and Multihoming
Congestion control in SCTP is more complicated since the host may have more than
one IP address. In this case, there can be more than one path for the data in the network.
Each of these paths may encounter different levels of congestion. This implies that the
site needs to have different values of cwnd for each IP address.

Explicit Congestion Notification
Explicit congestion notification (ECN), as defined for other wide area networks, is a
process that enables a receiver to explicitly inform the sender of any congestion experi-
enced in the network. If a receiver encounters many delayed or lost packets, it is an
indication of probable congestion. SCTP can use an ECN option in the INIT and INIT
ACK chunks to allow both ends to negotiate the use of ECN. If both parties agree, the
receiver can inform the sender of congestion by sending an ECNE (explicit congestion
notification echo) chunk with each packet until it receives a CWR (congestion window
reduce) chunk to show that the sender has reduced its cwnd. We have not discussed
these two chunks because they are not yet part of the standard and because the discus-
sion of explicit congestion notification is beyond the scope of this book.

16.10 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

for76042_ch16.fm Page 535 Tuesday, February 17, 2009 11:17 AM

536 PART 3 TRANSPORT LAYER

Books
We highly recommend [Ste & Xie 01], which is totally devoted to the SCTP protocol.

RFCs
SCTP is discussed in many RFCs including RFC 4820, RFC 4895, RFC 4960, RFC
5043, RFC 5061, and RFC 5062.

16.11 KEY TERMS

16.12 SUMMARY
❑ SCTP is a message-oriented, reliable protocol that combines the good features of

UDP and TCP. SCTP provides additional services not provided by UDP or TCP,
such as multiple-stream and multihoming services. SCTP is a connection-oriented
protocol. An SCTP connection is called an association. SCTP provides flow con-
trol, error control, and congestion control.

❑ SCTP uses the term packet to define a transportation unit. In SCTP, control infor-
mation and data information are carried in separate chunks.

❑ To distinguish between different streams, SCTP uses the sequence identifier (SI).
To distinguish between different data chunks belonging to the same stream, SCTP
uses the stream sequence number (SSN). Data chunks are identified by three iden-
tifiers: TSN, SI, and SSN.

ABORT chunk initiation tag
association message-oriented
association establishment multihoming service
byte-oriented multistream service
CLOSED state ordered delivery
cookie primary address
COOKIE ACK chunk SACK chunk
COOKIE ECHO chunk SHUTDOWN ACK chunk
COOKIE-ECHOED state SHUTDOWN chunk
COOKIE-WAIT state SHUTDOWN COMPLETE chunk
DATA chunk SHUTDOWN-ACT-SENT state
ERROR chunk SHUTDOWN-PENDING state
ESTABLISHED state SHUTDOWN-RECEIVED state
fragmentation SHUTDOWN-SENT state
HEARTBEAT ACK chunk stream identifier (SI)
HEARTBEAT chunk stream sequence number (SSN)
INIT-ACK chunk transmission sequence number (TSN)
INIT chunk unordered delivery
initial TSN verification tag

for76042_ch16.fm Page 536 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 537

❑ SCTP acknowledgment numbers are used only to acknowledge data chunks; con-
trol chunks are acknowledged, if needed, by another control chunk.

❑ SCTP has states within a transition diagram. The states defined for SCTP
are CLOSED, COOKIE-WAIT, COOKIE-ECHOED, ESTABLISHED,
SHUTDOWN-PENDING, SHUTDOWN-SENT, SHUTDOWN-RECEIVED,
and SHUTDOWN-ACK-SENT.

❑ A DATA chunk cannot carry data belonging to more than one message, but a mes-
sage can be split into several chunks (fragmentation).

❑ An SCTP association is normally established using four packets (four-way hand-
shaking). An association is normally terminated using three packets (three-way
handshaking). An SCTP association uses a cookie to prevent blind flooding attacks
and a verification tag to avoid insertion attacks.

❑ The SCTP acknowledgment SACK reports the cumulative TSN, the TSN of the
last data chunk received in order, and selective TSN that have been received.

16.13 PRACTICE SET

Exercises
1. A packet is carrying two DATA chunks, each containing 22 bytes of user data.

What is the size of each DATA chunk? What is the total size of the packet?

2. A SACK chunk reports the receipt of three out-of-order data chunks and five dupli-
cate data chunks. What is the total size of the chunk in bytes?

3. A packet is carrying a COOKIE ECHO message and a DATA chunk. If the size of
the cookie is 200 bytes and that of the user data is 20 bytes, what is the size of the
packet?

4. A packet is carrying a COOKIE ACK message and a DATA chunk. If the user data
is 20 bytes, what is the size of the packet?

5. Four DATA chunks have arrived carrying the following information:

a. Which data chunk is a fragment?

b. Which data chunk is the first fragment?

c. Which data chunk is the last fragment?

d. How many middle fragments are missing?

TSN:27 SI:2 SSN:14 BE:00

TSN:33 SI:2 SSN:15 BE:11

TSN:26 SI:2 SSN:14 BE:00

TSN:24 SI:2 SSN:14 BE:00

TSN:21 SI:2 SSN:14 BE:10

for76042_ch16.fm Page 537 Tuesday, February 17, 2009 11:17 AM

538 PART 3 TRANSPORT LAYER

6. The value of the cumulative TSN in a SACK is 23. The value of the previous
cumulative TSN in the SACK was 29. What is the problem?

7. An SCTP association is in the ESTABLISHED state. It receives a SHUTDOWN
chunk. If the host does not have any outstanding or pending data, what does it need
to do?

8. An SCTP association is in the COOKIE-WAIT state. It receives an INIT chunk;
what does it need to do?

9. The following is a dump of a DATA chunk in hexadecimal format.

a. Is this an ordered or unordered chunk?

b. Is this the first, the last, the middle, or the only fragment?

c. How many bytes of padding are carried by the chunk?

d. What is the TSN?

e. What is the SI?

f. What is the SSN?

g. What is the message?

10. The following is a dump of an SCTP general header in hexadecimal format.

a. What is the source port number?

b. What is the destination port number?

c. What is the value of the verification tag?

d. What is the value of the checksum?

11. The state of a receiver is as follows:

a. The receiving queue has chunks 1 to 8, 11 to 14, and 16 to 20.

b. There are 1800 bytes of space in the queue.

c. The value of lastAck is 4.

d. No duplicate chunk has been received.

e. The value of cumTSN is 5.

Show the contents of the receiving queue and the variables.
12. Show the contents of the SACK message sent by the receiver in Exercise 11.

13. The state of a sender is as follows:

a. The sending queue has chunks 18 to 23.

b. The value of curTSN is 20.

c. The value of the window size is 2000 bytes.

d. The value of inTransit is 200.

If each data chunk contains 100 bytes of data, how many DATA chunks can be sent
now? What is the next data chunk to be sent?

14. An SCTP client opens an association using an initial tag of 806, an initial TSN
of 14534, and a window size of 20000. The server responds with an initial tag of

00000015 00000005 0003000A 00000000 48656C6C 6F000000

04320017 00000001 00000000

for76042_ch16.fm Page 538 Tuesday, February 17, 2009 11:17 AM

CHAPTER 16 STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 539

2000, an initial TSN of 670, and a window size of 14000. Show the contents of all
four packets exchanged during association establishment. Ignore the value of the
cookie.

15. If the client in the previous exercise sends 7600 data chunks and the server sends
570 data chunks, show the contents of the three packets exchanged during associa-
tion termination.

Research Activities
16. We have defined only a few scenarios related to the transition diagram. Show these

other scenarios including, but not limited to, the following cases:

a. The loss, delay, or duplication of any of the four packets during association
establishment.

b. The loss, delay, or duplication of any of the three packets during association
termination.

17. What happens if a SACK chunk is delayed or lost?

18. Find the steps a server takes to validate a cookie.

19. We discussed two timers in TCP: persistence and keepalive. Find out the function-
ality of these timers in SCTP.

20. Find out more about ECN in SCTP. Find the format of these two chunks.

21. Find out more about the parameters used in some SCTP control chunks.

22. Some application programs, such as FTP, need more than one connection when
using TCP. Find how the multistream service of SCTP can help these applications
establish only one association with several streams.

for76042_ch16.fm Page 539 Tuesday, February 17, 2009 11:17 AM

for76042_ch16.fm Page 540 Tuesday, February 17, 2009 11:17 AM

541

P A R T

4

Application Layer

Chapter 17 Introduction to the Application Layer 542

Chapter 18 Host Configuration: DHCP 568

Chapter 19 Domain Name System (DNS) 582

Chapter 20 Remote Login: TELNET and SSH 610

Chapter 21 File Transfer: FTP and TFTP 630

Chapter 22 World Wide Web and HTTP 656

Chapter 23 Electronic Mail: SMTP, POP, IMAP, and MIME 680

Chapter 24 Network Management: SNMP 706

Chapter 25 Multimedia 728

for76042_ch17.fm Page 541 Monday, February 23, 2009 6:17 PM

C H A P T E R

17

542

17

Introduction to the
Application Layer

his chapter is an introduction to the application layer. In the next eight
chapters we introduce common client-server applications used in the

Internet. In this chapter, we give a general picture of how a client-server
program is designed and give some simple codes of their implementation.
The area of network programming is a very vast and complicated one; it
cannot be covered in one chapter. We need to give a bird’s-eye view of this
discipline to make the contents of the next eight chapters easier to
understand.

OBJECTIVES

The chapter has several objectives:

❑

To introduce client-server paradigm.

❑

To introduce socket interfaces and list some common functions in
this interface.

❑

To discuss client-server communication using connectionless
iterative service offered by UDP.

❑

To discuss client-server communication using connection-oriented
concurrent service offered by TCP.

❑

To give an example of a client program using UDP.

❑

To give an example of a server program using UDP.

❑

To give an example of a client program using TCP.

❑

To give an example of server program using TCP.

❑

To briefly discuss the peer-to-peer paradigm and its application.

T

for76042_ch17.fm Page 542 Monday, February 23, 2009 6:17 PM

543

17.1 CLIENT-SERVER PARADIGM

The purpose of a network, or an internetwork, is to provide services to users: A user at
a local site wants to receive a service from a computer at a remote site. One way to
achieve this purpose is to run two programs. A local computer runs a program to
request a service from a remote computer; the remote computer runs a program to give
service to the requesting program. This means that two computers, connected by an
internet, must each run a program, one to provide a service and one to request a service.

At first glance, it looks simple to enable communication between two application
programs, one running at the local site, the other running at the remote site. But many
questions arise when we want to implement the approach. Some of the questions that
we may ask are:

1.

Should both application programs be able to request services and provide services
or should the application programs just do one or the other? One solution is to have
an application program, called the

client,

running on the local machine, request a
service from another application program, called the

server,

running on the remote
machine. In other words, the tasks of requesting a service and providing a service
are separate from each other. An application program is either a requester (a cli-
ent), or a provider (a server). In other words, application programs come in pairs,
client and server, both having the same name.

2.

Should a server provide services only to one specific client or should the server be
able to provide services to any client that requests the type of service it provides?
The most common solution is a server providing a service for any client that needs
that type of service, not a particular one. In other words, the server-client relation-
ship is one-to-many.

3.

Should a computer run only one program (client or server)? The solution is that
any computer connected to the Internet should be able to run any client program if
the appropriate software is available. The server programs need to be run on a
computer that can be continuously running as we will see later.

4.

When should an application program be running? All of the time or just when
there is a need for the service? Generally, a client program, which requests a ser-
vice, should run only when it is needed. The server program, which provides a
service, should run all the time because it does not know when its service will be
needed.

5.

Should there be only one universal application program that can provide any type
of service a user wants? Or should there be one application program for each type
of service? In TCP/IP, services needed frequently and by many users have specific
client-server application programs. For example, we have separate client-server
application programs that allow users to access files, send e-mail, and so on. For

for76042_ch17.fm Page 543 Monday, February 23, 2009 6:17 PM

544

PART 4 APPLICATION LAYER

services that are more customized, we should have one generic application
program that allows users to access the services available on a remote computer.
For example, we should have a client-server application program that allows the
user to log onto a remote computer and then use the services provided by that
computer.

Server

A

server

is a program running on the remote machine providing service to the clients.
When it starts, it opens the door for incoming requests from clients, but it never ini-
tiates a service until it is requested to do so.

A server program is an

infinite

 program. When it starts, it runs infinitely unless a
problem arises. It waits for incoming requests from clients. When a request arrives, it
responds to the request, either iteratively or concurrently as we will see shortly.

Client

A

client

 is a program running on the local machine requesting service from a server. A
client program is

finite

, which means it is started by the user (or another application
program) and terminates when the service is complete. Normally, a client opens the
communication channel using the IP address of the remote host and the well-known
port address of the specific server program running on that machine. After a channel of
communication is opened, the client sends its request and receives a response.
Although the request-response part may be repeated several times, the whole process is
finite and eventually comes to an end.

Concurrency

Both clients and servers can run in concurrent mode.

Concurrency in Clients

Clients can be run on a machine either iteratively or concurrently. Running clients

iteratively

 means running them one by one; one client must start, run, and terminate
before the machine can start another client. Most computers today, however, allow

concurrent

 clients; that is, two or more clients can run at the same time.

Concurrency in Servers

An

iterative

 server can process only one request at a time; it receives a request, pro-
cesses it, and sends the response to the requestor before it handles another request. A
concurrent server, on the other hand, can process many requests at the same time and
thus can share its time between many requests.

The servers use either UDP, a connectionless transport layer protocol, or TCP/
SCTP, a connection-oriented transport layer protocol. Server operation, therefore,
depends on two factors: the transport layer protocol and the service method. Theoret-
ically we can have four types of servers: connectionless iterative, connectionless con-
current, connection-oriented iterative, and connection-oriented concurrent (see
Figure 17.1).

for76042_ch17.fm Page 544 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER

545

Connectionless Iterative Server

The servers that use UDP are normally iterative, which, as we have said, means that the
server processes one request at a time. A server gets the request received in a datagram
from UDP, processes the request, and gives the response to UDP to send to the client.
The server pays no attention to the other datagrams. These datagrams are stored in a
queue, waiting for service. They could all be from one client or from many clients. In
either case they are processed one by one in order of arrival.

The server uses one single port for this purpose, the well-known port. All the data-
grams arriving at this port wait in line to be served, as is shown in Figure 17.2.

Connection-Oriented Concurrent Server

The servers that use TCP (or SCTP) are normally concurrent. This means that the
server can serve many clients at the same time. Communication is connection-oriented,
which means that a request is a stream of bytes that can arrive in several segments and
the response can occupy several segments. A connection is established between the
server and each client, and the connection remains open until the entire stream is pro-
cessed and the connection is terminated.

Figure 17.1

Server types

Figure 17.2

Connectionless iterative server

Connectionless
iterative

Servers

UDP TCP/SCTP

Connectionless
concurrent

Connection-oriented
iterative

Connection-oriented
concurrent

Server

Client 1

UDP

UDP

UDP

Ephemeral port

Datagram from client 1

Datagram from client 2
Datagram from client 3

Ephemeral port

Ephemeral port

Client 2

UDP

Well-known port

Incoming
queue

Legend

Client 3

for76042_ch17.fm Page 545 Monday, February 23, 2009 6:17 PM

546

PART 4 APPLICATION LAYER

This type of server cannot use only one port because each connection needs a port
and many connections may be open at the same time. Many ports are needed, but a server
can use only one well-known port. The solution is to have one well-known port and many
ephemeral ports. The server accepts connection requests at the well-known port. A client
can make its initial approach to this port to make the connection. After the connection is
made, the server assigns a temporary port to this connection to free the well-known port.
Data transfer can now take place between these two temporary ports, one at the client site
and the other at the server site. The well-known port is now free for another client to make
the connection. To serve several clients at the same time, a server creates child processes,
which are copies of the original process (parent process).

The server must also have one queue for each connection. The segments come
from the client, are stored in the appropriate queue, and will be served concurrently by
the server. See Figure 17.3 for this configuration.

Socket Interfaces

How can a client process communicate with a server process? A computer program is a
set of predefined instructions that tells the computer what to do. A computer program
has a set of instructions for mathematical operations, another set of instructions for
string manipulation, still another set of instructions for input/output access. If we need
a program to be able to communicate with another program running on another
machine, we need a new set of instructions to tell the transport layer to open the con-
nection, send data to and receive data from the other end, and close the connection. A
set of instructions of this kind is normally referred to as an

interface.

Figure 17.3

Connection-oriented concurrent server

An interface is a set of instructions designed for interaction between two entities.

Parent
server Child

server
Child
server

Child
server

TCP

TCP

TCP

Ephemeral port

Ephemeral port

Ephemeral port

Ephemeral
ports

Well-known
port

Client 1

Client 2

Client 3

Server

TCP

Segment from client 1

Segment from client 2
Segment from client 3

Legend

Well-known port is used only
for connection establishment

Note:

Incoming
queues

for76042_ch17.fm Page 546 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER

547

Several interfaces have been designed for communication. Three among them are
common:

socket interface

,

transport layer interface

 (

TLI

)

,

 and

STREAM.

 Although
a network programmer needs to be familiar with all of these interfaces, we briefly dis-
cuss only the socket interface in this chapter to give the general idea of network com-
munication at the application layer.

Socket interface started in early 1980s at the University of Berkeley as part of a
UNIX environment. To better understand the concept of socket interface, we need to con-
sider the relationship between the underlying operating system, such as UNIX or Win-
dows, and the TCP/IP protocol suite. The issue that we have ignored so far. Figure 17.4
shows a conceptual relation between the operating system and the suite.

The socket interface, as a set of instructions, is located between the operating
system and the application programs. To access the services provided by the TCP/IP
protocol suite, an application needs to use the instructions defined in the socket
interface.

Example 17.1

Most of the programming languages have a

file interface,

a set of instructions that allow the pro-
grammer to open a file, read from the file, write to the file, perform other operations on the file,
and finally close the file. When a program needs to open the file, it uses the name of the file as it
is known to the operation system. When the file is opened, the operating system returns a refer-
ence to the file (an integer or pointer) that can be used for other instructions, such as read and
write.

Socket

A

socket

 is a software abstract simulating a hardware socket we see in our daily life. To
use the communication channel, an application program (client or server) needs to
request the operating system to create a socket. The application program then can

plug

into the socket to send and receive data. For data communication to occur, a pair of
sockets, each at one end of communication, is needed. Figure 17.5 simulates this
abstraction using the socket and plug that we use in our daily life (for a telephone, for
example); in the Internet a socket is a software data structure as we discuss shortly.

Figure 17.4

Relation between the operating system and the TCP/IP suite

Transport layer

Network layer

Data link layer

Physical layer

Application layer
O

pe
ra

ti
ng

 S
ys

te
m

Socket interface

for76042_ch17.fm Page 547 Monday, February 23, 2009 6:17 PM

548

PART 4 APPLICATION LAYER

Data Structure

The format of data structure to define a socket depends on the underlying language
used by the processes. For the rest of this chapter, we assume that the processes are
written in C language. In C language, a socket is defined as a five-field structure (struct
or record) as shown in Figure 17.6.

Note that the programmer should not redefine this structure; it is already defined.
The programmer needs only to use the header file that includes this definition (dis-
cussed later). Let us briefly define the field uses in this structure:

❑

Family.

This field defines the protocol group: IPv4, IPv6, UNIX domain protocols,
and so on.

The family type we use in TCP/IP is defined by the constant IF_INET
for IPv4 protocol and IF_INET6 for IPv6 protocol.

❑

Type.

This field defines four types of sockets: SOCK_STREAM (for TCP),
SOCK_DGRAM (for UDP), SOCK_SEQPACKET (for SCTP), and SOCK_RAW
(for applications that directly use the services of IP. They are shown in Figure 17.7.

❑

Protocol.

 This field defines the protocol that uses the interface. It is set to 0 for
TCP/IP protocol suite.

❑

Local socket address.

This field defines the local socket address. A socket address, as
discussed in Chapter 13, is a combination of an IP address and a port number.

❑

Remote socket address.

This field defines the remote socket address.

Figure 17.5

Concept of sockets

Figure 17.6

Socket data structure

Client
process

Server
process

Socket Socket

Two way communicationOperating
System

Operating
System

Plug Plug

Fields

Generic definition

Family Type Protocol

Remote Socket Address

Local Socket Address

struct socket
{

};

int family;

int type;

int protocol;

socketaddr local;

socketaddr remote;

for76042_ch17.fm Page 548 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER

549

Structure of a Socket Address

Before we can use a socket, we need to understand the structure of a socket address, a
combination of IP address and port number. Although several types of socket
addresses have been defined in network programming, we define only the one used for
IPv4. In this version a socket address is a complex data structure (struct in C) as
shown in Figure 17.8.

Note that the struct

sockaddr_in

 has five fields, but the

sin_addr

 field is itself a
struct of type

in_addr

 with a one single field

s_addr

.

 We first define the structure

in_addr

 as shown below:

Figure 17.7

Socket types

Figure 17.8

IPv4 socket address

struct

in_addr

{

 in_addr_t

s_addr

; // A 32-bit IPv4 address

}

Application program

IP

TCPTCP UDPUDP SCTPSCTP

 SOCK_
STREAM

 SOCK_
DGRAM

 SOCK_
SEQPACKET

 SOCK_
RAW

struct sockaddr_in

sin_zero

sin_addr

s_addr

in_addr

sin_port

sin_family

1 byte 1 byte

(4 bytes)

(8 bytes)

sin_len

for76042_ch17.fm Page 549 Monday, February 23, 2009 6:17 PM

550

PART 4 APPLICATION LAYER

We now define the structure of

sockaddr_in

:

Functions

The interaction between a process and the operating system is done through a list of
predefined functions. In this section, we introduce these functions; in later sections, we
show how they are combined to create processes.

❑

The

socket

 Function

The operating system defines the socket structure shown in Figure 17.6. The oper-
ating system, however, does not create a socket until instructed by the process. The
process needs to use the

socket

 function call to create a socket. The prototype for
this function is shown below:

A call to this function creates a socket, but only three fields in the socket structure
(family, type, and protocol) are filled. If the call is successful, the function returns a
unique socket descriptor

sockfd

 (a non-negative integer) that can be used to refer to
the socket in other calls; if the call is not successful, the operating system returns

−

1.

❑

The

bind

 Function

The socket function fills the fields in the socket partially. To bind the socket to the
local computer and local port, the

bind

 function needs to be called. The bind func-
tion, fills the value for the local socket address (local IP address and local port
number). It returns

−

1 if the binding fails. The prototype is shown below:

In this prototype,

sockfd

 is the value of the socket descriptor returned from the
socket function call,

localAddress is a pointer to a socket address that needs to have
been defined (by the system or the programmer), and the addrLen is the length of
the socket address. We will see later when the bind function is and is not used.

struct sockaddr_in

{

 uint8_t sin_len; // length of structure (16 bytes)

 sa_family_t sin_family; // set to AF_INET

 in_port_t sin_port; // A 16-bit port number

 struct in_addr sin_addr; // A 32-bit IPv4 address

 char sin_zero[8]; // unused

}

int socket (int family, int type, int protocol);

int bind (int sockfd, const struct sockaddress* localAddress, socklen_t addrLen);

for76042_ch17.fm Page 550 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER 551

❑ The connect Function

The connect function is used to add the remote socket address to the socket struc-
ture. It returns −1 if the connection fails.The prototype is given below:

The argument is the same, except that the second and third argument defines the
remote address instead of the local one.

❑ The listen Function

The listen function is called only by the TCP server. After TCP has created and bound a
socket, it must inform the operating system that a socket is ready for receiving client
requests. This is done by calling the listen function. The backlog is the maximum num-
ber of connection requests. The function returns −1 if it fails. The following shows the
prototype:

❑ The accept Function

The accept function is used by a server to inform TCP that it is ready to receive
connections from clients. This function returns −1 if it fails. Its prototype is shown
below:

The last two arguments are pointers to address and to length. The accept function
is a blocking function that, when called, blocks itself until a connection is made by
a client. The accept function then gets the client socket address and the address
length and passes it to the server process to be used to access the client. Note sev-
eral points:

a. The call to accept function makes the process check if there is any client con-
nection request in the waiting buffer. If not, the accept makes the process to
sleep. The process wakes up when the queue has at least one request.

b. After a successful call to the accept, a new socket is created and the communi-
cation is established between the client socket and the new socket of the server.

c. The address received from the accept function fills the remote socket address in
the new socket.

d. The address of the client is returned via a pointer. If the programmer does not
need this address, it can be replaced by NULL.

e. The length of address to be returned is passed to the function and also returned
via a pointer. If this length is not needed, it can be replaced by NULL.

❑ The fork function

The fork function is used by a process to duplicate a process. The process that calls
the fork function is referred to as the parent process; the process that is created, the

int connect (int sockfd, const struct sockaddress* remoteAddress, socklen_t addrLen);

int listen (int sockfd, int backlog);

int accept (int sockfd, const struct sockaddress* clientAddr, socklen_t* addrLen);

for76042_ch17.fm Page 551 Monday, February 23, 2009 6:17 PM

552 PART 4 APPLICATION LAYER

duplicate, is called the child process. The prototype is shown below:

It is interesting to know that the fork process is called once, but it returns twice. In
the parent process, the return value is a positive integer (the process ID of the par-
ent process that called it). In the child process, the return value is 0. If there is an
error, the fork function returns −1. After the fork, two processes are running con-
currently; the CPU gives running time to each process alternately.

❑ The send and recv Functions

The send function is used by a process to send data to another process running on a
remote machine. The recv function is used by a process to receive data from
another process running on a remote machine.These functions assume that there is
already an open connection between two machines; therefore, it can only be used
by TCP (or SCTP). These functions returns the number of bytes send or receive.

Here sockfd is the socket descriptor; sendbuf is a pointer to the buffer where data to
be sent have been stored; recvbuf is a pointer to the buffer where the data received
is to be stored. nbytes is the size of data to be sent or received. This function
returns the number of actual bytes sent or received if successful and –1 if there is
an error.

❑ The sendto and recvfrom Functions

The sendto function is used by a process to send data to a remote process using the
services of UDP. The recvfrom function is used by a process to receive data from a
remote process using the services of UDP. Since UDP is a connectionless protocol,
one of the arguments defines the remote socket address (destination or source).

Here sockfd is the socket descriptor, buffer is a pointer to the buffer where data to
be sent or to be received is stored, and buflen is the length of the buffer. Although,
the value of the flag can be nonzero, we let it be 0 for our simple programs in this
chapter. These functions return the number of bytes sent or received if successful
and –1 if there is an error.

pid_t fork (fork);

int send (int sockfd, const void* sendbuf, int nbytes, int flags);

int recv (int sockfd, void* recvbuf, int nbytes, int flags);

int sendto (int sockfd, const void* buffer, int nbytes, int flags
 struct sockaddr* destinationAddress, socklen_t addrLen);

int recvfrom (int sockfd, void* buffer, int nbytes, int flags
 struct sockaddr* sourceAddress, socklen_t* addrLen);

for76042_ch17.fm Page 552 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER 553

❑ The close Function

The close function is used by a process to close a socket.

The sockfd is not valid after calling this function. The socket returns an integer, 0
for success and –1 for error.

❑ Byte Ordering Functions

Information in a computer is stored in host byte order, which can be little-endian,
in which the little-end byte (least significant byte) is stored in the starting address,
or big-endian, in which the big-end byte (most significant byte) is stored in the
starting address. Network programming needs data and other pieces of information
to be in network byte order, which is big-endian. Since when we write programs,
we are not sure, how the information such as IP addresses and port number are
stored in the computer, we need to change them to network byte order. Two func-
tions are designed for this purpose: htons (host to network short), which changes a
short (16-bit) value to a network byte order, and htonl (host to network long),
which does the same for a long (32-bit) value. There are also two functions that do
exactly the opposite: ntohs and ntohl. The prototype of these functions are shown
below:

❑ Memory Management Functions

Finally, we need some functions to manage values stored in the memory. We intro-
duce three common memory functions here, although we do not use all of them in
this chapter.

The first function, memset (memory set) is used to set (store) a specified num-
ber of bytes (value of len) in the memory defined by the destination pointer
(starting address). The second function, memcpy (memory copy) is used to
copy a specified number of bytes (value of nbytes) from part of a memory
(source) to another part of memory (destination). The third function, memcmp

int close (int sockfd);

uint16_t htons (uint16_t shortValue);

uint32_t htonl (uint32_t longValue);

uint16_t ntohs (uint16_t shortValue);

uint32_t ntohl (uint32_t longValue);

void* memset (void* destination, int chr, size_t len);

void* memcpy (void* destination, const void* source, size_t nbytes);

int memcmp (const void* ptr1, const void* ptr2, size_t nbytes);

for76042_ch17.fm Page 553 Monday, February 23, 2009 6:17 PM

554 PART 4 APPLICATION LAYER

(memory compare), is used to compare two sets of bytes (nbytes) starting from
ptr1 and ptr2. The result is 0 if two sets are equal, less than zero if the first set
is smaller than the second, and greater than zero if the first set is larger than the
second. The comparison is based on comparing strings of bytes in the C
language.

❑ Address Conversion Functions

We normally like to work with 32-bit IP address in dotted decimal format. When
we want to store the address in a socket, however, we need to change it to a number.
Two functions are used to convert an address from a presentation to a number and
vice versa: inet_pton (presentation to number) and inet_ntop (number to presenta-
tion). The constant use for family value is AF_INET for our purpose. Their proto-
types are shown below:

Header Files

To use previously described functions, we need a set of header files. We define this
header file in a separate file, which we name "headerFiles.h". We include this file in our
programs to avoid including long lists of header files. Not all of these header files may
be needed in all programs, but it is recommended to include all of them in case.

Communication Using UDP
Figure 17.9 shows a simplified flow diagram for this type of communication.

int inet_pton (int family, const char* stringAddr, void* numericAddr);

char* inet_ntop (int family, const void* numericAddr, char* stringAddr, int len);

// "headerFiles.h"

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <errno.h>

#include <signal.h>

#include <unistd.h>

#include <string.h>

#include <arpa/innet.h>

#include <sys/wait.h>

for76042_ch17.fm Page 554 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER 555

Server Process

The server process starts first. The server process calls the socket function to create a
socket. It then calls the bind function to bind the socket to its well-known port and the
IP address of the computer on which the server process is running. The server then calls
the recvfrom function, which blocks until a datagram arrives. When the datagram
arrives, the recvfrom function unblocks, extracts the client socket address and address
length from the received datagram, and returns them to the process. The process saves
these two pieces of information and calls a procedure (function) to handle the request.
When the result is ready, the server process calls the sendto function and uses the saved
information to send the result to the client that requested it. The server uses an infinite
loop to respond to the requests coming from the same client or different clients.

Client Process

The client process is simpler. The client calls the socket function to create a socket. It
then calls the sendto function and pass the socket address of the server and the location
of the buffer from which UDP can get the data to make the datagram. The client then
calls a recvfrom function call that blocks until the reply arrives from the server. When the
reply arrives, UDP delivers the data to the client process, which make the recv function
to unblock and deliver the data received to the client process. Note that we assume that
the client message is so small that it fits into one single datagram. If this is not the case,

Figure 17.9 Connectionless iterative communication using UDP

Client

Block

Block

Unblock

Unblock

Server

bind (...)

recvfrom (...)

recvfrom (...)

close (...)

sendto(...)

sendto(...)

HandleRequest

Start

Datagram (request)

Datagram (reply)

Start

Stop

socket (...)

socket (...)

for76042_ch17.fm Page 555 Monday, February 23, 2009 6:17 PM

556 PART 4 APPLICATION LAYER

the two function calls, sendto and recvfrom, need to be repeated. However, the server is
not aware of multidatagram communication; it handles each request separately.

Example 17.2

As an example, let us see how we can design and write two programs: an echo server and an echo
server. The client sends a line of text to the server; the server sends the same line back to the cli-
ent. Although this client/server pair looks useless, it has some applications. It can be used, for
example, when a computer wants to test if another computer in the network is alive. To better
understand the code in a program, we first give the layout of variables used in both programs as
shown in Figure 17.10.

Table 17.1 shows the program for the echo server. We have eliminated many details and
error-handling to simplify the program. We ask the reader to provide more details in exercises.

Figure 17.10 Variables used in echo server and echo client using UDP service

Table 17.1 Echo Server Program using the Service of UDP

01 // UDP echo server program

02 #include "headerFiles.h"

03

04 int main (void)

05 {

06 // Declaration and definition

07 int sd; // Socket descriptor

08 int nr; // Number of bytes received

09 char buffer [256]; // Data buffer

10 struct sockaddr_in serverAddr; // Server address

11 struct sockaddr_in clientAddr; // Client address

12 int clAddrLen; // Length of client Address

13 // Create socket

14 sd = socket (PF_INET, SOCK_DGRAM, 0);

15 // Bind socket to local address and port

16 memset (&serverAddr, 0, sizeof (serverAddr));

17 serverAddr.sin_family = AF_INET;

n fd

serverAddr

serverLen clientLen

buffer

Variables used by the server process

clientAddr

n fd

serverAddr

serverLen

buffer

Variables used by the client process

for76042_ch17.fm Page 556 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER 557

Line 14 creates a socket. Lines 16 to 19 create the local socket address; the remote socket
address will be created in line 24 as explained later. Line 20 binds the socket to the local socket
address. Lines 22 to 26 receive and send datagrams, possibly from many clients. When the server
receives a datagram from a client, the client socket address and the length of the socket address
are returned to the server. These two pieces of information are used in line 34 to send the echo
message to the corresponding client. Note that we have eliminated many error-checking lines of
codes; they have left as exercises.

Table 17.2 shows the client program for an echo process. We have assumed that the client
sends only one datagram to be echoed by the server. If we need to send more than one datagram,
the data transfer sections should be repeated using a loop.

18 serverAddr.sin_addr.s_addr = htonl (INADDR_ANY); // Default address

19 serverAddr.sin_port = htons (7) // We assume port 7

20 bind (sd, (struct sockaddr*) &serverAddr, sizeof (serverAddr));

21 // Receiving and echoing datagrams

22 for (; ;) // Run forever

23 {

24 nr = recvfrom (sd, buffer, 256, 0, (struct sockaddr*)&clientAddr, &clAddrLen);

25 sendto (sd, buffer, nr, 0, (struct sockaddr*)&clientAddr, sizeof(clientAddr));

26 }

27 } // End of echo server program

Table 17.2 Echo Client Program using the Service of UDP

01 // UDP echo client program

02 #include "headerFiles.h"

04

04 int main (void)

05 {

06 // Declaration and definition

07 int sd; // Socket descriptor

08 int ns; // Number of bytes send

09 int nr; // Number of bytes received

10 char buffer [256]; // Data buffer

11 struct sockaddr_in serverAddr; // Socket address

11 // Create socket

12 sd = socket (PF_INET, SOCK_DGRAM, 0);

13 // Create server socket address

14 memset (&servAddr, 0, sizeof(serverAddr));

15 servAddr.sin_family = AF_INET;

16 inet_pton (AF_INET, “server address”, &serverAddr.sin_addr);

17 serverAddr.sin_port = htons (7);

18 // Send and receive datagrams

19 fgets (buffer, 256, stdin);

Table 17.1 Echo Server Program using the Service of UDP (continued)

for76042_ch17.fm Page 557 Monday, February 23, 2009 6:17 PM

558 PART 4 APPLICATION LAYER

Line 12 creates a socket. Lines 14 to 17 show how we create the server socket address; there
is no need to create the client socket address. Lines 19 to 25 read a string from the keyboard, send
it to the server, and receive it back. Line 23 adds a null character to the received string to make it
displayable in line 25. In line 27, we close the socket. We have eliminated all error checking; we
leave them as exercises.

Communication Using TCP
Now we discuss connection-oriented, concurrent communication using the service of
TCP (the case of SCTP would be similar). Figure 17.11 shows the general flow dia-
gram for this type of communication.

Server Process

The server process starts first. It calls the socket function to create a socket, which we
call the listen socket. This socket is only used during connection establishment. The
server process then calls the bind function to bind this connection to the socket address
of the server computer. The server program then calls the accept function. This function
is a blocking function; when it is called, it is blocked until the TCP receives a
connection request (SYN segment) from a client. The accept function then is
unblocked and creates a new socket called the connect socket that includes the socket
address of the client that sent the SYN segment. After the accept function is unblocked,
the server knows that a client needs its service. To provide concurrency, the server
process (parent process) calls the fork function. This function creates a new process
(child process), which is exactly the same as the parent process. After calling the fork
function, the two processes are running concurrently, but each can do different things.
Each process now has two sockets: listen and connect sockets. The parent process
entrusts the duty of serving the client to the hand of the child process and calls the accept
function again to wait for another client to request connection. The child process is now
ready to serve the client. It first closes the listen socket and calls the recv function to
receive data from the client. The recv function, like the recvfrom function, is a blocking

20 ns = sendto (sd, buffer, strlen (buffer), 0,

21 (struct sockaddr)&serverAddr, sizeof(serveraddr));

22 recvfrom (sd, buffer, strlen (buffer), 0, NULL, NULL);

23 buffer [nr] = 0;

24 printf (“Received from server:”);

25 fputs (buffer, stdout);

26 // Close and exit

27 close (sd);

28 exit (0);

29 } // End of echo client program

To be complete, error-checking code needs to be added to both server
and client programs.

Table 17.2 Echo Client Program using the Service of UDP (continued)

for76042_ch17.fm Page 558 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER 559

function; it is blocked until a segment arrives. The child process uses a loop and calls the
recv function repeatedly until it receives all segments sent by the client. The child process
then gives the whole data to a function (we call it handleRequest), to handle the request
and return the result. The result is then sent to the client in one single call to the send
function. We need to emphasize several points here. First, the flow diagram we are using

Figure 17.11 Flow diagram for connection-oriented, concurrent communication

Client

block

block

unblock

unblock

Server

bind (...)

listen (...)

confd = accept (...)

recv (...)

send (...)

fork (...)

close (confd)

ParentChild

close (listfd)

close (confd)

recv (...)

close (clfd)

send (...)

HandleRequest

sleep

Start

Start

Exit

Exit

wake up

listfd = socket (...)

[true]

[true]

[false]

[false]

fd = socket (...)

connect (...)

sleep

wake up

All data
arrived?

All data
arrived?

Connection handshake

One or more
segments

One or more
segments

confd: connect fd
listfd: listen fd
fd: client fd

Legend

for76042_ch17.fm Page 559 Monday, February 23, 2009 6:17 PM

560 PART 4 APPLICATION LAYER

is the simplest possible one. The server may use many other functions to receive and send
data, choosing the one which is appropriate for a particular application. Second, we
assume that size of data to be sent to the client is so small that can be sent in one single
call to the send function; otherwise, we need a loop to repeatedly call the send function.
Third, although the server may send data using one single call to the send function, TCP
may use several segments to send the data. The client process, therefore, may not receive
data in one single segment, as we will see when we explain the client process.

Figure 17.12 shows the status of the parent and child process with respect to the
sockets. Part a in the figure shows the status before the accept function returns. The
parent process uses the listen socket to wait for request from the clients. When the
accept function is blocked and returned (part b), the parent process has two sockets:
the listen and the connect sockets. The client is connected to the connect socket. After
calling the fork function (part c), we have two processes, each with two sockets. The
client is connected to both processes.The parent needs to close its connect socket to
free itself from the client and be free to listen to requests from other clients (part d).
Before the child can start serving the connected client, it needs to close its listen
socket so that a future request does not affect it (part e). Finally, when the child fin-
ishes serving the connected client, it needs to close its connect socket to disassociate
itself from the client that has been served (part f).

Figure 17.12 Status of parent and child processes with respect to the sockets

Client Server

a. Before return from accept b. After return from accept

c. After fork

Client Server

d. After parent closes connect socket

e. After child closes listen socket

Client Server Client Server

Client Server

f. After child closes connect socket

zombie

Client Server

Legend

client socket

connect socket

listen socket

client process

server child process

server parent process

for76042_ch17.fm Page 560 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER 561

Although we do not include the operation in our program (for simplicity), the child
process, after serving the corresponding process, needs to be destroyed. The child process
that has done its duty and is dormant is normally called a zombie in the UNIX environ-
ment system. A child can be destroyed as soon as it is not needed. Alternatively, the sys-
tem can run a special program once in a while to destroy all zombies in the system. The
zombies occupy space in the system and can affect the performance of the system.

Client Process

The client process is simpler. The client calls the socket function to create a socket. It
then calls the connect function to request a connection to the server. The connect func-
tion is a blocking function; it is blocked until the connection is established between two
TCPs. When the connect function returns, the client calls the send function to send data
to the server. We use only one call to the send function, assuming that data can be sent
with one call. Based on the type of the application, we may need to call this function
repeatedly (in a loop). The client then calls the recv function, which is blocked until a
segment arrives and data are delivered to the process by TCP. Note that, although the
data are sent by the server in one single call to the send function, the TCP at the server
site may have used several segments to send data. This means we may need to call the
recv function repeatedly to receive all data. The loop can be controlled by the return
value of the recv function.

Example 17.3

We want to write two programs to show how we can have an echo client and echo server using
the services of TCP. Figure 17.13 shows the variables we use in these two programs. Since data
may arrive in different chunks, we need pointers to point to the buffer. The first buffer is fixed and
always points to the beginning of the buffer; the second pointer is moving to let the arrived bytes
be appended to the end of the previous section.

Table 17.3 shows the server program for an echo server that uses the services of TCP. We
have eliminated many details and left them for the books on the network programming. We want
just to show a global picture of the program.

Figure 17.13 Variable used Example 17.3.

n connectfd listenfd

serverAddr

serverLen

bytesToRecvbytesToRecv

clientLen processID

buffer
Variables used by the server process

clientAddr

movePtr

n fd

serverAddr

serverLen

recvbuffer

Variables used by the client process

movePtrsendbuffer

for76042_ch17.fm Page 561 Monday, February 23, 2009 6:17 PM

562 PART 4 APPLICATION LAYER

Table 17.3 Echo Server Program using the Services of TCP

01 // Echo server program

02 #include "headerFiles.h"

03

04 int main (void)

05 {

06 // Declaration and definition

07 int listensd; // Listen socket descriptor

08 int connectsd; // Connecting socket descriptor

09 int n; // Number of bytes in each reception

10 int bytesToRecv; // Total bytes to receive

11 int processID; // ID of the child process

12 char buffer [256]; // Data buffer

13 char* movePtr; // Pointer to the buffer

14 struct sockaddr_in serverAddr; // Server address

15 struct sockaddr_in clientAddr; // Client address

16 int clAddrLen; // Length of client address

17 // Create listen socket

18 listensd = socket (PF_INET, SOCK_STREAM, 0);

19 // Bind listen socket to the local address and port

20 memset (&serverAddr, 0, sizeof (serverAddr));

21 serverAddr.sin_family = AF_INET;

22 serverAddr.sin_addr.s_addr = htonl (INADDR_ANY);

23 serverAddr.sin_port = htons (7); // We assume port 7

24 bind (listensd, &serverAddr, sizeof (serverAddr));

25 // Listen to connection requests

26 listen (listensd, 5);

27 // Handle the connection

28 for (; ;) // Run forever

29 {

30 connectsd = accept (listensd, &clientAddr, &clAddrLen);

31 processID = fork ();

32 if (processID == 0) // Child process

33 {

34 close (listensd);

35 bytesToRecv = 256;

36 movePtr = buffer;

37 while ((n = recv (connectfd, movePtr, bytesToRecv, 0)) > 0)

38 {

39 movePtr = movePtr + n;

40 bytesToRecv = movePtr − n;

41 } // End of while

for76042_ch17.fm Page 562 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER 563

The program follows the flow diagram of Figure 17.11. Every time the recv function is
unblocked it gets some data and stores it at the end of the buffer. The movePtr is then moved to
point to the location where the next data chunk should be stored (line 39). The number of bytes to
read is also decremented from the original value (26) to prevent overflow in the buffer (line 40).
After all data have been received, the server calls the send function to send them to the client. As
we mentioned before, there is only one send call, but TCP may send data in several segments.
The child process then calls the close function to destroy the connect socket.

Table 17.4 shows the client program for the echo process that uses the services of TCP. It then
uses the same strategy described in Table 17.2 to create the server socket address. The program then
gets the string to be echoed from the keyboard, stores it in sendBuffer, and sends it. The result may
come in different segments. The program uses a loop and repeat, calling the recv function until all
data arrive. As usual, we have ignored code for error checking to make the program simpler. It
needs to be added if the code is actually used to send data to a server.

42 send (connectsd, buffer, 256, 0);

43 exit (0);

44 } // End of if

45 close (connectsd): // Back to parent process

46 } // End of for loop

47 } // End of echo server program

Table 17.4 Echo Client Program using the services of TCP

01 // TCP echo client program

02 #include "headerFiles.h"

03

04 int main (void)

05 {

06 // Declaration and definition

07 int sd; // Socket descriptor

08 int n; // Number of bytes received

09 int bytesToRecv; // Number of bytes to receive

10 char sendBuffer [256]; // Send buffer

11 char recvBuffer [256]; // Receive buffer

12 char* movePtr; // A pointer the received buffer

13 struct sockaddr_in serverAddr; // Server address

14

15 // Create socket

16 sd = socket (PF_INET, SOCK_STREAM, 0);

17 // Create server socket address

18 memset (&serverAddr, 0, sizeof(serverAddr);

19 serverAddr.sin_family = AF_INET;

20 inet_pton (AF_INET, “server address”, &serverAddr.sin_addr);

21 serverAddr.sin_port = htons (7); // We assume port 7

22 // Connect

Table 17.3 Echo Server Program using the Services of TCP (continued)

for76042_ch17.fm Page 563 Monday, February 23, 2009 6:17 PM

564 PART 4 APPLICATION LAYER

Predefined Client-Server Applications
The Internet has defined a set of applications using client-server paradigms. They are
established programs that can be installed and be used. Some of these applications are
designed to give some specific service (such as FTP), some are designed to allow users
to log into the server and perform the desired task (such TELNET), and some are
designed to help other application programs (such as DNS). We discuss these applica-
tion programs in detail in Chapters 18 to 24.

17.2 PEER-TO-PEER PARADIGM
Although most of the applications available in the Internet today use the client-server
paradigm, the idea of using the so called peer-to-peer (P2P) paradigm recently has
attracted some attention. In this paradigm, two peer computers (laptops, desktops, or
main frames) can communicate with each other to exchange services. This paradigm is
interesting in some areas such file as transfer in which the client-server paradigm may
put a lot of the load on the server machine if a client wants to transfer a large file such
as an audio or video file. The idea is also interesting if two peers need to exchange
some files or information to each other without going to a server. However, we need to
mention that the P2P paradigm does not ignore the client-server paradigm. What it does

23 connect (sd, (struct sockaddr*)&serverAddr, sizeof(serverAddr));

24 // Send and receive data

25 fgets (sendBuffer, 256, stdin);

26 send (fd, sendBuffer, strlen (sendbuffer), 0);

27 bytesToRecv = strlen (sendbuffer);

28 movePtr = recvBuffer;

29 while ((n = recv (sd, movePtr, bytesToRecv, 0)) > 0)

30 {

31 movePtr = movePtr + n;

32 bytesToRecv = bytesToRecv − n;

33 } // End of while loop

34 recvBuffer[bytesToRecv] = 0;

35 printf (“Received from server:”);

36 fputs (recvBuffer, stdout);

37 // Close and exit

38 close (sd);

39 exit (0);

40 } // End of echo client program

In Appendix F we give some simple Java versions of programs in Table 17.1 to 17.4

Table 17.4 Echo Client Program using the services of TCP (continued)

for76042_ch17.fm Page 564 Monday, February 23, 2009 6:17 PM

CHAPTER 17 INTRODUCTION TO THE APPLICATION LAYER 565

actually is to let the duty of a server be shared by some users that want to participate in
the process. For example, instead of allowing several clients to make a connection and
each download a large file, a server can let each client download a part of a file and then
share it with each other. In the process of downloading part of the file or sharing the
downloaded file, however, a computer needs to play the role of a client and the other the
role of a server. In other words, a computer can be a client for a specific application at
one moment and the server at another moment. These applications are now controlled
commercially and not formally part of the Internet. We leave the exploration of these
applications to the books designed for each specific application.

17.3 FURTHER READING
Several books give thorough coverage of network programming. In particular, we rec-
ommend [Ste et al. 04], [Com 96], [Rob & Rob 96], and [Don & Cal 01].

17.4 KEY TERMS

17.5 SUMMARY
❑ Most applications in the Internet are designed using a client-server paradigm in

which an application program, called a server, provides services and another appli-
cation program, called a client, receives services. A server program is an infinite
program. When it starts it runs infinitely unless a problem arises. It waits for
incoming requests from clients. A client program is finite, which means it is started
by the user and terminates when the service is complete. Both clients and servers
can run in concurrent mode.

❑ Clients can be run on a machine either iteratively or concurrently. An iterative
server can process only one request at a time. A concurrent server, on the other
hand, can process many requests at the same time.

❑ Client-server paradigm is based on a set of predefined functions called an interface.
We discussed the most common interface, called socket interface, in this chapter. The
socket interface, as a set of instructions, is located between the operating stem and
the application programs. A socket is a software abstract simulating the hardware
socket we see in our daily life. To use the communication channel, an application
program (client or server) needs to request the operating system to create a socket.

client-server paradigm socket interface
interface STREAM
peer-to-peer (P2P) paradigm transport-layer interface (TLI)
socket

for76042_ch17.fm Page 565 Monday, February 23, 2009 6:17 PM

566 PART 4 APPLICATION LAYER

❑ The interaction between a process and the operating system is done through a list
of predefined functions. In this chapter, we introduced a subset of these functions,
namely socket, bind, connect, listen, accept, fork, send, recv, sendto, recvfrom, and
close. We also introduced some byte ordering functions and some memory man-
agement functions.

❑ A server can be designed to be a connectionless iterative program using the services
of UDP or a connection-oriented concurrent program using the services of TCP or
SCTP.

❑ Although the client-server paradigm is very common in the Internet today, another
paradigm, called peer-to-peer paradigm, has found some commercial use.

17.6 PRACTICE SET

Exercises
1. Show how a 32-bit integer is stored in four memory locations (bytes x, x + 1, x + 2,

and x + 3) using the little-endian byte order.

2. Show how a 32-bit integer is stored in four memory locations (bytes x, x + 1, x + 2,
and x + 3) using the little-endian byte order.

3. Write a short program to test if your computer is using big-endian or little-endian
byte order.

4. We have used several data types in the programs in this chapter. Write a short pro-
gram to use and test them.

5. Write a short program to test memory functions we used in this chapter.

6. There are several functions in UNIX that can be used to retrieve host information,
such as the IP address and port number—for example, gethostbyname, gethostby-
address, getservebyname, and getservebyport. Try to find some information about
these functions and use them in a short program.

7. In Table 17.1, add some code to check if there is an error in the call to the socket
function. The program needs to exit if an error occurs. Hint: use the perror and exit
functions. The prototype for the perror function is shown below:

8. In Table 17.1, add some code to check if there is an error in the call to bind func-
tion. The program needs to exit if an error occurs. Hint: use the perror and exit
functions.

9. Modify the program in Table 17.2 to allow the client to send more than one
datagram.

10. Modify the flow diagram in Figure 17.11 to show a connectionless but iterative
server.

void perror (const char* string);

for76042_ch17.fm Page 566 Monday, February 23, 2009 6:17 PM

for76042_ch17.fm Page 567 Monday, February 23, 2009 6:17 PM

C H A P T E R

18

568

18

Host Configuration: DHCP

n this chapter we discuss our first client/server application program,
Dynamic Host Configuration Protocol (DHCP). This application is dis-

cussed first because it is the first client/server application program that is
used after a host is booted. In other words, it serves as a bootstrap when a
host is booted and supposed to be connected to the Internet, but the host
does not know its IP address.

OBJECTIVES

The chapter has several objectives:

❑

To give the reasons why we need host configuration.

❑

To give a historical background of two protocols used for host
configuration in the past.

❑

To define DHCP as the current Dynamic Host Configuration
Protocol.

❑

To discuss DHCP operation when the client and server are on the
same network or on different networks.

❑

To show how DHCP uses two well-known ports of UDP to achieve
configuration.

❑

To discuss the states the clients go through to lease an IP address
from a DHCP server.

I

for76042_ch18.fm Page 568 Tuesday, February 17, 2009 11:49 AM

569

18.1 INTRODUCTION

Each computer that uses the TCP/IP protocol suite needs to know its IP address. If the
computer uses classless addressing or is a member of a subnet, it also needs to know its
subnet mask. Most computers today need two other pieces of information: the address
of a default router to be able to communicate with other networks and the address of a
name server to be able to use names instead of addresses as we will see in the next
chapter. In other words, four pieces of information are normally needed:

1.

The IP address of the computer

2.

The subnet mask of the computer

3.

The IP address of a router

4.

The IP address of a name server

These four pieces of information can be stored in a configuration file and accessed by
the computer during the bootstrap process. But what about a diskless workstation or a
computer with a disk that is booted for the first time?

In the case of a diskless computer, the operating system and the networking soft-
ware could be stored in read-only memory (ROM). However, the above information is
not known to the manufacturer and thus cannot be stored in ROM. The information is
dependent on the individual configuration of the machine and defines the network to
which the machine is connected.

Previous Protocols

Before DHCP became the formal protocol for host configuration, some other protocols
were used for this propose. We briefly describe them here.

RARP

At the beginning of the Internet era, a protocol called Reverse Address Resolution Pro-
tocol (RARP) was designed to provide the IP address for a booted computer. RARP
was actually a version of ARP that we discussed in Chapter 8. ARP maps an IP address
to a physical address: RARP maps a physical address to an IP address. However, RARP
is deprecated today for two reasons. First, RARP used the broadcast service of the data
link layer, which means that a RARP server must be present in each network. Second,
RARP can provide only the IP address of the computer, but a computer today needs all
four pieces of information mentioned above.

BOOTP

The

Bootstrap Protocol (BOOTP)

is the prerunner of DHCP. It is a client/server pro-
tocol designed to overcome the two deficiencies of the RARP protocol. First, since it is
a client/server program, the BOOTP server can be anywhere in the Internet. Second, it

for76042_ch18.fm Page 569 Tuesday, February 17, 2009 11:49 AM

570

PART 4 APPLICATION LAYER

can provide all pieces of information we mentioned above, including the IP address. To
provide the four pieces of information described above, it removes all restriction about
the RARP protocol. BOOTP, however, is a

static configuration protocol.

 When a client
requests its IP address, the BOOTP server consults a table that matches the physical
address of the client with its IP address. This implies that the binding between the physi-
cal address and the IP address of the client already exists. The binding is predetermined.

There are some situations in which we need a

dynamic configuration protocol

. For
example, when a host moves from one physical network to another, its physical address
changes. As another example, there are occasions when a host wants a temporary IP
address to be used for a period of time. BOOTP cannot handle these situations because
the binding between the physical and IP addresses is static and fixed in a table until
changed by the administrator. As we will see shortly, DHCP has been devised to handle
these shortcomings.

DHCP

The

Dynamic Host Configuration Protocol (DHCP)

is a client/server protocol
designed to provide the four pieces of information for a diskless computer or a computer
that is booted for the first time. DHCP is a successor to BOOTP and is backward compat-
ible with it. Although BOOTP is considered deprecated, there may be some systems that
may still use BOOTP for host configuration. The part of the discussion in this chapter that
does not deal with the dynamic aspect of DHCP can also be applied to BOOTP.

18.2 DHCP OPERATION

The DHCP client and server can either be on the same network or on different net-
works. Let us discuss each situation separately.

Same Network

Although the practice is not very common, the administrator may put the client and the
server on the same network as shown in Figure 18.1.

Figure 18.1

Client and server on the same network

DHCP
Client

Legend

To be
configured

DHCP
Server

1s 68 DHCP Request 670s

1s 67 DHCP Reply 68SIPCP

CP

CP: Client Port Number

SP: Server Port Number

CIP: Client IP Address

SIP: Server IP Address

SP

SP

SIP

SIP

CIP

CIP

for76042_ch18.fm Page 570 Tuesday, February 17, 2009 11:49 AM

CHAPTER 18 HOST CONFIGURATION: DHCP

571

In this case, the operation can be described as follows:

1.

The DHCP server issues a passive open command on UDP port number 67 and
waits for a client.

2.

A booted client issues an active open command on port number 68 (this number
will be explained later). The message is encapsulated in a UDP user datagram,
using the destination port number 67 and the source port number 68. The UDP user
datagram, in turn, is encapsulated in an IP datagram. The reader may ask how a cli-
ent can send an IP datagram when it knows neither its own IP address (the source
address) nor the server’s IP address (the destination address). The client uses all 0s
as the source address and all 1s as the destination address.

3.

The server responds with either a broadcast or a unicast message using UDP
source port number 67 and destination port number 68. The response can be uni-
cast because the server knows the IP address of the client. It also knows the physi-
cal address of the client, which means it does not need the services of ARP for
logical to physical address mapping. However, some systems do not allow the
bypassing of ARP, resulting in the use of the broadcast address.

Different Networks

As in other application-layer processes, a client can be in one network and the server in
another, separated by several other networks. Figure 18.2 shows the situation.

However, there is one problem that must be solved. The DHCP request is broadcast
because the client does not know the IP address of the server. A broadcast IP datagram
cannot pass through any router. A router receiving such a packet discards it. Recall that
an IP address of all 1s is a limited broadcast address.

To solve the problem, there is a need for an intermediary. One of the hosts (or a
router that can be configured to operate at the application layer) can be used as a relay.
The host in this case is called a

relay agent.

 The relay agent knows the unicast address
of a DHCP server and listens for broadcast messages on port 67. When it receives this
type of packet, it encapsulates the message in a unicast datagram and sends the request
to the DHCP server. The packet, carrying a unicast destination address, is routed by any

Figure 18.2

Client and server on two different networks

DHCP
client Relay agent

DHCP
server

Legend

LAN

LAN

Internet

Unicast request

Broadcast request

1

3

2

for76042_ch18.fm Page 571 Tuesday, February 17, 2009 11:49 AM

572

PART 4 APPLICATION LAYER

router and reaches the DHCP server. The DHCP server knows the message comes from
a relay agent because one of the fields in the request message defines the IP address of
the relay agent. The relay agent, after receiving the reply, sends it to the DHCP client.

UDP Ports

Figure 18.3 shows the interaction between a client and a DHCP server. The server uses
the well-known port 67, which is normal. The client uses the well-known port 68,
which is unusual. The reason for choosing the well-known port 68 instead of an ephem-
eral port is to prevent a problem when the reply, from the server to the client, is broad-
cast. To understand the problem, let us look at a situation where an ephemeral port is
used. Suppose host A on a network is using a DHCP client on ephemeral port 2017
(randomly chosen). Host B, on the same network, is using a DAYTIME client on
ephemeral port 2017 (accidentally the same). Now the DHCP server sends a broadcast
reply message with the destination port number 2017 and broadcast IP address
FFFFFFFF

16

. Every host needs to open a packet carrying this destination IP address.
Host A finds a message from an application program on ephemeral port 2017. A correct
message is delivered to the DHCP client. An incorrect message is delivered to the
DAYTIME client. The confusion is due to the demultiplexing of packets based on the
socket address (see Chapter 17), which is a combination of IP address and port number.
In this case, both are the same.

The use of a well-known port (less than 1024) prevents the use of the same two
destination port numbers. Host B cannot select 68 as the ephemeral port because
ephemeral port numbers are greater than 1023.

The curious reader may ask what happens if host B is also running the DHCP cli-
ent. In this case, the socket address is the same and both clients will receive the mes-
sage. In this situation, a third identification number differentiates the clients. DHCP
uses another number, called the transaction ID, which is randomly chosen for each con-
nection involving DHCP. It is highly improbable that two hosts will choose the same ID
at the same time.

Using TFTP

The server does not send all of the information that a client may need for booting. In
the reply message, the server defines the pathname of a file in which the client can find

Figure 18.3

Use of UDP ports

Passive
open

Active
open

67

6768

6768

Server

Server

Server

Client

Client

Client

Reply

UDP

UDPUDP

UDPUDP

Request

Reply

for76042_ch18.fm Page 572 Tuesday, February 17, 2009 11:49 AM

CHAPTER 18 HOST CONFIGURATION: DHCP

573

complete booting information. The client can then use a TFTP message (see Chapter 21),
which is encapsulated in a UDP user datagram, to obtain the rest of the needed
information.

Error Control

What if a request is lost or damaged? What if the response is damaged? There is a need
for error control when using DHCP. DHCP uses UDP, which does not provide error
control. Therefore, DHCP must provide error control. Error control is accomplished
through two strategies:

1.

DHCP requires that UDP uses the checksum. Remember that the use of the check-
sum in UDP is optional.

2.

The DHCP client uses timers and a retransmission policy if it does not receive the
DHCP reply to a request. However, to prevent a traffic jam when several hosts need
to retransmit a request (for example, after a power failure), DHCP forces the client
to use a random number to set its timers.

Packet Format

Figure 18.4 shows the format of a DHCP packet.

The following briefly describes each field:

❑

Operation code.

 This 8-bit field defines the type of DHCP packet: request (1) or
reply (2).

Figure 18.4

DHCP packet format

Operation code Hardware type

Number of seconds Flags

Client IP address
Your IP address

Server IP address

Transaction ID

Gateway IP address

Client hardware address
(16 bytes)

Server name
(64 bytes)

Boot file name
(128 bytes)

0 8 16 24 31
Hop countHardware length

Options
(Variable length)

for76042_ch18.fm Page 573 Tuesday, February 17, 2009 11:49 AM

574

PART 4 APPLICATION LAYER

❑

Hardware type.

 This is an 8-bit field defining the type of physical network. Each
type of network has been assigned an integer. For example, for Ethernet the
value is 1.

❑

Hardware length.

 This is an 8-bit field defining the length of the physical address
in bytes. For example, for Ethernet the value is 6.

❑

Hop count.

 This is an 8-bit field defining the maximum number of hops the packet
can travel.

❑

Transaction ID.

 This is a 4-byte field carrying an integer. The transaction identifi-
cation is set by the client and is used to match a reply with the request. The server
returns the same value in its reply.

❑

Number of seconds.

 This is a 16-bit field that indicates the number of seconds
elapsed since the time the client started to boot.

❑

Flag.

 This is a 16-bit field in which only the leftmost bit is used and the rest of the
bits should be set to 0s. A leftmost bit specifies a forced broadcast reply (instead of
unicast) from the server. If the reply were to be unicast to the client, the destination
IP address of the IP packet is the address assigned to the client. Since the client
does not know its IP address, it may discard the packet. However, if the IP data-
gram is broadcast, every host will receive and process the broadcast message.
Figure 18.5 shows the flag format.

❑

Client IP address.

 This is a 4-byte field that contains the client IP address. If the
client does not have this information, this field has a value of 0.

❑

Your IP address.

 This is a 4-byte field that contains the client IP address. It is
filled by the server (in the reply message) at the request of the client.

❑

Server IP address.

 This is a 4-byte field containing the server IP address. It is
filled by the server in a reply message.

❑

Gateway IP address.

 This is a 4-byte field containing the IP address of a router. It
is filled by the server in a reply message.

❑

Client hardware address.

 This is the physical address of the client. Although the
server can retrieve this address from the frame sent by the client, it is more efficient
if the address is supplied explicitly by the client in the request message.

❑

Server name.

 This is a 64-byte field that is optionally filled by the server in a reply
packet. It contains a null-terminated string consisting of the domain name of the

Figure 18.5

Flag format

15 zero-bits

16 bits

0 unicast

1 braodcast

for76042_ch18.fm Page 574 Tuesday, February 17, 2009 11:49 AM

CHAPTER 18 HOST CONFIGURATION: DHCP

575

server. If the server does not want to fill this field with data, the server must fill it
with all 0s.

❑

Boot filename.

 This is a 128-byte field that can be optionally filled by the server in
a reply packet. It contains a null-terminated string consisting of the full pathname
of the boot file. The client can use this path to retrieve other booting information. If
the server does not want to fill this field with data, the server must fill it with all 0s.

❑

Options.

 This is a 64-byte field with a dual purpose. It can carry either additional
information (such as the network mask or default router address) or some specific
vendor information. The field is used only in a reply message. The server uses a num-
ber, called a

magic cookie

,

 in the format of an IP address

with the value of
99.130.83.99. When the client finishes reading the message, it looks for this magic
cookie. If present, the next 60 bytes are options. An option is composed of three fields:
a 1-byte tag field, a 1-byte length field, and a variable-length value field. The length
field defines the length of the value field, not the whole option. See Figure 18.6.

 The list of options is shown in Table 18.1.

Figure 18.6

Option format

Table 18.1

Options for DHCP

Tag Length Value Description

0 Padding
1 4 Subnet mask Subnet mask
2 4 Time of the day Time offset
3 Variable IP addresses Default router
4 Variable IP addresses Time server
5 Variable IP addresses IEN 16 server
6 Variable IP addresses DNS server
7 Variable IP addresses Log server
8 Variable IP addresses Quote server
9 Variable IP addresses Print server

10 Variable IP addresses Impress
11 Variable IP addresses RLP server
12 Variable DNS name Host name
13 2 Integer Boot file size
53 1 Discussed later Used for dynamic configuration

128–254 Variable Specific information Vendor specific
255 End of list

Tag Length Value
(Variable length)

Tag
(255)Padding End of list

Length in byted defined in the length field.

Tag
(0)

Other options

for76042_ch18.fm Page 575 Tuesday, February 17, 2009 11:49 AM

576

PART 4 APPLICATION LAYER

The lengths of the fields that contain IP addresses are multiples of 4 bytes. The pad-
ding option, which is only 1 byte long, is used only for alignment. The end-of-list option,
which is also only 1 byte long, indicates the end of the option field. Vendors can use
option tags 128 to 254 to supply extra information in a reply message.

18.3 CONFIGURATION

The DHCP

has been devised to provide static and dynamic address allocation.

Static Address Allocation

In this capacity, a DHCP server has a database that statically binds physical addresses
to IP addresses. When working in this way, DHCP is backward compatible with the
deprecated protocol BOOTP, which we discussed before.

Dynamic Address Allocation

DHCP has a second database with a pool of available IP addresses. This second data-
base makes DHCP dynamic. When a DHCP client requests a temporary IP address, the
DHCP server goes to the pool of available (unused) IP addresses and assigns an IP
address for a negotiable period of time.

When a DHCP client sends a request to a DHCP server, the server first checks its
static database. If an entry with the requested physical address exists in the static data-
base, the permanent IP address of the client is returned. On the other hand, if the entry
does not exist in the static database, the server selects an IP address from the available
pool, assigns the address to the client, and adds the entry to the dynamic database.

The dynamic aspect of DHCP is needed when a host moves from network to net-
work or is connected and disconnected from a network (for example, a subscriber to a
service provider). DHCP provides temporary IP addresses for a limited period of time.

The addresses assigned from the pool are temporary addresses. The DHCP
server issues a

lease

 for a specific period of time. When the lease expires, the client
must either stop using the IP address or renew the lease. The server has the choice to
agree or disagree with the renewal. If the server disagrees, the client stops using the
address.

Transition States

To provide dynamic address allocation, the DHCP client acts as a state machine that
performs transitions from one state to another depending on the messages it receives or
sends. The type of the message in this case is defined by the option with tag 53 that is
included in the DHCP packet. In other words, instead of adding one extra field to the
BOOTP protocol to define DHCP type, the designer decided to add an extra option for
this purpose. Figure 18.7 shows the type option and the interpretation of its value to
define the type of the DHCP packet.

Figure 18.8 shows the transition diagram with main states. The RFC and some
implementations offer some more states that we leave the investigation as exercises.

for76042_ch18.fm Page 576 Tuesday, February 17, 2009 11:49 AM

CHAPTER 18 HOST CONFIGURATION: DHCP

577

INIT State

When the DHCP client first starts, it is in the INIT state (initializing state). The client
broadcasts a DHCPDISCOVER message (a request message with the DHCPDIS-
COVER option), using port 67.

SELECTING State

After sending the DHCPDISCOVER message, the client goes to the selecting state.
Those servers that can provide this type of service respond with a DHCPOFFER mes-
sage. In these messages, the servers offer an IP address. They can also offer the lease
duration. The default is 1 hour. The server that sends a DHCPOFFER locks the offered
IP address so that it is not available to any other clients. The client chooses one of the

Figure 18.7

Option with tag 53

Figure 18.8

DHCP client transition diagram

Tag

53 1

Length Value

DHCPDISCOVER1

DHCPOFFER2

DHCPREQUEST3

DHCPDECLINE4

DHCPACK5

DHCPNACK6

DHCPRELEASE7

DHCPINFORM8

_ / DHCPDISCOVER

Boot

D
H

C
P

O
F

F
E

R

Lease time 50% expired /
DHCPREQUEST

Select Offer / DHCPREQUEST

Lease time 87.5% expired /
DHCPREQUEST

Lease time expired
or

DHCPNACK
DHCPACK

DHCPACK DHCPACK

Lease cancelled/
DHCPRELEASE

BOUND

INIT

SELECTING

REQUESTING

RENEWING REBINDING

for76042_ch18.fm Page 577 Monday, February 23, 2009 10:05 PM

578

PART 4 APPLICATION LAYER

offers and sends a DHCPREQUEST message to the selected server. It then goes to the
requesting state. However, if the client receives no DHCPOFFER message, it tries four
more times, each with a span of 2 seconds. If there is no reply to any of these
DHCPDISCOVERs, the client sleeps for 5 minutes before trying again.

REQUESTING State

The client remains in the requesting state until it receives a DHCPACK message from
the server that creates the binding between the client physical address and its IP
address. After receipt of the DHCPACK, the client goes to the bound state.

BOUND State

In this state, the client can use the IP address until the lease expires. When 50 percent of
the lease period is reached, the client sends another DHCPREQUEST to ask for
renewal. It then goes to the renewing state. When in the bound state, the client can also
cancel the lease and go to the initializing state.

RENEWING State

The client remains in the renewing state until one of two events happens. It can receive
a DHCPACK, which renews the lease agreement. In this case, the client resets its timer
and goes back to the bound state. Or, if a DHCPACK is not received, and 87.5 percent
of the lease time expires, the client goes to the rebinding state.

REBINDING State

The client remains in the rebinding state until one of three events happens. If the client
receives a DHCPNACK or the lease expires, it goes back to the initializing state and
tries to get another IP address. If the client receives a DHCPACK, it goes to the bound
state and resets the timer.

Other Issues

In this section we discuss a few issues related to the DHCP states.

Early Release

A DHCP client that has been assigned an address for a period of time may release the
address before the expiration time. The client may send a DHCPRELEASE message to
tell the server that the address is no longer needed. This helps the server to assign the
address to another client waiting for it.

Timers

The above discussion requires that the client uses three times: renewal timer, rebinding
timer, and expiration timer. If the server does not specify the time-out values for these
timers when the address is allocated, the client needs to use the default value. The
default value for each timer is shown below:

Renewal timer:

→

50% of lease time

Rebinding timer:

→

87.5% of lease time

Expiration timer:

→

100% of lease time

for76042_ch18.fm Page 578 Tuesday, February 17, 2009 11:49 AM

CHAPTER 18 HOST CONFIGURATION: DHCP

579

Exchanging Messages

Figure 18.9 shows the exchange of messages related to the transition diagram.

18.4 FURTHER READING

For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books and RFCs
Several books and RFCs give an easy but thorough coverage of DHCP including [Com 06],
RFC 3396, and RFC 3342.

Figure 18.9 Exchanging messages

Passive
open

Client

DHCPDISCOVER

DHCPOFFER

UDP

UDP

DHCPACK
UDP Before 50 percent of

lease time expires.

If the server responds with an ACK,
the client has a new lease.

If the server responds with a NACK,
the client must start all over again.

If the server does not respond,
the request is repeated.

DHCPNACK

DHCPACK

UDP

UDP

DHCPREQUEST
UDP

DHCPRELEASEClient
UDP

DHCPREQUEST

DHCPREQUEST

UDP

UDP

68

Client 68

Client 68

Client 68

Client 68

Client 68

Client 68

Client 68

Client 68

UDP

UDP

UDP

UDP

UDP

Server
UDP

UDP

UDP

67

Server67

Server67

Server67

Server67

Server67

Server67

Server67

UDP
Server67

UDP
Server67

for76042_ch18.fm Page 579 Tuesday, February 17, 2009 11:49 AM

580 PART 4 APPLICATION LAYER

18.5 KEY TERMS

18.6 SUMMARY
❑ Every computer attached to a TCP/IP internet must know its IP address, the

IP address of a router, the IP address of a name server, and its subnet mask.
Dynamic Host Configuration Protocol (DHCP) is a client-server application that
delivers vital network information to either diskless computers or computers at
first boot.

❑ One DHCP packet format is used for both the client request and the server reply.
The DHCP server waits passively for a client request. A server reply can be
broadcast or unicast. A DHCP request or reply is encapsulated in a UDP user
datagram.

❑ When the DHCP client and server are on different networks, a relay agent is used
to send local DHCP requests from a client to remote servers.

❑ When DHCP acts as a static configuration protocol, it uses a table that maps IP
addresses to physical addresses. When DHCP acts as a dynamic configuration pro-
tocol, it leases IP addresses to the requesting clients.

❑ DHCP client is designed as a state machine that uses six main states and three tim-
ers to allow a host to lease an IP address for a specified period of time.

18.7 PRACTICE SET

Exercises
1. What is the minimum length of a DHCP packet? What is the maximum length?

2. A DHCP packet is encapsulated in a UDP packet, which is encapsulated in an IP
packet, which is encapsulated in an Ethernet frame. Find the efficiency of a DHCP
packet when no option is used. The efficiency in this case is measured in the num-
ber of bytes in the DHCP packet to the total number of bytes transmitted at the data
link layer.

3. Show an example of a DHCP packet with a padding option.

4. Show an example of a DHCP packet with an end-of-list option.

5. What is the maximum number of seconds that can be stored in the Number of
Seconds field of a DHCP packet?

Bootstrap Protocol (BOOTP) lease
Dynamic Host Configuration Protocol

(DHCP)
magic cookie
relay agent

for76042_ch18.fm Page 580 Tuesday, February 17, 2009 11:49 AM

CHAPTER 18 HOST CONFIGURATION: DHCP 581

6. a. Show the contents of all fields for a DHCP request packet sent from a client
with physical address 00:11:21:15:EA:21.

b. Encapsulate the packet in part a in a UDP user datagram. Fill all the fields.

c. Encapsulate the packet in part b in an IP datagram. Fill all the fields.

d. Show the contents of all fields for a DHCP reply sent in response to the request
in part a.

e. Encapsulate the packet in part d in a UDP user datagram. Fill all the fields.

f. Encapsulate the packet in part e in an IP datagram. Fill all the fields.

7. Why does a newly added host need to know its subnet mask?

8. Why does a newly added host need to know the IP address of a router?

9. Why does a newly added host need to know the IP address of a name server?

10. Why do you think DHCP needs to use TFTP to get additional information? Why
can’t all the information be retrieved using DHCP?

11. A diskless client on a Class C Ethernet network uses DHCP. The DHCP server is
on a Class B Ethernet network. Draw a figure of the networks with appropriate IP
addresses for the client, server, and relay agent. Fill out a DHCP request and reply
packet.

Research Activities
12. Show the format and contents of a DHCPDISCOVER message.

13. Show the format and contents of a DHCPOFFER message.

14. Show the format and contents of a DHCPREQUEST message.

15. Show the format and contents of a DHCPDECLINE message.

16. Show the format and contents of a DHCPACK message.

17. Show the format and contents of a DHCPNACK message.

18. Show the format and contents of a DHCPRELEASE message.

19. Find the range of random numbers used to set timers that control the retransmis-
sion of lost DHCP packets.

20. Find if there is a limit for the number of times a client can retransmit a request.

21. Do some research about the security of DHCP.

for76042_ch18.fm Page 581 Tuesday, February 17, 2009 11:49 AM

C H A P T E R

19

582

19 Domain Name System (DNS)

n this chapter, we discuss the second application program, Domain
Name System (DNS). DNS is a client/server application program used

to help other application programs. DNS is used to map a host name in
the application layer to an IP address in the network layer.

OBJECTIVES

The chapter has several objectives:

❑ To describe the purpose of DNS.

❑ To define the concept of domains and domain name space.

❑ To describe the distribution of name spaces and define zones.

❑ To discuss the use of DNS in the Internet and describe three
categories of domains: generic, country, and reverse.

❑ To discuss name-address resolution and show the two resolution
methods: recursive and iterative.

❑ To show the format of DNS message and how they can be
compressed.

❑ To discuss DDNS and DNSSEC.

I

for76042_ch19.fm Page 582 Tuesday, February 17, 2009 7:58 PM

583

19.1 NEED FOR DNS
To identify an entity, TCP/IP protocols use the IP address, which uniquely identifies the
connection of a host to the Internet. However, people prefer to use names instead of
numeric addresses. Therefore, we need a system that can map a name to an address or
an address to a name.

When the Internet was small, mapping was done using a host file. The host file had
only two columns: name and address. Every host could store the host file on its disk
and update it periodically from a master host file. When a program or a user wanted to
map a name to an address, the host consulted the host file and found the mapping.

Today, however, it is impossible to have one single host file to relate every address
with a name and vice versa. The host file would be too large to store in every host. In
addition, it would be impossible to update all the host files every time there is a change.

One solution would be to store the entire host file in a single computer and allow
access to this centralized information to every computer that needs mapping. But we
know that this would create a huge amount of traffic on the Internet.

Another solution, the one used today, is to divide this huge amount of information
into smaller parts and store each part on a different computer. In this method, the host
that needs mapping can contact the closest computer holding the needed information.
This method is used by the Domain Name System (DNS). In this chapter, we first
discuss the concepts and ideas behind the DNS. We then describe the DNS protocol
itself.

Figure 19.1 shows how TCP/IP uses a DNS client and a DNS server to map a name
to an address; the reverse mapping is similar.

Figure 19.1 Purpose of DNS

File
transfer
client

DNS
client

DNS
server

Application
layer

Transport layer

User

Host
name

Host
name

IP
address

IP address
Query

Response

1

2

3

4

5

6

for76042_ch19.fm Page 583 Tuesday, February 17, 2009 7:58 PM

584 PART 4 APPLICATION LAYER

In Figure 19.1, a user wants to use a file transfer client to access the corresponding
file transfer server running on a remote host. The user knows only the file transfer
server name, such as forouzan.com. However, the TCP/IP suite needs the IP address of
the file transfer server to make the connection. The following six steps map the host
name to an IP address.

1. The user passes the host name to the file transfer client.

2. The file transfer client passes the host name to the DNS client.

3. We know from Chapter 18 that each computer, after being booted, knows the
address of one DNS server. The DNS client sends a message to a DNS server with
a query that gives the file transfer server name using the known IP address of the
DNS server.

4. The DNS server responds with the IP address of the desired file transfer server.

5. The DNS client passes the IP address to the file transfer server.

6. The file transfer client now uses the received IP address to access the file transfer
server.

Note that the purpose of accessing the Internet is to make a connection between the file
transfer client and server, but before this can happen, another connection needs to be
made between the DNS client and DNS server. In other words, we need two connec-
tions; the first is for mapping the name to an IP address; the second is for transferring
files (for example).

19.2 NAME SPACE
To be unambiguous, the names assigned to machines must be carefully selected from a
name space with complete control over the binding between the names and IP
addresses. In other words, the names must be unique because the addresses are unique.
A name space that maps each address to a unique name can be organized in two ways:
flat or hierarchical.

Flat Name Space
In a flat name space, a name is assigned to an address. A name in this space is a
sequence of characters without structure. The names may or may not have a common
section; if they do, it has no meaning. The main disadvantage of a flat name space is
that it cannot be used in a large system such as the Internet because it must be centrally
controlled to avoid ambiguity and duplication.

Hierarchical Name Space
In a hierarchical name space, each name is made of several parts. The first part can
define the nature of the organization, the second part can define the name of an organi-
zation, the third part can define departments in the organization, and so on. In this case,
the authority to assign and control the name spaces can be decentralized. A central
authority can assign the part of the name that defines the nature of the organization and
the name of the organization. The responsibility of the rest of the name can be given to

for76042_ch19.fm Page 584 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 585

the organization itself. The organization can add suffixes (or prefixes) to the name to
define its host or resources. The management of the organization need not worry that
the prefix chosen for a host is taken by another organization because, even if part of an
address is the same, the whole address is different. For example, assume two colleges
and a company call one of their computers challenger. The first college is given a name
by the central authority such as fhda.edu, the second college is given the name
berkeley.edu, and the company is given the name smart.com. When each of these orga-
nizations adds the name challenger to the name they have already been given, the end
result is three distinguishable names: challenger.fhda.edu, challenger.berkeley.edu, and
challenger.smart.com. The names are unique without the need for assignment by a
central authority. The central authority controls only part of the name, not the whole.

Domain Name Space
To have a hierarchical name space, a domain name space was designed. In this design
the names are defined in an inverted-tree structure with the root at the top. The tree can
have only 128 levels: level 0 (root) to level 127 (see Figure 19.2).

Label

Each node in the tree has a label, which is a string with a maximum of 63 characters.
The root label is a null string (empty string). DNS requires that children of a node
(nodes that branch from the same node) have different labels, which guarantees the
uniqueness of the domain names.

Domain Name

Each node in the tree has a domain name. A full domain name is a sequence of labels
separated by dots (.). The domain names are always read from the node up to the root.
The last label is the label of the root (null). This means that a full domain name always
ends in a null label, which means the last character is a dot because the null string is
nothing. Figure 19.3 shows some domain names.

Figure 19.2 Domain name space

arpa com edu adorg zw

Root

for76042_ch19.fm Page 585 Tuesday, February 17, 2009 7:58 PM

586 PART 4 APPLICATION LAYER

Fully Qualified Domain Name (FQDN) If a label is terminated by a null string, it is
called a fully qualified domain name (FQDN). An FQDN is a domain name that con-
tains the full name of a host. It contains all labels, from the most specific to the most
general, that uniquely define the name of the host. For example, the domain name is the
FQDN of a computer named challenger installed at the Advanced Technology Center
(ATC) at De Anza College. A DNS server can only match an FQDN to an address. Note
that the name must end with a null label, but because null means nothing, the label ends
with a dot (.).

Partially Qualified Domain Name (PQDN) If a label is not terminated by a null
string, it is called a partially qualified domain name (PQDN). A PQDN starts from a
node, but it does not reach the root. It is used when the name to be resolved belongs to
the same site as the client. Here the resolver can supply the missing part, called the suf-
fix, to create an FQDN. For example, if a user at the fhda.edu. site wants to get the IP
address of the challenger computer, he or she can define the partial name

The DNS client adds the suffix atc.fhda.edu. before passing the address to the DNS
server.

The DNS client normally holds a list of suffixes. The following can be the list of
suffixes at De Anza College. The null suffix defines nothing. This suffix is added when
the user defines an FQDN.

Figure 19.3 Domain names and labels

challenger.atc.fhda.edu.

challenger

atc.fhda.edu fhda.edu null

edu
Domain name

Domain name

Domain name

Domain namechallenger.atc.fhda.edu.

atc.fhda.edu.

fhda.edu.

edu.

Root

fhda

atc

challenger

Label

Label

Label

Label

for76042_ch19.fm Page 586 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 587

Figure 19.4 shows some FQDNs and PQDNs.

Domain
A domain is a subtree of the domain name space. The name of the domain is the name
of the node at the top of the subtree. Figure 19.5 shows some domains. Note that a
domain may itself be divided into domains (or subdomains as they are sometimes
called).

Distribution of Name Space
The information contained in the domain name space must be stored. However, it
is very inefficient and also not reliable to have just one computer store such a huge
amount of information. It is inefficient because responding to requests from all over the
world places a heavy load on the system. It is not reliable because any failure makes the
data inaccessible.

Hierarchy of Name Servers

The solution to these problems is to distribute the information among many computers
called DNS servers. One way to do this is to divide the whole space into many domains
based on the first level. In other words, we let the root stand alone and create as many

Figure 19.4 FQDN and PQDN

Figure 19.5 Domains

challenger.atc.fhda.edu.
cs.hmme.com.
www.funny.int.

challenger.atc.fhda.edu
cs.hmme
www

FQDN PQDN

com edu

Domain

Domain

Domain

Root

Domain

Domain

for76042_ch19.fm Page 587 Tuesday, February 17, 2009 7:58 PM

http://www.funny.int

588 PART 4 APPLICATION LAYER

domains (subtrees) as there are first-level nodes. Because a domain created this way
could be very large, DNS allows domains to be divided further into smaller domains
(subdomains). Each server can be responsible (authoritative) for either a large or small
domain. In other words, we have a hierarchy of servers in the same way that we have a
hierarchy of names (see Figure 19.6).

Zone

Since the complete domain name hierarchy cannot be stored on a single server, it is
divided among many servers. What a server is responsible for or has authority over is
called a zone. We can define a zone as a contiguous part of the entire tree. If a server
accepts responsibility for a domain and does not divide the domain into smaller
domains, the “domain” and the “zone” refer to the same thing. The server makes a data-
base called a zone file and keeps all the information for every node under that domain.
However, if a server divides its domain into subdomains and delegates part of its
authority to other servers, “domain” and “zone” refer to different things. The informa-
tion about the nodes in the subdomains is stored in the servers at the lower levels, with
the original server keeping some sort of reference to these lower-level servers. Of
course the original server does not free itself from responsibility totally: It still has a
zone, but the detailed information is kept by the lower-level servers (see Figure 19.7).

Figure 19.6 Hierarchy of name servers

Figure 19.7 Zones and domains

Root server

arpa
server

fhda.edu bk.edu mcgraw.com irwin.com

edu
server

com
server

us
server

com

mhhe

Root

Zone

Domain

Zone and
domain

for76042_ch19.fm Page 588 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 589

A server can also divide part of its domain and delegate responsibility but still keep
part of the domain for itself. In this case, its zone is made of detailed information for
the part of the domain that is not delegated and references to those parts that are
delegated.

Root Server

A root server is a server whose zone consists of the whole tree. A root server usually
does not store any information about domains but delegates its authority to other serv-
ers, keeping references to those servers. There are several root servers, each covering
the whole domain name space. The root servers are distributed all around the world.

Primary and Secondary Servers

DNS defines two types of servers: primary and secondary. A primary server is a server
that stores a file about the zone for which it is an authority. It is responsible for creating,
maintaining, and updating the zone file. It stores the zone file on a local disk.

A secondary server is a server that transfers the complete information about a
zone from another server (primary or secondary) and stores the file on its local disk.
The secondary server neither creates nor updates the zone files. If updating is
required, it must be done by the primary server, which sends the updated version to
the secondary.

The primary and secondary servers are both authoritative for the zones they serve.
The idea is not to put the secondary server at a lower level of authority but to create
redundancy for the data so that if one server fails, the other can continue serving clients.
Note also that a server can be a primary server for a specific zone and a secondary server
for another zone. Therefore, when we refer to a server as a primary or secondary server,
we should be careful about which zone we refer to.

19.3 DNS IN THE INTERNET
DNS is a protocol that can be used in different platforms. In the Internet, the domain
name space (tree) is divided into three different sections: generic domains, country
domains, and the inverse domain (see Figure 19.8).

Generic Domains
The generic domains define registered hosts according to their generic behavior. Each
node in the tree defines a domain, which is an index to the domain name space database
(see Figure 19.9).

A primary server loads all information from the disk file; the secondary server loads all
information from the primary server. When the secondary downloads information from

the primary, it is called zone transfer.

for76042_ch19.fm Page 589 Tuesday, February 17, 2009 7:58 PM

590 PART 4 APPLICATION LAYER

Looking at the tree, we see that the first level in the generic domains section
allows 14 possible labels. These labels describe the organization types as listed in
Table 19.1.

Country Domains
The country domains section uses two-character country abbreviations (e.g., us for
United States). Second labels can be organizational, or they can be more specific,
national designations. The United States, for example, uses state abbreviations as a sub-
division of us (e.g., ca.us.).

Figure 19.10 shows the country domains section. The address anza.cup.ca.us can
be translated to De Anza College in Cupertino in California in the United States.

Figure 19.8 DNS used in the Internet

Figure 19.9 Generic domains

Root

Inverse domain Country domainsGeneric domains

fhda

atc

chal

aero biz com coop edu gov info int mil
mus-
eum

name net org pro

Generic domains

Root level

chal.atc.fhda.edu. Index to addresses

for76042_ch19.fm Page 590 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 591

Inverse Domain
The inverse domain is used to map an address to a name. This may happen, for exam-
ple, when a server has received a request from a client to do a task. Although the server
has a file that contains a list of authorized clients, only the IP address of the client
(extracted from the received IP packet) is listed. The server asks its resolver to send a

Table 19.1 Generic domain labels

Label Description
aero Airlines and aerospace companies
biz Businesses or firms (similar to “com”)
com Commercial organizations
coop Cooperative business organizations
edu Educational institutions
gov Government institutions
info Information service providers
int International organizations
mil Military groups
museum Museums and other non-profit organizations
name Personal names (individuals)
net Network support centers
org Nonprofit organizations
pro Professional individual organizations

Figure 19.10 Country domains

ca

cup

anza

ae fr us zw

Country
domains

Root level

anza.cup.ca.us.

Index to addresses

for76042_ch19.fm Page 591 Tuesday, February 17, 2009 7:58 PM

592 PART 4 APPLICATION LAYER

query to the DNS server to map an address to a name to determine if the client is on the
authorized list.

This type of query is called an inverse or pointer (PTR) query. To handle a pointer
query, the inverse domain is added to the domain name space with the first-level node
called arpa (for historical reasons). The second level is also one single node named
in-addr (for inverse address). The rest of the domain defines IP addresses.

The servers that handle the inverse domain are also hierarchical. This means the
netid part of the address should be at a higher level than the subnetid part, and the sub-
netid part higher than the hostid part. In this way, a server serving the whole site is at a
higher level than the servers serving each subnet. This configuration makes the domain
look inverted when compared to a generic or country domain. To follow the convention
of reading the domain labels from the bottom to the top, an IP address such as
132.34.45.121 (a class B address with netid 132.34) is read as 121.45.34.132.in-addr.
arpa. See Figure 19.11 for an illustration of the inverse domain configuration.

Registrar
How are the new domains added to DNS? This is done through a registrar, a commer-
cial entity accredited by ICANN. A registrar first verifies that the requested domain
name is unique and then enters it into the DNS database. A fee is charged.

Figure 19.11 Inverse domain

in-addr

arpa

132

34

45

Inverse domain

Root level

121 121.45.34.132.in-addr.arpa.

Index to names

for76042_ch19.fm Page 592 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 593

19.4 RESOLUTION
Mapping a name to an address or an address to a name is called name-address
resolution.

Resolver
DNS is designed as a client-server application. A host that needs to map an address to a
name or a name to an address calls a DNS client called a resolver. The resolver
accesses the closest DNS server with a mapping request. If the server has the informa-
tion, it satisfies the resolver; otherwise, it either refers the resolver to other servers or
asks other servers to provide the information.

After the resolver receives the mapping, it interprets the response to see if it is a
real resolution or an error, and finally delivers the result to the process that requested it.

Mapping Names to Addresses
Most of the time, the resolver gives a domain name to the server and asks for the corre-
sponding address. In this case, the server checks the generic domains or the country
domains to find the mapping.

If the domain name is from the generic domains section, the resolver receives a
domain name such as “chal.atc.fhda.edu.”. The query is sent by the resolver to the local
DNS server for resolution. If the local server cannot resolve the query, it either refers
the resolver to other servers or asks other servers directly.

If the domain name is from the country domains section, the resolver receives a
domain name such as “ch.fhda.cu.ca.us.”. The procedure is the same.

Mapping Addresses to Names
A client can send an IP address to a server to be mapped to a domain name. As
mentioned before, this is called a PTR query. To answer queries of this kind, DNS
uses the inverse domain. However, in the request, the IP address is reversed and
two labels, in-addr and arpa, are appended to create a domain acceptable by
the inverse domain section. For example, if the resolver receives the IP address
132.34.45.121, the resolver first inverts the address and then adds the two labels
before sending. The domain name sent is “121.45.34.132.in-addr.arpa.”, which is
received by the local DNS and resolved.

Recursive Resolution
Figure 19.12 shows the recursive resolution.

The client (resolver) can ask for a recursive answer from a name server. This
means that the resolver expects the server to supply the final answer. If the server is the
authority for the domain name, it checks its database and responds. If the server is not
the authority, it sends the request to another server (the parent usually) and waits for the
response. If the parent is the authority, it responds; otherwise, it sends the query to yet
another server. When the query is finally resolved, the response travels back until it
finally reaches the requesting client.

for76042_ch19.fm Page 593 Tuesday, February 17, 2009 7:58 PM

594

PART 4 APPLICATION LAYER

Iterative Resolution

If the client does not ask for a recursive answer, the mapping can be done iteratively. If
the server is an authority for the name, it sends the answer. If it is not, it returns (to the
client) the IP address of the server that it thinks can resolve the query. The client is
responsible for repeating the query to this second server. If the newly addressed server
can resolve the problem, it answers the query with the IP address; otherwise, it returns
the IP address of a new server to the client. Now the client must repeat the query to the
third server. This process is called

iterative

 because the client repeats the same query to
multiple servers. In Figure 19.13 the client queries five servers before it gets an answer
from the mcgraw.com server.

Caching

Each time a server receives a query for a name that is not in its domain, it needs to
search its database for a server IP address. Reduction of this search time would increase
efficiency. DNS handles this with a mechanism called

caching.

 When a server asks for
a mapping from another server and receives the response, it stores this information in
its cache memory before sending it to the client. If the same or another client asks for
the same mapping, it can check its cache memory and resolve the problem. However, to
inform the client that the response is coming from the cache memory and not from an
authoritative source, the server marks the response as

unauthoritative.

Caching speeds up resolution, but it can also be problematic. If a server caches a
mapping for a long time, it may send an outdated mapping to the client. To counter
this, two techniques are used. First, the authoritative server always adds information
to the mapping called

time-to-live

(TTL). It defines the time in seconds that the
receiving server can cache the information. After that time, the mapping is invalid
and any query must be sent again to the authoritative server. Second, DNS requires

Figure 19.12

Recursive resolution

root
server

edu com

fhda.edu

Request: mcgraw.com

mcgraw.comclient

1

2

3 4
8

9

5
6

7

10

for76042_ch19.fm Page 594 Monday, February 23, 2009 2:38 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS)

595

that each server keep a TTL counter for each mapping it caches. The cache memory
must be searched periodically and those mappings with an expired TTL must be
purged.

19.5 DNS MESSAGES

DNS has two types of messages: query and response. Both types have the same format.
The query message consists of a header and question records; the response message
consists of a header, question records, answer records, authoritative records, and addi-
tional records (see Figure 19.14).

Figure 19.13

Iterative resolution

Figure 19.14

Query and response messages

root
server

edu com

fhda.edu mcgraw.com

Request: mcgraw.com

client

1

2

3

4

5

6

8

7

10

9

Question section

a. Query

b. Response

Header

Question section

Answer section

Authoritative section

Additional section

Header

for76042_ch19.fm Page 595 Monday, February 23, 2009 2:38 PM

596 PART 4 APPLICATION LAYER

Header
Both query and response messages have the same header format with some fields set
to zero for the query messages. The header is 12 bytes and its format is shown in
Figure 19.15.

The header fields are as follows:

❑ Identification. This is a 16-bit field used by the client to match the response with
the query. The client uses a different identification number each time it sends a
query. The server duplicates this number in the corresponding response.

❑ Flags. This is a 16-bit field consisting of the subfields shown in Figure 19.16.

A brief description of each flag subfield follows.

a. QR (query/response). This is a 1-bit subfield that defines the type of message.
If it is 0, the message is a query. If it is 1, the message is a response.

b. OpCode. This is a 4-bit subfield that defines the type of query or response (0 if
standard, 1 if inverse, and 2 if a server status request).

c. AA (authoritative answer). This is a 1-bit subfield. When it is set (value of 1)
it means that the name server is an authoritative server. It is used only in a
response message.

d. TC (truncated). This is a 1-bit subfield. When it is set (value of 1), it means
that the response was more than 512 bytes and truncated to 512. It is used when
DNS uses the services of UDP (see Section 19.8 on Encapsulation).

e. RD (recursion desired). This is a 1-bit subfield. When it is set (value of 1) it
means the client desires a recursive answer. It is set in the query message and
repeated in the response message.

f. RA (recursion available). This is a 1-bit subfield. When it is set in the response,
it means that a recursive response is available. It is set only in the response
message.

Figure 19.15 Header format

Figure 19.16 Flags field

Identification Flags

Number of question records

Number of additional records
(All 0s in query message)

Number of answer records
(All 0s in query message)

Number of authoritative records
(All 0s in query message)

QR AA TC RD RA Three 0sOpCode rCode

for76042_ch19.fm Page 596 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 597

g. Reserved. This is a 3-bit subfield set to 000.

h. rCode. This is a 4-bit field that shows the status of the error in the response. Of
course, only an authoritative server can make such a judgment. Table 19.2
shows the possible values for this field.

❑ Number of question records. This is a 16-bit field containing the number of
queries in the question section of the message.

❑ Number of answer records. This is a 16-bit field containing the number of
answer records in the answer section of the response message. Its value is zero in
the query message.

❑ Number of authoritative records. This is a 16-bit field containing the number of
authoritative records in the authoritative section of a response message. Its value is
zero in the query message.

❑ Number of additional records. This is a 16-bit field containing the number of
additional records in the additional section of a response message. Its value is zero
in the query message.

Question Section

This is a section consisting of one or more question records. It is present on both query
and response messages. We will discuss the question records in a following section.

Answer Section

This is a section consisting of one or more resource records. It is present only on
response messages. This section includes the answer from the server to the client
(resolver). We will discuss resource records in a following section.

Authoritative Section

This is a section consisting of one or more resource records. It is present only on
response messages. This section gives information (domain name) about one or more
authoritative servers for the query.

Additional Information Section

This is a section consisting of one or more resource records. It is present only on
response messages. This section provides additional information that may help the
resolver. For example, a server may give the domain name of an authoritative server to
the resolver in the authoritative section, and include the IP address of the same authori-
tative server in the additional information section.

Table 19.2 Values of rCode

Value Meaning Value Meaning
0 No error 4 Query type not supported
1 Format error 5 Administratively prohibited
2 Problem at name server 6–15 Reserved
3 Domain reference problem

for76042_ch19.fm Page 597 Tuesday, February 17, 2009 7:58 PM

598 PART 4 APPLICATION LAYER

19.6 TYPES OF RECORDS
As we saw in the previous section, two types of records are used in DNS. The question
records are used in the question section of the query and response messages. The
resource records are used in the answer, authoritative, and additional information sec-
tions of the response message.

Question Record
A question record is used by the client to get information from a server. This contains
the domain name. Figure 19.17 shows the format of a question record. The list below
describes question record fields.

❑ Query name. This is a variable-length field containing a domain name (see
Figure 19.18). The count field refers to the number of characters in each section.

❑ Query type. This is a 16-bit field defining the type of query. Table 19.3 shows
some of the types commonly used. The last two can only be used in a query.

Figure 19.17 Question record format

Figure 19.18 Query name format

Table 19.3 Types

Type Mnemonic Description
1 A Address. A 32-bit IPv4 address. It converts a domain name to an address.
2 NS Name server. It identifies the authoritative servers for a zone.
5 CNAME Canonical name. It defines an alias for the official name of a host.
6 SOA Start of authority. It marks the beginning of a zone.

11 WKS Well-known services. It defines the network services that a host provides.
12 PTR Pointer. It is used to convert an IP address to a domain name.
13 HINFO Host information. It defines the hardware and operating system.
15 MX Mail exchange. It redirects mail to a mail server.
28 AAAA Address. An IPv6 address (see Chapter 26).

252 AXFR A request for the transfer of the entire zone.
255 ANY A request for all records.

Query name

Query type Query class

35 a t cmd i na
Count Count Count Count Count

4 3 0f h d a e d u

for76042_ch19.fm Page 598 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 599

❑ Query class. This is a 16-bit field defining the specific protocol using DNS.
Table 19.4 shows the current values. In this text we are interested only in class 1
(the Internet).

Resource Record
Each domain name (each node on the tree) is associated with a record called the
resource record. The server database consists of resource records. Resource records
are also what is returned by the server to the client. Figure 19.19 shows the format of a
resource record.

❑ Domain name. This is a variable-length field containing the domain name. It is a
duplication of the domain name in the question record. Since DNS requires the use
of compression everywhere a name is repeated, this field is a pointer offset to the
corresponding domain name field in the question record. See Section 19.7 on
Compression.

❑ Domain type. This field is the same as the query type field in the question
record except the last two types are not allowed. Refer to Table 19.3 for more
information.

❑ Domain class. This field is the same as the query class field in the question record
(see Table 19.4).

❑ Time-to-live. This is a 32-bit field that defines the number of seconds the answer is
valid. The receiver can cache the answer for this period of time. A zero value means
that the resource record is used only in a single transaction and is not cached.

❑ Resource data length. This is a 16-bit field defining the length of the resource data.

Table 19.4 Classes

Class Mnemonic Description
1 IN Internet
2 CSNET CSNET network (obsolete)
3 CS The COAS network
4 HS The Hesiod server developed by MIT

Figure 19.19 Resource record format

Domain name

Time to live

Resource data

Domain type

Resource data length

Domain class

for76042_ch19.fm Page 599 Tuesday, February 17, 2009 7:58 PM

600 PART 4 APPLICATION LAYER

❑ Resource data. This is a variable-length field containing the answer to the query
(in the answer section) or the domain name of the authoritative server (in the author-
itative section) or additional information (in the additional information section). The
format and contents of this field depend on the value of the type field. It can be one
of the following:

a. A number. This is written in octets. For example, an IPv4 address is a 4-octet
integer and an IPv6 address is a 16-octet integer.

b. A domain name. Domain names are expressed as a sequence of labels. Each
label is preceded by a 1-byte length field that defines the number of characters
in the label. Since every domain name ends with the null label, the last byte of
every domain name is the length field with the value of 0. To distinguish
between a length field and an offset pointer (as we will discuss later), the two
high-order bits of a length field are always zero (00). This will not create a prob-
lem because the length of a label cannot be more than 63, which is a maximum
of 6 bits (111111).

c. An offset pointer. Domain names can be replaced with an offset pointer.
An offset pointer is a 2-byte field with each of the 2 high-order bits set to 1 (11).

d. A character string. A character string is represented by a 1-byte length field
followed by the number of characters defined in the length field. The length
field is not restricted like the domain name length field. The character string can
be as long as 255 characters (including the length field).

19.7 COMPRESSION
DNS requires that a domain name be replaced by an offset pointer if it is repeated. For
example, in a resource record the domain name is usually a repetition of the domain
name in the question record. For efficiency, DNS defines a 2-byte offset pointer that
points to a previous occurrence of the domain or part of it. The format of the field is
shown in Figure 19.20.

The first 2 high-order bits are two 1s to distinguish an offset pointer from a length
field. The other 14 bits represent a number that points to the corresponding byte
number in the message. The bytes in a message are counted from the beginning of the
message with the first byte counted as byte 0. For example, if an offset pointer refers
to byte 12 (the 13th byte) of the message, the value should be 1100000000001100.
Here the 2 leftmost bits define the field as an offset pointer and the other bits define
the decimal number 12. We will show the use of the offset pointers in the following
examples.

Figure 19.20 Format of an offset pointer

11

2 bits 14 bits

Address of the beginning byte

for76042_ch19.fm Page 600 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 601

Example 19.1

A resolver sends a query message to a local server to find the IP address for the host “chal.
fhda.edu.”. We discuss the query and response messages separately. Figure 19.21 shows the query
message sent by the resolver.

The first 2 bytes show the identifier (1333)16. It is used as a sequence number and relates a
response to a query. Because a resolver may even send many queries to the same server, the iden-
tifier helps to sort responses that arrive out of order. The next bytes contain the flags with the
value of 0x0100 in hexadecimal. In binary it is 0000000100000000, but it is more meaningful to
divide it into the fields as shown below:

The QR bit defines the message as a query. The OpCode is 0000, which defines a standard query. The
recursion desired (RD) bit is set. (Refer back to Figure 19.16 for the flags field descriptions.) The
message contains only one question record. The domain name is 4chal4fhda3edu0. The next 2 bytes
define the query type as an IP address; the last 2 bytes define the class as the Internet.

Figure 19.22 shows the response of the server.

Figure 19.21 Example 19.1: Query message

QR OpCode AA TC RD RA Reserved rCode

 0 0000 0 0 1 0 000 0000

Figure 19.22 Example 19.1: Response message

0x1333 0x0100

1

1 1

0

0 0

4

‘l’

‘d’

‘d’

‘c’

4

‘a’

‘u’

‘h’

‘f’

3

0

‘a’

‘h’

‘e’
Continued on

next line

120001

18

0x1333

0xC0

0x8180

1

1 1

1534

1

1

0 0
4

‘l’

‘d’

‘d’

‘c’

4

‘a’

‘u’

‘h’

‘f’

3

0

‘a’

‘h’

‘e’
Continued on

next line

Continued on
next line

Continued on
next line

0x0C

G
o

to
 b

yt
e

12

8 105

for76042_ch19.fm Page 601 Tuesday, February 17, 2009 7:58 PM

602 PART 4 APPLICATION LAYER

The response is similar to the query except that the flags are different and the number of answer
records is one. The flags value is 0x8180 in hexadecimal. In binary it is 1000000110000000, but
again we divide it into fields as shown below:

The QR bit defines the message as a response. The OpCode is 0000, which defines a standard
response. The recursion available (RA) and RD bits are set. The message contains one ques-
tion record and one answer record. The question record is repeated from the query message.
The answer record has a value of 0xC00C (split in two lines), which points to the question
record instead of repeating the domain name. The next field defines the domain type
(address). The field after that defines the class (Internet). The field with the value 12,000 is the
TTL (12,000 s). The next field is the length of the resource data, which is an IP address
(153.18.8.105).

Example 19.2

An FTP server has received a packet from an FTP client with IP address 153.2.7.9. The FTP server
wants to verify that the FTP client is an authorized client. The FTP server can consult a file contain-
ing the list of authorized clients. However, the file consists only of domain names. The FTP server
has only the IP address of the requesting client, which was the source IP address in the received IP
datagram. The FTP server asks the resolver (DNS client) to send an inverse query to a DNS server
to ask for the name of the FTP client. We discuss the query and response messages separately.
Figure 19.23 shows the query message sent from the resolver to the server.

The first 2 bytes show the identifier (0x1200). The flags value is 0x0900 in hexadecimal. In
binary it is 0000100100000000, and we divide it into fields as shown below:

QR OpCode AA TC RD RA Reserved rCode

 1 0000 0 0 1 1 000 0000

Figure 19.23 Example 19.2: Inverse query message

QR OpCode AA TC RD RA Reserved rCode

 0 0001 0 0 1 0 000 0000

0x1200 0x0900

1 0

0 0

1

1

‘5’

‘n’

‘d’

‘r’

‘9’

‘2’

‘3’

‘-’

‘r’

‘p’

1

3

7

‘a’

4

‘a’

‘7’

‘l’

‘i’

‘d’

‘a’

0
12 1

for76042_ch19.fm Page 602 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 603

The OpCode is 0001, which defines an inverse query. The message contains only one question
record. The domain name is 19171231537in-addr4arpa. The next 2 bytes define the query type
as PTR, and the last 2 bytes define the class as the Internet.

Figure 19.24 shows the response. The flags value is 0x8D80 in hexadecimal. In binary it is
1000110110000000, and we divide it into fields as shown below:

The message contains one question record and one answer record. The question record is
repeated from the query message. The answer record has a value of 0xC00C, which points to the
question record instead of repeating the domain name. The next field defines the domain type
(PTR). The field after that defines the class (Internet), and the field after that defines the TTL
(24,000 s). The next field is the length of the resource data (10). The last field is the domain name
4mhhe3com0, which means “mhhe.com.”.

Example 19.3

In UNIX and Windows, the nslookup utility can be used to retrieve address/name mapping. The
following shows how we can retrieve an address when the domain name is given.

QR OpCode AA TC RD RA Reserved rCode

 1 0001 1 0 1 0 000 0000

Figure 19.24 Example 19.2: Inverse response message

$ nslookup fhda.edu
Name: fhda.edu
Address: 153.18.8.1

‘h’

‘c’

‘h’

‘o’

4

‘e’

‘m’

‘m’

3

0

0x1200 0x8D80

0xC00C 12

24000 10

1 Continued on next line

1 1

0 0

12 1

1

1

‘5’

‘n’

‘d’

‘r’

‘9’

‘2’

‘3’

‘-’

‘r’

‘p’

1

3

7

‘a’

4

‘a’

‘7’

‘l’

‘i’

‘d’

‘a’

0

for76042_ch19.fm Page 603 Tuesday, February 17, 2009 7:58 PM

604

PART 4 APPLICATION LAYER

The

nslookup

 utility can also be used to retrieve the domain name when the address is given as
shown below:

19.8 ENCAPSULATION

DNS can use either UDP or TCP. In both cases the well-known port used by the server
is port 53. UDP is used when the size of the response message is less than 512 bytes
because most UDP packages have a 512-byte packet size limit. If the size of the
response message is more than 512 bytes, a TCP connection is used. In that case, one of
two scenarios can occur:

❑

If the resolver has prior knowledge that the size of the response message is more
than 512 bytes, it uses the TCP connection. For example, if a secondary name
server (acting as a client) needs a zone transfer from a primary server, it uses the
TCP connection because the size of the information being transferred usually
exceeds 512 bytes.

❑

If the resolver does not know the size of the response message, it can use the UDP
port. However, if the size of the response message is more than 512 bytes, the server
truncates the message and turns on the TC bit (See Figure 19.16). The resolver now
opens a TCP connection and repeats the request to get a full response from the server.

19.9 REGISTRARS

How are new domains added to DNS? This is done through a

registrar,

 a commercial
entity accredited by ICANN. A registrar first verifies that the requested domain name is
unique and then enters it into the DNS database. A fee is charged. Today, there are
many registrars; their names and addresses can be found at

To register, the organization needs to give the name of its server and the IP address
of the server. For example, a new commercial organization named

wonderful

 with a
server named

ws

 and IP address 200.200.200.5 needs to give the following information
to one of the registrars:

19.10 DDNS

When the DNS was designed, no one predicted that there would be so many address
changes. In DNS, when there is a change, such as adding a new host, removing a host,
or changing an IP address, the change must be made to the DNS master file. These

$ nslookup

153.18.8.1

1.8.18.153.in-addr.arpa name = tiptoe.fhda.edu.

http://www.intenic.net

Domain name:

ws.wonderful.com

IP address:

200.200.200.5

for76042_ch19.fm Page 604 Wednesday, February 18, 2009 2:55 PM

http://www.intenic.net

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 605

types of changes involve a lot of manual updating. The size of today’s Internet does not
allow for this kind of manual operation.

The DNS master file must be updated dynamically. The Dynamic Domain Name
System (DDNS) therefore was devised to respond to this need. In DDNS, when a bind-
ing between a name and an address is determined, the information is sent, usually by
DHCP (see Chapter 18) to a primary DNS server. The primary server updates the zone.
The secondary servers are notified either actively or passively. In active notification, the
primary server sends a message to the secondary servers about the change in the zone,
whereas in passive notification, the secondary servers periodically check for any
changes. In either case, after being notified about the change, the secondary requests
information about the entire zone (zone transfer).

To provide security and prevent unauthorized changes in the DNS records, DDNS
can use an authentication mechanism.

19.11 SECURITY OF DNS
DNS is one of the most important systems in the Internet infrastructure; it provides cru-
cial services to the Internet users. Applications such as Web access or e-mail are
heavily dependent on the proper operation of DNS. DNS can be attacked in several
ways including:

1. The attacker may read the response of a DNS server to find the nature or names
of sites the user mostly accesses. This type of information can be used to find the
user’s profile. To prevent this attack, DNS message needs to be confidential (See
Chapter 29).

2. The attacker may intercept the response of a DNS server and change it or create a
totally new bogus response to direct the user to the site or domain the attacker
wishes the user to access. This type of attack can be protected using message ori-
gin authentication and message integrity (See Chapter 29).

3. The attacker may flood the DNS server to overwhelm it or eventually crash it.
This type of attack can be protected using the provision against denial-of-service
attack.

To protect DNS, IETF has devised a technology named DNS Security (DNSSEC) that
provides the message origin authentication and message integrity using a security ser-
vice called digital signature (See Chapter 29). DNSSEC however, does not provide
confidentiality for the DNS messages. There is no specific protection against the
denial-of-service attack in the specification of DNSSEC. However, the caching system
protects the upper-level servers against this attack to some extent.

19.12 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

for76042_ch19.fm Page 605 Tuesday, February 17, 2009 7:58 PM

606 PART 4 APPLICATION LAYER

Books
Several books and RFCs give an easy but thorough coverage of DNS including [Tan 03],
[Ste 94], and [Com 06].

RFCs
DNS has gone through many changes; several RFCs show different updates on DNS
including RFC 1034, FRC 1035, RFC 1996, RFC 2535, RFC 3008, RFC 3658, RFC
3755, RFC 3757, and RFC 3845.

19.13 KEY TERMS

19.14 SUMMARY
❑ The Domain Name System (DNS) is a client-server application that identifies each

host on the Internet with a unique user-friendly name. DNS organizes the name
space in a hierarchical structure to decentralize the responsibilities involved in
naming.

❑ DNS can be pictured as an inverted hierarchical tree structure with one root node at
the top and a maximum of 128 levels. Each node in the tree has a domain name. A
domain is defined as any subtree of the domain name space.

❑ The name space information is distributed among DNS servers. Each server has
jurisdiction over its zone. A root server’s zone is the entire DNS tree. A primary
server creates, maintains, and updates information about its zone. A secondary
server gets its information from a primary server.

❑ The domain name space is divided into three sections: generic domains, country
domains, and inverse domain. There are fourteen generic domains, each specify-
ing an organization type. Each country domain specifies a country. The inverse

caching iterative resolution
compression label
country domain name space
DNS server partially qualified domain name (PQDN)
domain primary server
domain name question record
domain name space registrar
Domain Name System (DNS) resolver
Dynamic Domain Name System (DDNS) resource record
flat name space root server
fully qualified domain name (FQDN) secondary server
generic domain subdomain
hierarchical name space zone
inverse domain

for76042_ch19.fm Page 606 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 607

domain finds a domain name for a given IP address. This is called address-to-
name resolution.

❑ Name servers, computers that run the DNS server program, are organized in a
hierarchy. The DNS client, called a resolver, maps a name to an address or an
address to a name. In recursive resolution, the client sends its request to a server
that eventually returns a response. In iterative resolution, the client may send its
request to multiple servers before getting an answer. Caching is a method whereby
an answer to a query is stored in memory (for a limited time) for easy access to
future requests.

❑ A fully qualified domain name (FQDN) is a domain name consisting of labels
beginning with the host and going back through each level to the root node. A par-
tially qualified domain name (PQDN) is a domain name that does not include all
the levels between the host and the root node.

❑ There are two types of DNS messages: queries and responses. There are two types
of DNS records: question records and resource records. DNS uses an offset pointer
for duplicated domain name information in its messages. Dynamic DNS (DDNS)
automatically updates the DNS master file. DNS uses the services of UDP for mes-
sages of less than 512 bytes; otherwise, TCP is used.

❑ To protect DNS, IETF has devised a technology named DNS Security (DNSSEC)
that provides the message origin authentication and message integrity using a secu-
rity service called digital signature.

19.15 PRACTICE SET

Exercises
1. Determine which of the following is an FQDN and which is a PQDN:

a. xxx

b. xxx.yyy.

c. xxx.yyy.net

d. zzz.yyy.xxx.edu.

2. Determine which of the following is an FQDN and which is a PQDN:

a. mil.

b. edu.

c. xxx.yyy.net

d. zzz.yyy.xxx.edu

3. Find the value of the flags field (in hexadecimal) for a query message requesting an
address and demanding a recursive answer.

4. Find the value of the flags field (in hexadecimal) for an unauthoritative message
carrying an inverse response. The resolver had asked for a recursive response, but
the recursive answer was not available.

for76042_ch19.fm Page 607 Tuesday, February 17, 2009 7:58 PM

608 PART 4 APPLICATION LAYER

5. Analyze the flag 0x8F80.

6. Analyze the flag 0x0503. Is it valid?

7. Is the size of a question record fixed?

8. Is the size of a resource record fixed?

9. What is the size of a question record containing the domain name fhda.edu?

10. What is the size of a question record containing an IP address?

11. What is the size of a resource record containing the domain name fhda.edu?

12. What is the size of a resource record containing an IP address?

13. What is the size of a query message requesting the IP address for challenger.
atc.fhda.edu?

14. What is the size of a query message requesting the domain name for 185.34.23.12?

15. What is the size of the response message responding to the query message in
Exercise 13?

16. What is the size of the response message responding to the query message in
Exercise 14?

17. Redo Example 19.1 using a response message with one answer record and one
authoritative record which defines “fhda.edu.” as the authoritative server.

18. Redo Exercise 17, but add one additional record that defines the address of the
authoritative server as 153.18.9.0.

19. A DNS client is looking for the IP address of xxx.yyy.com. Show the query message
with values for each field.

20. Show the response message of a DNS server to Exercise 19. Assume the IP address
is 201.34.23.12.

21. A DNS client is looking for the IP addresses corresponding to xxx.yyy.com and
aaa.bbb.edu. Show the query message.

22. Show the response message of a DNS server to the query in Exercise 21 if the
addresses are 14.23.45.12 and 131.34.67.89.

23. Show the response message of Exercise 22 if the DNS server can resolve the first
enquiry but not the second.

24. A DNS client is looking for the name of the computer with IP address 132.1.17.8.
Show the query message.

25. Show the response message sent by the server to the query in Exercise 24.

26. Encapsulate the query message of Exercise 24 in a UDP user datagram.

27. Encapsulate the response message of Exercise 25 in a UDP user datagram.

Research Activities
28. Compare and contrast the DNS structure with the UNIX directory structure.

29. What is the equivalent of dots in the DNS structure for the UNIX directory
structure?

30. A DNS domain name starts with a node and goes up to the root of the tree. Do the
pathnames in UNIX do the same?

for76042_ch19.fm Page 608 Tuesday, February 17, 2009 7:58 PM

CHAPTER 19 DOMAIN NAME SYSTEM (DNS) 609

31. Can we say that the FQDNs in DNS are the same as absolute pathnames in UNIX
and PQDNs are the same as relative pathnames in UNIX?

32. Find how to use the nslookup utility in Windows.

33. Find all the options of the nslookup utility.

34. Try the nslookup utility on some domain name you are familiar with.

35. Use the nslookup utility to find the address of some commercial web servers.

for76042_ch19.fm Page 609 Tuesday, February 17, 2009 7:58 PM

C H A P T E R

20

610

20 Remote Login: TELNET
and SSH

he main task of the Internet and its TCP/IP protocol suite is to provide
services for users. Although there are some specific client/server pro-

grams that we discuss in future chapters, it would be impossible to write a
specific client-server program for each demand. The better solution is a
general-purpose client-server program that lets a user access any applica-
tion program on a remote computer; in other words, allow the user to log
on to a remote computer. After logging on, a user can use the services
available on the remote computer and transfer the results back to the local
computer. In this chapter, we discuss two of these application programs:
TELNET and SSH.

OBJECTIVES

The chapter has several objectives:

❑ To introduce the TELNET protocol and show how it implements
local and remote login using the concept of network virtual terminal.

❑ To discuss options and suboptions used in TELNET and how they are
negotiated.

❑ To define out-of-band signaling and how it is implemented in
TELNET.

❑ To define different modes of operations in TELNET and their
efficiency.

❑ To introduce SSH as an alternative to TELNET.

❑ To show how different components of SSH are combined to provide
a secure connection over an insecure TCP connection.

❑ To discuss port-forwarding in SSH and how it can be used to provide
security for other applications.

T

for76042_ch20.fm Page 610 Tuesday, February 17, 2009 8:01 PM

611

20.1 TELNET
TELNET is an abbreviation for TErminaL NETwork. It is the standard TCP/IP proto-
col for virtual terminal service as proposed by ISO. TELNET enables the establishment
of a connection to a remote system in such a way that the local terminal appears to be a
terminal at the remote system.

Concepts
TELNET is related to several concepts that we briefly describe here.

Time-Sharing Environment
TELNET was designed at a time when most operating systems, such as UNIX, were
operating in a time-sharing environment. In such an environment, a large computer
supports multiple users. The interaction between a user and the computer occurs
through a terminal, which is usually a combination of keyboard, monitor, and mouse.
Even a microcomputer can simulate a terminal with a terminal emulator.

In a time-sharing environment, all of the processing must be done by the central
computer. When a user types a character on the keyboard, the character is usually sent
to the computer and echoed to the monitor. Time-sharing creates an environment in
which each user has the illusion of a dedicated computer. The user can run a program,
access the system resources, switch from one program to another, and so on.

Login

In a time-sharing environment, users are part of the system with some right to access
resources. Each authorized user has an identification and probably a password. The
user identification defines the user as part of the system. To access the system, the user
logs into the system with a user id or login name. The system also includes password
checking to prevent an unauthorized user from accessing the resources.

Local Login When a user logs into a local time-sharing system, it is called local
login. As a user types at a terminal or at a workstation running a terminal emulator, the
keystrokes are accepted by the terminal driver. The terminal driver passes the characters
to the operating system. The operating system, in turn, interprets the combination of
characters and invokes the desired application program or utility (see Figure 20.1).

The mechanism, however, is not as simple as it seems because the operating sys-
tem may assign special meanings to special characters. For example, in UNIX some

TELNET is a general-purpose client-server application program.

for76042_ch20.fm Page 611 Tuesday, February 17, 2009 8:01 PM

612

PART 4 APPLICATION LAYER

combinations of characters have special meanings, such as the combination of the control
character with the character z, which means suspend; the combination of the control char-
acter with the character c, which means abort; and so on. Whereas these special situations
do not create any problem in local login because the terminal emulator and the terminal
driver know the exact meaning of each character or combination of characters, they may
create problems in remote login. Which process should interpret special characters? The
client or the server? We will clarify this situation later in the chapter.

Remote Login

When a user wants to access an application program or utility located
on a remote machine, he or she performs

remote login.

 Here the TELNET client and
server programs come into use. The user sends the keystrokes to the terminal driver
where the local operating system accepts the characters but does not interpret them.
The characters are sent to the TELNET client, which transforms the characters to a uni-
versal character set called

Network Virtual Terminal

(NVT)

 characters

 and delivers
them to the local TCP/IP stack (see Figure 20.2).

The commands or text, in NVT form, travel through the Internet and arrive at the
TCP/IP stack at the remote machine. Here the characters are delivered to the operating
system and passed to the TELNET server, which changes the characters to the corre-
sponding characters understandable by the remote computer. However, the characters
cannot be passed directly to the operating system because the remote operating system

Figure 20.1

Local login

Figure 20.2

Remote login

Application programs

Operating
System

Terminal

Terminal driver

Operating
system

Operating
system

IP

TCP

Data link

Physical

IP

TCP

Data link

Physical

TELNET
server

TELNET
client

Internet

Terminal

Pseudoterminal
driver

Terminal
driver

Application programs

for76042_ch20.fm Page 612 Wednesday, February 18, 2009 3:48 PM

CHAPTER 20 REMOTE LOGIN: TELNET AND SSH 613

is not designed to receive characters from a TELNET server: It is designed to receive
characters from a terminal driver. The solution is to add a piece of software called
a pseudoterminal driver, which pretends that the characters are coming from a terminal.
The operating system then passes the characters to the appropriate application program.

Network Virtual Terminal (NVT)
The mechanism to access a remote computer is complex. This is because every com-
puter and its operating system accepts a special combination of characters as tokens.
For example, the end-of-file token in a computer running the DOS operating system is
Ctrl+z, while the UNIX operating system recognizes Ctrl+d.

We are dealing with heterogeneous systems. If we want to access any remote com-
puter in the world, we must first know what type of computer we will be connected to,
and we must also install the specific terminal emulator used by that computer. TELNET
solves this problem by defining a universal interface called the Network Virtual
Terminal (NVT) character set. Via this interface, the client TELNET translates charac-
ters (data or commands) that come from the local terminal into NVT form and delivers
them to the network. The server TELNET, on the other hand, translates data and com-
mands from NVT form into the form acceptable by the remote computer. For an illus-
tration of this concept, see Figure 20.3.

NVT Character Set

NVT uses two sets of characters, one for data and one for control. Both are 8-bit bytes
(Figure 20.4).

Data Characters For data, NVT normally uses what is called NVT ASCII. This is an
8-bit character set in which the seven lowest order bits are the same as US ASCII and
the highest order bit is 0 (see Figure 20.4). Although it is possible to send an 8-bit

Figure 20.3 Concept of NVT

Figure 20.4 Format of data and control characters

TELNET
client

TELNET
serverTerminal

Remote computer
character set

NVT character setLocal computer
character set

Pseudoterminal
driver

Internet

0

a. Data Character

1

b. Control Character

for76042_ch20.fm Page 613 Tuesday, February 17, 2009 8:01 PM

614

PART 4 APPLICATION LAYER

ASCII (with the highest order bit set to be 0 or 1), this must first be agreed upon
between the client and the server using option negotiation.

Control Characters

To send

control characters

 between computers (from client to
server or vice versa), NVT uses an 8-bit character set in which the highest order bit is set
to 1 (see Figure 20.4). Table 20.1 lists some of the control characters and their meanings.
Later we will categorize these control characters on the basis of their functionalities.

Embedding

TELNET uses only one TCP connection. The server uses the well-known port 23 and the
client uses an ephemeral port. The same connection is used for sending both data and
control characters. TELNET accomplishes this by embedding the control characters in the
data stream. However, to distinguish data from control characters, each sequence of con-
trol characters is preceded by a special control character called

interpret as control

 (IAC).
For example, imagine a user wants a server to display a file (

file1

) on a remote server.
She types:

in which

cat

 is a Unix command that displays the content of the file on the screen.
However, the name of the file has been mistyped (

f ilea

 instead of

file1

). The user uses
the backspace key to correct this situation.

Table 20.1

Some NVT control characters

Character Decimal Binary Meaning

EOF 236 11101100 End of file
EOR 239 11101111 End of record
SE 240 11110000 Suboption end
NOP 241 11110001 No operation
DM 242 11110010 Data mark
BRK 243 11110011 Break
IP 244 11110100 Interrupt process
AO 245 11110101 Abort output
AYT 246 11110110 Are you there?
EC 247 11110111 Erase character
EL 248 11111000 Erase line
GA 249 11111001 Go ahead
SB 250 11111010 Suboption begin
WILL 251 11111011 Agreement to enable option
WONT 252 11111100 Refusal to enable option
DO 253 11111101 Approval to option request
DONT 254 11111110 Denial of option request
IAC 255 11111111 Interpret (the next character) as control

cat file1

cat filea<backspace>1

for76042_ch20.fm Page 614 Monday, February 23, 2009 1:30 PM

CHAPTER 20 REMOTE LOGIN: TELNET AND SSH 615

However, in the default implementation of TELNET, the user cannot edit locally;
the editing is done at the remote server. The backspace character is translated into two
remote characters (IAC EC), which is embedded in the data and sent to the remote
server. What is sent to the server is shown in Figure 20.5.

Options
TELNET lets the client and server negotiate options before or during the use of the ser-
vice. Options are extra features available to a user with a more sophisticated terminal.
Users with simpler terminals can use default features. Some control characters dis-
cussed previously are used to define options. Table 20.2 shows some common options.

The option descriptions are as follows:

❑ Binary. This option allows the receiver to interpret every 8-bit character received,
except IAC, as binary data. When IAC is received, the next character or characters
are interpreted as commands. However, if two consecutive IAC characters are
received, the first is discarded and the second is interpreted as data.

❑ Echo. This option allows the server to echo data received from the client. This
means that every character sent by the client to the sender will be echoed back to the
screen of the client terminal. In this case, the user terminal usually does not echo
characters when they are typed but waits until it receives them from the server.

❑ Suppress go-ahead. This option suppresses the go-ahead (GA) character (see
section on Modes of Operation).

❑ Status. This option allows the user or the process running on the client machine to
get the status of the options being enabled at the server site.

Figure 20.5 An example of embedding

Table 20.2 Options

Code Option Meaning
 0 Binary Interpret as 8-bit binary transmission
 1 Echo Echo the data received on one side to the other
 3 Suppress go-ahead Suppress go-ahead signals after data
 5 Status Request the status of TELNET
 6 Timing mark Define the timing marks
24 Terminal type Set the terminal type
32 Terminal speed Set the terminal speed
34 Line mode Change to line mode

Client
Server

c a t f i e al IAC EC 1

for76042_ch20.fm Page 615 Tuesday, February 17, 2009 8:01 PM

616 PART 4 APPLICATION LAYER

❑ Timing mark. This option allows one party to issue a timing mark that indicates
all previously received data has been processed.

❑ Terminal type. This option allows the client to send its terminal type.

❑ Terminal speed. This option allows the client to send its terminal speed.

❑ Line mode. This option allows the client to switch to the line mode. We will
discuss the line mode later.

Option Negotiation

To use any of the options mentioned in the previous section first requires option nego-
tiation between the client and the server. Four control characters are used for this pur-
pose; these are shown in Table 20.3.

Enabling an Option

Some options can only be enabled by the server, some only by the client, and some by
both. An option is enabled either through an offer or a request.

Offer to Enable A party can offer to enable an option if it has the right to do so. The
offering can be approved or disapproved by the other party. The offering party sends
the WILL command, which means “Will I enable the option?” The other party sends
either the DO command, which means “Please do,” or the DONT command, which
means “Please don’t.” See Figure 20.6.

Request to Enable A party can request from the other party the enabling of an
option. The request can be accepted or refused by the other party. The requesting party
sends the DO command, which means “Please do enable the option.” The other party
sends either the WILL command, which means “I will,” or the WONT command, which
means “I won’t.” See Figure 20.7.

Disabling an Option

An option that has been enabled can be disabled by one of the parties. An option is dis-
abled either through an offer or a request.

Table 20.3 NVT character set for option negotiation

Character Code Meaning 1 Meaning 2 Meaning 3
WILL 251 Offering to enable Accepting to enable
WONT 252 Rejecting to enable Offering to disable Accepting to disable
DO 253 Approving to enable Requesting to enable
DONT 254 Disapproving to enable Approving to disable Requesting to disable

Figure 20.6 Offer to enable an option

WILL

DO or DONT

Will I enable the option?

Do (or don’t) enable the optionSender Receiver

for76042_ch20.fm Page 616 Tuesday, February 17, 2009 8:01 PM

CHAPTER 20 REMOTE LOGIN: TELNET AND SSH 617

Offer to Disable A party can offer to disable an option. The other party must approve
the offering; it cannot be disapproved. The offering party sends the WONT command,
which means “I won’t use this option any more.” The answer must be the DONT com-
mand, which means “Don’t use it anymore.” Figure 20.8 shows an offer to disable an
option.

Request to Disable A party can request from another party the disabling of an
option. The other party must accept the request; it cannot be rejected. The requesting
party sends the DONT command, which means “Please don’t use this option anymore.”
The answer must be the WONT command, which means “I won’t use it anymore.” Fig-
ure 20.9 shows a request to disable an option.

Example 20.1

Figure 20.10 shows an example of option negotiation. In this example, the client wants the server
to echo each character sent to the server. In other words, when a character is typed at the user
keyboard terminal, it goes to the server and is sent back to the screen of the user before
being processed. The echo option is enabled by the server because it is the server that sends the
characters back to the user terminal. Therefore, the client should request from the server the
enabling of the option using DO. The request consists of three characters: IAC, DO, and ECHO.
The server accepts the request and enables the option. It informs the client by sending the three-
character approval: IAC, WILL, and ECHO.

Figure 20.7 Request to enable an option

Figure 20.8 Offer to disable an option

Figure 20.9 Request to disable an option

DO

Do enable the option

I will (won’t) enable the option

WILL or WONT

Sender Receiver

WONT

DONT

I won’t use the option any more

Don’t use itSender Receiver

DONT

WONT

Don’t use the option any more

I won’tSender Receiver

for76042_ch20.fm Page 617 Tuesday, February 17, 2009 8:01 PM

618 PART 4 APPLICATION LAYER

Symmetry
One interesting feature of TELNET is its symmetric option negotiation in which the
client and server are given equal opportunity. This means that, at the beginning of con-
nection, it is assumed that both sides are using a default TELNET implementation with
no options enabled. If one party wants an option enabled, it can offer or request. The
other party has the right to approve the offer or reject the request if the party is not
capable of using the option or does not want to use the option. This allows for the
expansion of TELNET. A client or server can install a more sophisticated version of
TELNET with more options. When it is connected to a party, it can offer or request
these new options. If the other party also supports these options, the options can be
enabled; otherwise, they are rejected.

Suboption Negotiation
Some options require additional information. For example, to define the type or speed
of a terminal, the negotiation includes a string or a number to define the type or speed.
In either case, the two suboption characters indicated in Table 20.4 are needed for
suboption negotiation.

For example, the type of the terminal is set by the client, as is shown in Figure 20.11.

Controlling the Server
Some control characters can be used to control the remote server. When an application
program is running on the local computer, special characters are used to interrupt
(abort) the program (for example, Ctrl+c), or erase the last character typed (for example,
delete key or backspace key), and so on. However, when a program is running on
a remote computer, these control characters are sent to the remote machine. The user
still types the same sequences, but they are changed to special characters and sent to the

Figure 20.10 Example 20.1: Echo option

Table 20.4 NVT character set for suboption negotiation

Character Decimal Binary Meaning
SE 240 11110000 Suboption end
SB 250 11111010 Suboption begin

Client Server

Do enable the echo option

I will enable the echo option

IACDOECHO

IAC WILL ECHO

1

22

for76042_ch20.fm Page 618 Tuesday, February 17, 2009 8:01 PM

CHAPTER 20 REMOTE LOGIN: TELNET AND SSH 619

server. Table 20.5 shows some of the characters that can be sent to the server to control
the application program that is running there.

Let’s look at these characters in more detail:

❑ IP (interrupt process). When a program is being run locally, the user can interrupt
(abort) the program if, for example, the program has gone into an infinite loop. The
user can type the Ctrl+c combination, the operating system calls a function, and
the function aborts the program. However, if the program is running on a remote
machine, the appropriate function should be called by the operating system of the
remote machine. TELNET defines the IP (interrupt process) control character that
is read and interpreted as the appropriate command for invoking the interrupting
function in the remote machine.

❑ AO (abort output). This is the same as IP, but it allows the process to continue
without creating output. This is useful if the process has another effect in addition
to creating output. The user wants this effect but not the output. For example, most
commands in UNIX generate output and have an exit status. The user may want
the exit status for future use but is not interested in the output data.

❑ AYT (are you there?). This control character is used to determine if the remote
machine is still up and running, especially after a long silence from the server.
When this character is received, the server usually sends an audible or visual signal
to confirm that it is running.

❑ EC (erase character). When a user sends data from the keyboard to the local
machine, the delete or backspace character can erase the last character typed. To do
the same in a remote machine, TELNET defines the EC control character.

❑ EL (erase line). This is used to erase the current line in the remote host.

Figure 20.11 Example of sub-option negotiation

Table 20.5 Characters used to control a program running on remote server

Character Decimal Binary Meaning
IP 244 11110100 Interrupt process
AO 245 11110101 Abort output
AYT 246 11110110 Are you there?
EC 247 11110111 Erase the last character
EL 248 11111000 Erase line

I will enable the terminal option

IACWILLTerminal type

Do enable terminal option

IAC DO Terminal type

Set the terminal type to “VT”

IACIAC SB‘V’‘T’ Terminal typeSE

Client Server

1

22

3

for76042_ch20.fm Page 619 Tuesday, February 17, 2009 8:01 PM

620 PART 4 APPLICATION LAYER

For example, Figure 20.12 shows how to interrupt a runaway application program at
the server site. The user types Ctrl+c, but the TELNET client sends the combination of
IAC and IP to the server.

Out-of-Band Signaling
To make control characters effective in special situations, TELNET uses out-of-band
signaling. In out-of-band signaling, the control characters are preceded by IAC and are
sent to the remote process.

Imagine a situation in which an application program running at the server site has
gone into an infinite loop and does not accept any more input data. The user wants to
interrupt the application program, but the program does not read data from the buffer.
The TCP at the server site has found that the buffer is full and has sent a segment spec-
ifying that the client window size should be zero. In other words, the TCP at the server
site is announcing that no more regular traffic is accepted. To remedy such a situation,
an urgent TCP segment should be sent from the client to the server. The urgent segment
overrides the regular flow-control mechanism. Although TCP is not accepting normal
segments, it must accept an urgent segment.

When a TELNET process (client or server) wants to send an out-of-band sequence
of characters to the other process (client or server), it embeds the sequence in the data
stream and inserts a special character called a DM (data mark). However, to inform the
other party, it creates a TCP segment with the urgent bit set and the urgent pointer
pointing to the DM character. When the receiving process receives the data, it reads the
data and discards any data preceding the control characters (IAC and IP, for example).
When it reaches the DM character, the remaining data are handled normally. In other
words, the DM character is used as a synchronization character that switches the receiv-
ing process from the urgent mode to the normal mode and resynchronizes the two ends
(see Figure 20.13).

In this way, the control character (IP) is delivered out of band to the operating sys-
tem, which uses the appropriate function to interrupt the running application program.

Escape Character
A character typed by the user is normally sent to the server. However, sometimes the
user wants characters interpreted by the client instead of the server. In this case, the
user can use an escape character, normally Ctrl+] (shown as ^]). Figure 20.14 compares
the interruption of an application program at the remote site with the interruption of the

Figure 20.12 Example of interrupting an application program

Telnet client

Client keyboard

Telnet Server
Application

program

Interrupt
IACIP^C

for76042_ch20.fm Page 620 Tuesday, February 17, 2009 8:01 PM

CHAPTER 20 REMOTE LOGIN: TELNET AND SSH 621

client process at the local site using the escape character. The TELNET prompt is dis-
played after this escape character.

Modes of Operation
Most TELNET implementations operate in one of three modes: default mode, character
mode, or line mode.

Default Mode

The default mode is used if no other modes are invoked through option negotiation. In
this mode, the echoing is done by the client. The user types a character and the client
echoes the character on the screen (or printer) but does not send it until a whole line is
completed. After sending the whole line to the server, the client waits for the GA (go
ahead) command from the server before accepting a new line from the user. The opera-
tion is half-duplex. Half-duplex operation is not efficient when the TCP connection
itself is full-duplex, and so this mode is becoming obsolete.

Figure 20.13 Out-of-band signaling

Figure 20.14 Two different interruptions

Client
Server

IACIPDM Data

DiscardedKept

Urgent pointer

Data

a. Interrupting the application program

b. Interrupting the client

Telnet client

Client keyboard

Telnet Server
Application

program

Interrupt
IACIP^C

Telnet client

Client keyboard

Telnet Server
Application

program

Interrupt

^]

for76042_ch20.fm Page 621 Tuesday, February 17, 2009 8:01 PM

622 PART 4 APPLICATION LAYER

Character Mode

In the character mode, each character typed is sent by the client to the server. The
server normally echoes the character back to be displayed on the client screen. In this
mode the echoing of the character can be delayed if the transmission time is long (such
as in a satellite connection). It also creates overhead (traffic) for the network because
three TCP segments must be sent for each character of data:

1. The user enters a character that is sent to the server.

2. The server acknowledges the received character and echoes the character back (in
one segment).

3. The client acknowledges the receipt of the echoed character.

Example 20.2
In this example, we use the default mode to show the concept and its deficiencies even though it
is almost obsolete today. The client and the server negotiate the terminal type and terminal speed
and then the server checks the login and password of the user (see Figure 20.15).

Line Mode

A new mode has been proposed to compensate for the deficiencies of the default mode
and the character mode. In this mode, called the line mode, line editing (echoing,
character erasing, line erasing, and so on) is done by the client. The client then sends

Figure 20.15 Example 20.2

Client
Server

WILL TERMINAL TYPE

DO TERMINAL TYPE

GO AHEAD

GO AHEAD

GO AHEAD

cp file1 file2

GO AHEAD

GO AHEAD

WILL TERMINAL SPEED

DONT TERMINAL SPEED

Login:

Password:

forouzan

XXXXX

1

2

3

4

5

6

7

8

9

10

11

12

13

14

for76042_ch20.fm Page 622 Tuesday, February 17, 2009 8:01 PM

CHAPTER 20 REMOTE LOGIN: TELNET AND SSH 623

the whole line to the server. Although the line mode looks like the default mode, it is
not. The default mode operates in the half-duplex mode; the line mode is full-duplex
with the client sending one line after another, without the need for an intervening GA
(go ahead) character from the server.

Example 20.3

In this example, we show how the client switches to the character mode. This requires that
the client request the server to enable the SUPPRESS GO AHEAD and ECHO options (see
Figure 20.16).

User Interface
The normal user does not use TELNET commands as defined above. Usually, the oper-
ating system (UNIX, for example) defines an interface with user-friendly commands.
An example of such a set of commands can be found in Table 20.6. Note that the inter-
face is responsible for translating the user-friendly commands to the previously defined
commands in the protocol.

Figure 20.16 Example 20.3

Table 20.6 Examples of interface commands

Command Meaning Command Meaning
open Connect to a remote computer set Set the operating parameters
close Close the connection status Display the status information
display Show the operating parameters send Send special characters
mode Change to line or character mode quit Exit TELNET

Client Server

GO AHEAD

DO SUPPRESS GO AHEAD

WILL SUPPRESS GO AHEAD

DO ECHO

WILL ECHO

Login:

f

o

o

f

1

2

3

4

5

6

7

8

9

10

for76042_ch20.fm Page 623 Tuesday, February 17, 2009 8:01 PM

624 PART 4 APPLICATION LAYER

Security Issue
TELNET suffers from security problems. Although TELNET requires a login name
and password (when exchanging text), often this is not enough. A microcomputer con-
nected to a broadcast LAN can easily eavesdrop using snooper software and capture a
login name and the corresponding password (even if it is encrypted). In Chapter 29, we
will learn more about authentication and security.

20.2 SECURE SHELL (SSH)
Another popular remote login application program is Secure Shell (SSH). SSH, like
TELNET, uses TCP as the underlying transport protocol, but SSH is more secure and
provides more services than TELNET.

Versions
There are two versions of SSH: SSH-1 and SSH-2, which are totally incompatible. The
first version, SSH-1 is now deprecated because of security flaws in it. In this section,
we discuss only SSH-2.

Components
SSH is a proposed application-layer protocol with four components, as shown in
Figure 20.17.

SSH Transport-Layer Protocol (SSH-TRANS)

Since TCP is not a secured transport layer protocol, SSH first uses a protocol that cre-
ates a secured channel on the top of TCP. This new layer is an independent protocol
referred to as SSH-TRANS. When the software implementing this protocol is called,
the client and server first use the TCP protocol to establish an insecure proconnection.
Then they exchange several security parameters to establish a secure channel on the top
of the TCP. We discuss network security in Chapter 29, but we briefly list the services
provided by this protocol:

1. Privacy or confidentiality of the message exchanged.

2. Data integrity, which means that it is guaranteed that the messages exchanged
between the client and server are not changed by an intruder.

Figure 20.17 Components of SSH

SSH-CONN

SSH Application

SSH-AUTH

SSH-TRANS

TCPTransport
layer

Application
layer

for76042_ch20.fm Page 624 Tuesday, February 17, 2009 8:01 PM

CHAPTER 20 REMOTE LOGIN: TELNET AND SSH 625

3. Server authentication, which means that the client is now sure that the server is the
one that it claims to be.

4. Compression of the messages that improve the efficiency of the system and makes
attack more difficult.

SSH Authentication Protocol (SSH-AUTH)

After a secure channel is established between the client and the server and the server is
authenticated for the client, SSH can call another software that can authenticate the cli-
ent for the server.

SSH Connection Protocol (SSH-CONN)

After the secured channel is established and both server and client are authenticated for
each other, SHH can call a piece of software that implements the third protocol, SSH-
CONN. One of the services provided by the SSH-CONN protocol is to do multiplex-
ing. SSH-CONN takes the secure channel established by the two previous protocols
and lets the client create multiple logical channels over it.

SSH Applications

After the connection phase is completed, SSH allows several application programs to
use the connection. Each application can create a logical channel as described above
and then benefit from the secured connection. In other words, remote login is one of the
services that can use the SSH-CONN protocols; other applications, such as a file trans-
fer application can use one of the logical channels for this purpose. In the next chapter,
we show how SSH can be used for secure file transfer.

Port Forwarding
One of the interesting services provided by the SSH protocol is to provide port
forwarding. We can use the secured channels available in SSH to access an application pro-
gram that does not provide security services. Application such as TELNET (see Chapter 20)
and SMTP (see Chapter 23) can use the services of SSH using port forwarding mechanism.
SSH port forwarding mechanism creates a tunnel through which the messages belonging to
other protocol can travel. For this reason, this mechanism is sometimes referred to as SSH
tunneling. Figure 20.18 shows the concept of port forwarding.

Figure 20.18 Port Forwarding

SHH
Server

Secure
Connection

Local site Remote site

SHH
Client

TELNET
Server

TELNET
Client

Tunnel

for76042_ch20.fm Page 625 Tuesday, February 17, 2009 8:01 PM

626 PART 4 APPLICATION LAYER

We can change a direct, but insecure, connection between the TELNET client and
the TELNET server by port forwarding. The TELNET client can use the SHH client on
the local site to make a secure connection with the SSH server on the remote site. Any
request from the TELNET client to the TELNET server is carried through the tunnel
provided by the SSH client and server. Any response from the TELNET server to the
TELNET client is also carried through the tunnel provided by the SSH client and
server. We talk more about tunneling in Chapter 30.

Format of the SSH Packets
Figure 20.19 shows the format of packets used by the SSH protocols.

The following is the brief description of each field:
❑ Length. This 4-byte field defines the length of the packet including the type, the

data, and the CRC field, but not the padding and the length field.

❑ Padding. One to eight bytes of padding is added to the packet to make the attack
on the security provision more difficult.

❑ Type. This one-byte field defines the type of the packet used by SSH protocols.

❑ Data. This field is of variable length. The length of the data can be found by
deducting the five bytes from the value of the length field.

❑ CRC. The cyclic redundancy check filed is used for error detection (see Appendix D).

20.3 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books and RFCs give an easy but thorough coverage of TELNET and SSH
including [Com 06], [Mir 07], [Bar et al. 05].

Figure 20.19 SSH Packet Format

Length Padding Data

4
bytes

4
bytes

1-8
bytes

1
byte Variable

Encrypted for confidentiality

CRCType

for76042_ch20.fm Page 626 Tuesday, February 17, 2009 8:01 PM

CHAPTER 20 REMOTE LOGIN: TELNET AND SSH 627

RFCs
Several RFCs show different updates on TELNET including RFC 854, FRC 855, RFC
856, RFC 1041, RFC 1091, RFC 1372, and RFC 1572. More information about SSH can
be found in RFC 4250, RFC 4251, RFC 4252, RFC 4253, RFC 4254, and RFC 4344.

20.4 KEY TERMS

20.5 SUMMARY
❑ TELNET is a client-server application that allows a user to log on to a remote

machine, giving the user access to the remote system. When a user accesses a
remote system via the TELNET process, this is comparable to a time-sharing envi-
ronment. A terminal driver correctly interprets the keystrokes on the local terminal
or terminal emulator. This may not occur between a terminal and a remote terminal
driver.

❑ TELNET uses the Network Virtual Terminal (NVT) system to encode characters
on the local system. On the server machine, NVT decodes the characters to a form
acceptable to the remote machine. NVT uses a set of characters for data and a set
of characters for control.

❑ Options are features that enhance the TELNET process. TELNET allows negotia-
tion to set transfer conditions between the client and server before and during the
use of the service. Some options can only be enabled by the server, some only by
the client, and some by both. An option is enabled or disabled through an offer or a
request. An option that needs additional information requires the use of suboption
characters.

❑ A TELNET implementation operates in the default, character, or line mode. In the
default mode, the client sends one line at a time to the server and waits for the go
ahead (GA) character before a new line from the user can be accepted. In the char-
acter mode, the client sends one character at a time to the server. In the line mode,
the client sends one line at a time to the server, one after the other, without the need
for an intervening GA character.

❑ Another popular remote login application program is Secure Shell (SSH), which is
more secure and provides more services than TELNET. There are two versions of
SSH; we discussed only SSH-2.

character mode port forwarding
control character remote login
default mode Secure Shell (SHH)
line mode suboption negotiation
local login terminal network (TELNET)
Network Virtual Terminal (NVT) time-sharing
option negotiation tunneling
out-of-band signaling

for76042_ch20.fm Page 627 Tuesday, February 17, 2009 8:01 PM

628 PART 4 APPLICATION LAYER

❑ SSH is made of four components: SSH application, SSH-CONN, SSH-AUTH, and
SSH-TRANS. The combination of the above four components provide a secure
remote login that can be used instead of TELNET.

❑ One of the interesting services provided by the SSH protocol is to provide port for-
warding. We can use the secured channels available in SSH to access an applica-
tion program that does not provide security services.

20.6 PRACTICE SET

Exercises
1. Show the sequence of bits sent from a client TELNET for the binary transmission

of 11110011 00111100 11111111.

2. If TELNET is using the character mode, how many characters are sent back and
forth between the client and server to copy a file named file1 to another file named
file2 in UNIX (cp file1 file2)?

3. What is the minimum number of bits sent at the TCP level to accomplish the task
in Exercise 1?

4. What is the minimum number of bits sent at the data link layer level (using Ether-
net) to accomplish the task in Exercise 1?

5. What is the ratio of the useful bits to the total bits in Exercise 4?

6. Show the sequence of characters exchanged between the TELNET client and the
server to switch from the default mode to the character mode.

7. Show the sequence of characters exchanged between the TELNET client and the
server to switch from the character mode to the default mode.

8. Show the sequence of characters exchanged between the TELNET client and the
server to switch from the default mode to line mode.

9. Show the sequence of characters exchanged between the TELNET client and the
server to switch from the character mode to the line mode.

10. Show the sequence of characters exchanged between the TELNET client and the
server to switch from the line mode to the character mode.

11. Show the sequence of characters exchanged between the TELNET client and the
server to switch from the line mode to the default mode.

12. Interpret the following sequence of characters (in hexadecimal) received by a
TELNET client or server:

a. FF FB 01

b. FF FE 01

c. FF F4

d. FF F9

13. If you know a site that allows you to use SSH server, create a connection with the
site by using the client SSH on your computer.

for76042_ch20.fm Page 628 Tuesday, February 17, 2009 8:01 PM

CHAPTER 20 REMOTE LOGIN: TELNET AND SSH 629

Research Activities
14. Find the extended options proposed for TELNET.

15. SSH provide two types of port forwarding: local and remote. Do some research
and find the difference between the two.

16. Another login protocol is called Rlogin. Find some information about Rlogin and
compare it with TELNET and SSH.

17. Another login protocol is called Remote Desktop Protocol (RDP). Find some
information about RDP and compare it with TELNET and SSH.

18. Virtual Network Computing (VNC) is a program that provides remote desktop capa-
bility. Find some information about VNC and compare it with TELNET and SSH.

for76042_ch20.fm Page 629 Tuesday, February 17, 2009 8:01 PM

C H A P T E R

21

630

21

File Transfer: FTP and TFTP

ransferring files from one computer to another is one of the most
common tasks expected from a networking or internetworking envi-

ronment. As a matter of fact, the greatest volume of data exchange in the
Internet today is due to file transfer. In this chapter, we discuss two protocols
involved in transferring files: File Transfer Protocol (FTP) and Trivial File
Transfer Protocol (TFTP).

OBJECTIVES

The chapter has several objectives:

❑

To discuss FTP and two connections used in this protocol: control
connection and data connection.

❑

To discuss six classes of commands sent by the client to establish
communication with the server.

❑

To explain three types of file transfer transferred by FTP.

❑

To show some user-friendly commands used by some FTP interfaces.

❑

To discuss anonymous FTP and its application.

❑

To discuss how file transfer can be done using a secure channel.

❑

To discuss TFTP as a simple file transfer protocol without the
complexities and sophistication of FTP.

❑

To discuss five types of TFTP messages and their applications.

❑

To discuss the sorcerer’s apprentice bug related to TFTP’s flow- and
error-control mechanisms.

❑

To show how TFTP can be used in conjunction with DHCP to initialize
devices by downloading configuration files.

T

for76042_ch21.fm Page 630 Wednesday, February 18, 2009 3:02 PM

631

21.1 FTP
File Transfer Protocol (FTP) is the standard mechanism provided by TCP/IP for
copying a file from one host to another. Although transferring files from one system to
another seems simple and straightforward, some problems must be dealt with first. For
example, two systems may use different file name conventions. Two systems may have
different ways to represent text and data. Two systems may have different directory
structures. All of these problems have been solved by FTP in a very simple and elegant
approach.

FTP differs from other client-server applications in that it establishes two connec-
tions between the hosts. One connection is used for data transfer, the other for control
information (commands and responses). Separation of commands and data transfer
makes FTP more efficient. The control connection uses very simple rules of communi-
cation. We need to transfer only a line of command or a line of response at a time. The
data connection, on the other hand, needs more complex rules due to the variety of data
types transferred.

FTP uses two well-known TCP ports: Port 21 is used for the control connection,
and port 20 is used for the data connection.

Figure 21.1 shows the basic model of FTP. The client has three components: user
interface, client control process, and the client data transfer process. The server has two
components: the server control process and the server data transfer process. The control
connection is made between the control processes. The data connection is made
between the data transfer processes.

The control connection remains connected during the entire interactive FTP ses-
sion. The data connection is opened and then closed for each file transferred. It opens
each time commands that involve transferring files are used, and it closes when the file
is transferred. In other words, when a user starts an FTP session, the control connection
opens. While the control connection is open, the data connection can be opened and
closed multiple times if several files are transferred.

Connections
The two FTP connections, control and data, use different strategies and different port
numbers.

FTP uses the services of TCP. It needs two TCP connections. The well-known port 21 is
used for the control connection and the well-known port 20 for the data connection.

for76042_ch21.fm Page 631 Tuesday, February 17, 2009 8:10 PM

632 PART 4 APPLICATION LAYER

Control Connection

The control connection is created in the same way as other application programs
described so far. There are two steps:

1. The server issues a passive open on the well-known port 21 and waits for a client.

2. The client uses an ephemeral port and issues an active open.

The connection remains open during the entire process. The service type, used by the IP
protocol, is minimize delay because this is an interactive connection between a user
(human) and a server. The user types commands and expects to receive responses without
significant delay. Figure 21.2 shows the initial connection between the server and the client.

Data Connection

The data connection uses the well-known port 20 at the server site. However, the cre-
ation of a data connection is different from what we have seen so far. The following
shows how FTP creates a data connection:

1. The client, not the server, issues a passive open using an ephemeral port. This must be
done by the client because it is the client that issues the commands for transferring files.

Figure 21.1 FTP

Figure 21.2 Opening the control connection

Data connection

Control connection

User
interface

Control
process

Data transfer
process

Client

User

Server

Control
process

Data transfer
process

Internet

Disk Disk

Control
process

Control
process

Control
process

Passive open

Active open

Server

Server

Port: 21

Port: 21

Client

Client

Control
process

Port: ephemeral

a. First, passive open by server

b. Later, active open by client

for76042_ch21.fm Page 632 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 633

2. The client sends this port number to the server using the PORT command (we will
discuss this command shortly).

3. The server receives the port number and issues an active open using the well-
known port 20 and the received ephemeral port number.

The steps for creating the initial data connection are shown in Figure 21.3. Later we
will see that these steps are changed if the PASV command is used.

Communication
The FTP client and server, which run on different computers, must communicate
with each other. These two computers may use different operating systems, different
character sets, different file structures, and different file formats. FTP must make this
heterogeneity compatible.

FTP has two different approaches, one for the control connection and one for the
data connection. We will study each approach separately.

Communication over Control Connection

FTP uses the same approach as TELNET or SMTP to communicate across the control
connection. It uses the NVT ASCII character set (see Figure 21.4). Communication is
achieved through commands and responses. This simple method is adequate for the
control connection because we send one command (or response) at a time. Each com-
mand or response is only one short line so we need not worry about file format or file

Figure 21.3 Creating the data connection

Figure 21.4 Using the control connection

Port: 20

Data
process

Passive open

Server
Port: ephemeral

Client

Data
process

Data
process

Server
Port: ephemeral

Client

Data
process

a. First, passive open by client

b. Second, sending of ephemeral port

c. Third, active open by server

Active open

Send ephemeral port number
through control connection Control

process
Control
process

ServerClient

Control
process

Client
Local
code

NVT ASCII
Local

operating
system

Control connection Control
process

Server
Local
code

Remote
operating
system

for76042_ch21.fm Page 633 Tuesday, February 17, 2009 8:10 PM

634 PART 4 APPLICATION LAYER

structure. Each line is terminated with a two-character (carriage return and line feed)
end-of-line token.

Communication over Data Connection

The purpose and implementation of the data connection are different from that of the con-
trol connection. We want to transfer files through the data connection. The client must
define the type of file to be transferred, the structure of the data, and the transmission mode.
Before sending the file through the data connection, we prepare for transmission through
the control connection. The heterogeneity problem is resolved by defining three attributes
of communication: file type, data structure, and transmission mode (see Figure 21.5).

File Type FTP can transfer one of the following file types across the data connection:

❑ ASCII file. This is the default format for transferring text files. Each character is
encoded using NVT ASCII. The sender transforms the file from its own represen-
tation into NVT ASCII characters and the receiver transforms the NVT ASCII
characters to its own representation.

❑ EBCDIC file. If one or both ends of the connection use EBCDIC encoding, the file
can be transferred using EBCDIC encoding.

❑ Image file. This is the default format for transferring binary files. The file is sent as
continuous streams of bits without any interpretation or encoding. This is mostly
used to transfer binary files such as compiled programs.

If the file is encoded in ASCII or EBCDIC, another attribute must be added to define
the printability of the file.

a. Nonprint. This is the default format for transferring a text file. The file contains
no vertical specifications for printing. This means that the file cannot be printed
without further processing because there are no characters to be interpreted for
vertical movement of the print head. This format is used for files that will be
stored and processed later.

b. TELNET. In this format the file contains NVT ASCII vertical characters such
as CR (carriage return), LF (line feed), NL (new line), and VT (vertical tab).
The file is printable after transfer.

Data Structure FTP can transfer a file across the data connection using one of the
following interpretations about the structure of the data:

❑ File structure (default). The file has no structure. It is a continuous stream of bytes.

Figure 21.5 Using the data connection

File type, data structure,
and transmission mode
are defined by the client

Local
types

Local
types Remote

file system
Local

file system

Data
process

ServerClient

Data
process

Data connection

for76042_ch21.fm Page 634 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 635

❑ Record structure. The file is divided into records. This can be used only with text
files.

❑ Page structure. The file is divided into pages, with each page having a page
number and a page header. The pages can be stored and accessed randomly or
sequentially.

Transmission Mode FTP can transfer a file across the data connection using one of
the following three transmission modes:

❑ Stream mode. This is the default mode. Data are delivered from FTP to TCP as a
continuous stream of bytes. TCP is responsible for chopping data into segments of
appropriate size. If the data is simply a stream of bytes (file structure), no end-of-
file is needed. End-of-file in this case is the closing of the data connection by the
sender. If the data are divided into records (record structure), each record will have
a 1-byte end-of-record (EOR) character and the end of the file will have a 1-byte
end-of-file (EOF) character.

❑ Block mode. Data can be delivered from FTP to TCP in blocks. In this case, each
block is preceded by a 3-byte header. The first byte is called the block descriptor;
the next two bytes define the size of the block in bytes.

❑ Compressed mode. If the file is big, the data can be compressed. The compression
method normally used is run-length encoding. In this method, consecutive appear-
ances of a data unit are replaced by one occurrence and the number of repetitions.
In a text file, this is usually spaces (blanks). In a binary file, null characters are
usually compressed.

Command Processing
FTP uses the control connection to establish a communication between the client control
process and the server control process. During this communication, the commands are
sent from the client to the server and the responses are sent from the server to the client
(see Figure 21.6).

Commands

Commands, which are sent from the FTP client control process, are in the form of
ASCII uppercase, which may or may not be followed by an argument. We can roughly
divide the commands into six groups: access commands, file management commands,
data formatting commands, port defining commands, file transferring commands, and
miscellaneous commands.

Figure 21.6 Command processing

Commands

Responses

Control
process

Client

Control connection Control
process

Server

for76042_ch21.fm Page 635 Tuesday, February 17, 2009 8:10 PM

636 PART 4 APPLICATION LAYER

❑ Access commands. These commands let the user access the remote system.
Table 21.1 lists common commands in this group.

❑ File management commands. These commands let the user access the file system
on the remote computer. They allow the user to navigate through the directory
structure, create new directories, delete files, and so on. Table 21.2 gives common
commands in this group.

❑ Data formatting commands. These commands let the user define the data struc-
ture, file type, and transmission mode. The defined format is then used by the file
transfer commands. Table 21.3 shows common commands in this group.

❑ Port defining commands. These commands define the port number for the data
connection on the client site. There are two methods to do this. In the first method,
using the PORT command, the client can choose an ephemeral port number and
send it to the server using a passive open. The server uses that port number and

Table 21.1 Access commands

Command Argument(s) Description
USER User id User information
PASS User password Password
ACCT Account to be charged Account information
REIN Reinitialize
QUIT Log out of the system
ABOR Abort the previous command

Table 21.2 File management commands

Command Argument(s) Description
CWD Directory name Change to another directory
CDUP Change to parent directory
DELE File name Delete a file
LIST Directory name List subdirectories or files
NLIST Directory name List subdirectories or files without attributes
MKD Directory name Create a new directory
PWD Display name of current directory
RMD Directory name Delete a directory
RNFR File name (old) Identify a file to be renamed
RNTO File name (new) Rename the file
SMNT File system name Mount a file system

Table 21.3 Data formatting commands

Command Argument(s) Description
TYPE A (ASCII), E (EBCDIC), I (Image), N

(Nonprint), or T (TELNET)
Define file type

STRU F (File), R (Record), or P (Page) Define organization of data
MODE S (Stream), B (Block), or C (Compressed) Define transmission mode

for76042_ch21.fm Page 636 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 637

creates an active open. In the second method, using the PASV command, the client
just asks the server to first choose a port number. The server does a passive open on
that port and sends the port number in the response (see response numbered 227 in
Table 21.7). The client issues an active open using that port number. Table 21.4
shows the port defining commands.

❑ File transfer commands. These commands actually let the user transfer files.
Table 21.5 lists common commands in this group.

❑ Miscellaneous commands. These commands deliver information to the FTP user
at the client site. Table 21.6 shows common commands in this group.

Responses

Every FTP command generates at least one response. A response has two parts: a three-
digit number followed by text. The numeric part defines the code; the text part defines
needed parameters or extra explanations. We represent the three digits as xyz. The
meaning of each digit is described below.

First Digit The first digit defines the status of the command. One of five digits can be
used in this position:

❑ 1yz (positive preliminary reply). The action has started. The server will send
another reply before accepting another command.

❑ 2yz (positive completion reply). The action has been completed. The server will
accept another command.

Table 21.4 Port defining commands

Command Argument(s) Description
PORT 6-digit identifier Client chooses a port
PASV Server chooses a port

Table 21.5 File transfer commands

Command Argument(s) Description
RETR File name(s) Retrieve files; file(s) are transferred from server to client
STOR File name(s) Store files; file(s) are transferred from client to server
APPE File name(s) Similar to STOR, but if file exists, data must be appended to it
STOU File name(s) Same as STOR, but file name will be unique in the directory
ALLO File name(s) Allocate storage space for files at the server
REST File name(s) Position file marker at a specified data point
STAT File name(s) Return status of files

Table 21.6 Miscellaneous commands

Command Argument(s) Description
HELP Ask information about the server
NOOP Check if server is alive
SITE Commands Specify the site-specific commands
SYST Ask about operating system used by the server

for76042_ch21.fm Page 637 Tuesday, February 17, 2009 8:10 PM

638 PART 4 APPLICATION LAYER

❑ 3yz (positive intermediate reply). The command has been accepted, but further
information is needed.

❑ 4yz (transient negative completion reply). The action did not take place, but the
error is temporary. The same command can be sent later.

❑ 5yz (permanent negative completion reply). The command was not accepted and
should not be retried again.

Second Digit The second digit also defines the status of the command. One of six
digits can be used in this position:

❑ x0z (syntax).

❑ x1z (information).

❑ x2z (connections).

❑ x3z (authentication and accounting).

❑ x4z (unspecified).

❑ x5z (file system).

Third Digit The third digit provides additional information. Table 21.7 shows a brief
list of possible responses (using all three digits).

Table 21.7 Responses

Code Description
Positive Preliminary Reply
120 Service will be ready shortly
125 Data connection open; data transfer will start shortly
150 File status is OK; data connection will be open shortly
Positive Completion Reply
200 Command OK
211 System status or help reply
212 Directory status
213 File status
214 Help message
215 Naming the system type (operating system)
220 Service ready
221 Service closing
225 Data connection open
226 Closing data connection
227 Entering passive mode; server sends its IP address and port number
230 User login OK
250 Request file action OK
Positive Intermediate Reply
331 User name OK; password is needed
332 Need account for logging
350 The file action is pending; more information needed

for76042_ch21.fm Page 638 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 639

File Transfer
File transfer occurs over the data connection under the control of the commands sent
over the control connection. However, we should remember that file transfer in FTP
means one of three things (see Figure 21.7).

❑ A file is to be copied from the server to the client (download). This is called
retrieving a file. It is done under the supervision of the RETR command.

❑ A file is to be copied from the client to the server (upload). This is called storing a
file. It is done under the supervision of the STOR command.

❑ A list of directory or file names is to be sent from the server to the client. This is
done under the supervision of the LIST command. Note that FTP treats a list of
directory or file names as a file. It is sent over the data connection.

Example 21.1

Figure 21.8 shows an example of using FTP for retrieving a list of items in a directory.

Transient Negative Completion Reply
425 Cannot open data connection
426 Connection closed; transfer aborted
450 File action not taken; file not available
451 Action aborted; local error
452 Action aborted; insufficient storage
Permanent Negative Completion Reply
500 Syntax error; unrecognized command
501 Syntax error in parameters or arguments
502 Command not implemented
503 Bad sequence of commands
504 Command parameter not implemented
530 User not logged in
532 Need account for storing file
550 Action is not done; file unavailable
552 Requested action aborted; exceeded storage allocation
553 Requested action not taken; file name not allowed

Figure 21.7 File transfer

Table 21.7 Responses (continued)

Code Description

Data
process

ServerClient

Data
process

Data connection

Storing a file

Retrieving a file

Retrieving a list

for76042_ch21.fm Page 639 Tuesday, February 17, 2009 8:10 PM

640 PART 4 APPLICATION LAYER

1. After the control connection to port 21 is created, the FTP server sends the 220 (service
ready) response on the control connection.

2. The client sends the USER command.

3. The server responds with 331 (user name is OK, password is required).

4. The client sends the PASS command.

5. The server responds with 230 (user login is OK).

6. The client issues a passive open on an ephemeral port for the data connection and sends the
PORT command (over the control connection) to give this port number to the server.

7. The server does not open the connection at this time, but it prepares itself for issuing an
active open on the data connection between port 20 (server side) and the ephemeral port
received from the client. It sends response 150 (data connection will open shortly).

8. The client sends the LIST message.

9. Now the server responds with 125 and opens the data connection.

10. The server then sends the list of the files or directories (as a file) on the data connection.
When the whole list (file) is sent, the server responds with 226 (closing data connection)
over the control connection.

11. The client now has two choices. It can use the QUIT command to request the closing of the
control connection or it can send another command to start another activity (and eventually
open another data connection). In our example, the client sends a QUIT command.

12. After receiving the QUIT command, the server responds with 221 (service closing) and then
closes the control connection.

Figure 21.8 Example 21.1

List of files or directories

List of files or directories

Data connection

Control connection

220 (Service ready)

USER forouzan

QUIT

LIST /usr/user/forouzan/reports

PASS xxxxxx

125 (Data connection OK)

226 (Closing data connection)

221 (Service closing)

331 (User name OK. Password?)

PORT 8888

150 (Data connection opens shortly)

230 (User login OK)

DATA
TRANSFER

Data
process

ServerClient

Data
process

Control
process

Control
process

ServerClient

1

2

3

4

5

6

7

8

9

10

11
12

13

14

for76042_ch21.fm Page 640 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 641

Example 21.2

The following shows an actual FTP session that parallels Example 21.1. The colored lines show
the responses from the server control connection; the black lines show the commands sent by the
client. The lines in white with black background show data transfer.

Example 21.3

Figure 21.9 shows an example of how an image (binary) file is stored.

1. After the control connection to port 21 is created, the FTP server sends the 220 (service
ready) response on the control connection.

2. The client sends the USER command.

3. The server responds with 331 (user name is OK, a password is required).

4. The client sends the PASS command.

5. The server responds with 230 (user login is OK).

6. The client issues a passive open on an ephemeral port for the data connection and sends the
PORT command (over the control connection) to give this port number to the server.

7. The server does not open the connection at this time, but prepares itself for issuing an active
open on the data connection between port 20 (server side) and the ephemeral port received
from the client. It sends the response 150 (data connection will open shortly).

8. The client sends the TYPE command.

9. The server responds with the response 200 (command OK).

10. The client sends the STRU command.

11. The server responds with 200 (command OK).

12. The client sends the STOR command.

13. The server opens the data connection and sends the response 250.

14. The client sends the file on the data connection. After the entire file is sent, the data connec-
tion is closed. Closing the data connection means end-of-file.

$ ftp voyager.deanza.fhda.edu
Connected to voyager.deanza.fhda.edu.
220 (vsFTPd 1.2.1)
530 Please login with USER and PASS.
Name (voyager.deanza.fhda.edu:forouzan): forouzan
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls reports
227 Entering Passive Mode (153,18,17,11,238,169)
150 Here comes the directory listing.

drwxr-xr-x 2 3027 411 4096 Sep 24 2002 business

drwxr-xr-x 2 3027 411 4096 Sep 24 2002 personal

drwxr-xr-x 2 3027 411 4096 Sep 24 2002 school

226 Directory send OK.
ftp> quit
221 Goodbye.

for76042_ch21.fm Page 641 Tuesday, February 17, 2009 8:10 PM

642 PART 4 APPLICATION LAYER

15. The server sends the response 226 on the control connection.

16. The client sends the QUIT command or uses other commands to open another data connec-
tion for transferring another file. In our example, the QUIT command is sent.

17. The server responds with 221 (service closing) and it closes the control connection.

Anonymous FTP
To use FTP, a user needs an account (user name) and a password on the remote server.
Some sites have a set of files available for public access. To access these files, a user
does not need to have an account or password. Instead, the user can use anonymous as
the user name and guest as the password.

User access to the system is very limited. Some sites allow anonymous users only
a subset of commands. For example, most sites allow the user to copy some files, but do
not allow navigation through the directories.

Example 21.4

We show an example of anonymous FTP. We assume that some public data are available at
internic.net.

Figure 21.9 Example 21.3

220 (Service ready)

USER forouzan

TYPE EBCDIC

STRU R

STOR/usr/user/forouzan/reports/file1

PASS xxxxxx

200 (OK)

200 (OK)

250 (OK)

QUIT

226 (Closing data connection)

221 (Service closing)

331 (User name OK. Password?)

PORT 1267

150 (Data connection opens shortly)

230 (User login OK)

DATA
TRANSFER

Records of file

Records of file

Data connection

Control connection

Data
process

ServerClient

Data
process

Control
process

Control
process

ServerClient

1

2

3

4

5

6

7

8

9

10

11

12

15
16

17

18

14
13

for76042_ch21.fm Page 642 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 643

Security for FTP
The FTP protocol was designed when the security was not a big issue. Although FTP
requires a password, the password is sent in plaintext (unencrypted), which means it
can be intercepted and used by an attacker. The data transfer connection also transfers
data in plaintext, which is insecure. To be secure, one can add a Secure Socket Layer
(see Chapter 30) between the FTP application layer and the TCP layer. In this case FTP
is called SSL-FTP.

The sftp Program
Another way to transfer files using a secure channel is to use another independent pro-
tocol called sftp (secure file transfer protocol). This is actually a program in Unix
called sftp that is part of the SSH protocol (see Chapter 20). When SSH has established
a secure connection between an SSH client and an SSH server, one of the application
programs that can use this connection (multiplexing) is sftp. In other words, sftp is part
of the application component of the SSH. The sftp program is an interactive program
that can work like FTP and uses a set of interface commands to transfer files between
the SSH client and SSH server.

21.2 TFTP
There are occasions when we need to simply copy a file without the need for all of the fea-
tures of the FTP protocol. For example, when a diskless workstation or a router is booted,
we need to download the bootstrap and configuration files. Here we do not need all of the
sophistication provided in FTP. We just need a protocol that quickly copies the files.

Trivial File Transfer Protocol (TFTP) is designed for these types of file transfer.
It is so simple that the software package can fit into the read-only memory of a diskless
workstation. It can be used at bootstrap time. The reason that it fits on ROM is that it

$ ftp internic.net
Connected to internic.net
220 Server ready
Name: anonymous
331 Guest login OK, send “guest” as password
Password: guest
ftp > pwd
257 ’/’ is current directory
ftp > ls
200 OK
150 Opening ASCII mode

bin
. . .
. . .
. . .

ftp > close
221 Goodbye
ftp > quit

for76042_ch21.fm Page 643 Tuesday, February 17, 2009 8:10 PM

644 PART 4 APPLICATION LAYER

requires only basic IP and UDP. However, there is no security for TFTP. TFTP can read or
write a file for the client. Reading means copying a file from the server site to the client
site. Writing means copying a file from the client site to the server site.

Messages
There are five types of TFTP messages, RRQ, WRQ, DATA, ACK, and ERROR, as
shown in Figure 21.10.

RRQ

The read request (RRQ) message is used by the client to establish a connection for
reading data from the server. Its format is shown in Figure 21.11.

The RRQ message fields are as follows:

❑ OpCode. The first field is a 2-byte operation code. The value is 1 for the RRQ
message.

❑ File name. The next field is a variable-size string (encoded in ASCII) that defines
the name of the file. Since the file name varies in length, termination is signaled by
a 1-byte field of 0s.

❑ Mode. The next field is another variable-size string defining the transfer mode. The
mode field is terminated by another 1-byte field of 0s. The mode can be one of two
strings: “netascii” (for an ASCII file) or “octet” (for a binary file). The file name
and mode fields can be in upper- or lowercase, or a combination of both.

WRQ

The write request (WRQ) message is used by the client to establish a connection for
writing data to the server. The format is the same as RRQ except that the OpCode is 2
(see Figure 21.12).

TFTP uses the services of UDP on the well-known port 69.

Figure 21.10 Message categories

Figure 21.11 RRQ format

Messages

RRQ WRQ ACKDATA ERROR

OpCode = 1 File name Mode

2 bytes 1 byte 1 byteVariable Variable

All 0s All 0s

for76042_ch21.fm Page 644 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 645

DATA

The data (DATA) message is used by the client or the server to send blocks of data. Its
format is shown in Figure 21.13. The DATA message fields are as follows:

❑ OpCode. The first field is a 2-byte operation code. The value is 3 for the DATA
message.

❑ Block number. This is a 2-byte field containing the block number. The sender of
the data (client or server) uses this field for sequencing. All blocks are numbered
sequentially starting with 1. The block number is necessary for acknowledgment
as we will see shortly.

❑ Data. This block must be exactly 512 bytes in all DATA messages except the last
block, which must be between 0 and 511 bytes. A non-512 byte block is used as a
signal that the sender has sent all the data. In other words, it is used as an end-of-file
indicator. If the data in the file happens to be an exact multiple of 512 bytes, the
sender must send one extra block of zero bytes to show the end of transmission.
Data can be transferred in either NVT ASCII (netascii) or binary octet (octet).

ACK

The acknowledge (ACK) message is used by the client or server to acknowledge
the receipt of a data block. The message is only 4 bytes long. Its format is shown in
Figure 21.14.

The ACK message fields are as follows:

❑ OpCode. The first field is a 2-byte operation code. The value is 4 for the ACK
message.

❑ Block number. The next field is a 2-byte field containing the number of the block
received.

Figure 21.12 WRQ format

Figure 21.13 DATA format

Figure 21.14 ACK format

OpCode = 2 File name Mode

2 bytes 1 byte 1 byteVariable Variable

All 0s All 0s

OpCode � 3 Block number

2 bytes 2 bytes 0–512 bytes

Data

OpCode � 4 Block number

2 bytes 2 bytes

for76042_ch21.fm Page 645 Tuesday, February 17, 2009 8:10 PM

646 PART 4 APPLICATION LAYER

The ACK message can also be a response to a WRQ. It is sent by the server to indicate
that it is ready to receive data from the client. In this case the value of the block number
field is 0. An example of an ACK message is given in a later section.

ERROR

The ERROR message is used by the client or the server when a connection cannot be
established or when there is a problem during data transmission. It can be sent as a neg-
ative response to RRQ or WRQ. It can also be used if the next block cannot be trans-
ferred during the actual data transfer phase. The error message is not used to declare a
damaged or duplicated message. These problems are resolved by error-control mecha-
nisms discussed later in this chapter. The format of the ERROR message is shown in
Figure 21.15.

The ERROR message fields are as follows:

❑ OpCode. The first field is a 2-byte operation code. The value is 5 for the ERROR
message.

❑ Error number. This 2-byte field defines the type of error. Table 21.8 shows the
error numbers and their corresponding meanings.

❑ Error data. This variable-byte field contains the textual error data and is termi-
nated by a 1-byte field of 0s.

Connection
TFTP uses UDP services. Because there is no provision for connection establishment
and termination in UDP, UDP transfers each block of data encapsulated in an indepen-
dent user datagram. In TFTP, however, we do not want to transfer only one block of
data; we do not want to transfer the file as independent blocks either. We need connec-
tions for the blocks of data being transferred if they all belong to the same file. TFTP
uses RRQ, WRQ, ACK, and ERROR messages to establish connection. It uses the
DATA message with a block of data of fewer than 512 bytes (0–511) to terminate
connection.

Figure 21.15 ERROR format

Table 21.8 Error numbers and their meanings

Number Meaning Number Meaning
0 Not defined 5 Unknown port number
1 File not found 6 File already exists
2 Access violation 7 No such user
3 Disk full or quota exceeded
4 Illegal operation

OpCode = 5 Error data

2 bytes

Error number

2 bytes 1 byteVariable

All 0s

for76042_ch21.fm Page 646 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 647

Connection Establishment

Connection establishment for reading files is different from connection establishment
for writing files (see Figure 21.16).

❑ Reading. To establish a connection for reading, the TFTP client sends the RRQ
message. The name of the file and the transmission mode is defined in this mes-
sage. If the server can transfer the file, it responds positively with a DATA message
containing the first block of data. If there is a problem, such as difficulty in open-
ing the file or permission restriction, the server responds negatively by sending an
ERROR message.

❑ Writing. To establish a connection for writing, the TFTP client uses the WRQ
message. The name of the file and the transmission mode is defined in this mes-
sage. If the server can accept a copy of the file, it responds positively with an ACK
message using a value of 0 for the block number. If there is any problem, the server
responds negatively by sending an ERROR message.

Connection Termination

After the entire file is transferred, the connection must be terminated. As mentioned
previously, TFTP does not have a special message for termination. Termination is
accomplished by sending the last block of data, which is less than 512 bytes.

Data Transfer
The data transfer phase occurs between connection establishment and termination.
TFTP uses the services of UDP, which is unreliable.

The file is divided into blocks of data, in which each block except the last one is
exactly 512 bytes. The last block must be between 0 and 511 bytes. TFTP can transfer
data in ASCII or binary format.

UDP does not have any mechanism for flow and error control. TFTP has to cre-
ate a flow- and error-control mechanism to transfer a file made of continuous blocks
of data.

Figure 21.16 Connection establishment

3 First block of data1

RRQ

DATA ACK

ERROR or or

2file1ASCII

5

WRQ

ERROR

4 0

a. Connection for reading b. Connection for writing

Error data

Client
Server Server

5 Error data

1file1ASCII

Client

1 1

2 2

2 2

for76042_ch21.fm Page 647 Tuesday, February 17, 2009 8:10 PM

648 PART 4 APPLICATION LAYER

Flow Control

TFTP sends a block of data using the DATA message and waits for an ACK message. If
the sender receives an acknowledgment before the time-out, it sends the next block.
Thus, flow control is achieved by numbering the data blocks and waiting for an ACK
before the next data block is sent.

Retrieve a File When the client wants to retrieve (read) a file, it sends the RRQ mes-
sage. The server responds with a DATA message sending the first block of data (if there
is no problem) with a block number of 1.

Store a File When the client wants to store (write) a file, it sends the WRQ message.
The server responds with an ACK message (if there is no problem) using 0 for the
block number. After receiving this acknowledgment, the client sends the first data block
with a block number of 1.

Error Control

The TFTP error-control mechanism is different from those of other protocols. It is
symmetric, which means that the sender and the receiver both use time-outs. The sender
uses a time-out for data messages; the receiver uses a time-out for acknowledgment
messages. If a data message is lost, the sender retransmits it after time-out expiration. If
an acknowledgment is lost, the receiver retransmits it after time-out expiration. This
guarantees a smooth operation.

Error control is needed in four situations: a damaged message, a lost message, a
lost acknowledgment, or a duplicated message.

Damaged Message There is no negative acknowledgment. If a block of data is dam-
aged, it is detected by the receiver and the block is discarded. The sender waits for the
acknowledgment and does not receive it within the time-out period. The block is then
sent again. Note that there is no checksum field in the DATA message of TFTP. The
only way the receiver can detect data corruption is through the checksum field of the
UDP user datagram.

Lost Message If a block is lost, it never reaches the receiver and no acknowledgment
is sent. The sender resends the block after the time-out.

Lost Acknowledgment If an acknowledgment is lost, we can have two situations. If
the timer of the receiver matures before the timer of the sender, the receiver retransmits
the acknowledgment; otherwise, the sender retransmits the data.

Duplicate Message Duplication of blocks can be detected by the receiver through
block number. If a block is duplicated, it is simply discarded by the receiver.

Sorcerer’s Apprentice Bug

Although the flow- and error-control mechanism is symmetric in TFTP, it can lead to a
problem known as the sorcerer’s apprentice bug, named for the cartoon character who
inadvertently conjures up a mop that continuously replicates itself. This will happen if
the ACK message for a packet is not lost but delayed. In this situation, every succeed-
ing block is sent twice and every succeeding acknowledgment is received twice.

for76042_ch21.fm Page 648 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 649

Figure 21.17 shows this situation. The acknowledgment for the fifth block is
delayed. After the time-out expiration, the sender retransmits the fifth block, which will
be acknowledged by the receiver again. The sender receives two acknowledgments for
the fifth block, which triggers it to send the sixth block twice. The receiver receives the
sixth block twice and again sends two acknowledgments, which results in sending the
seventh block twice. And so on.

UDP Ports
When a process uses the services of UDP, the server process issues a passive open on
the well-known port and waits for the client process to issue an active open on an
ephemeral port. After the connection is established, the client and server communicate
using these two ports.

TFTP follows a different set of steps because the communication between a client
TFTP and a server TFTP can be quite lengthy (seconds or even minutes). If a TFTP
server uses the well-known port 69 to communicate with a single client, no other clients
can use these services during that time. The solution to this problem, as shown in Fig-
ure 21.18, is to use the well-known port for the initial connection and an ephemeral
port for the remaining communication.

The steps are as follows:

1. The server passively opens the connection using the well-known port 69.

2. A client actively opens a connection using an ephemeral port for the source port
and the well-known port 69 for the destination port. This is done through the RRQ
message or the WRQ message.

Figure 21.17 Sorcerer’s apprentice bug

ReceiverSender

Resent

Time-out

ack 5

ack 5

ack 6

ack 6

ack 7

ack 7

Block 5

Block 5

Block 6

Block 6

Block 7

Block 7

for76042_ch21.fm Page 649 Tuesday, February 17, 2009 8:10 PM

650 PART 4 APPLICATION LAYER

3. The server actively opens a connection using a new ephemeral port for the source
port and uses the ephemeral port received from the client as the destination port. It
sends the DATA or ACK or ERROR message using these ports. This frees the well-
known port (69) for use by other clients. When the client receives the first message
from the server, it uses its own ephemeral port and the ephemeral port sent by the
server for future communication.

TFTP Example
Figure 21.19 shows an example of a TFTP transmission. The client wants to retrieve a
copy of the contents of a 2,000-byte file called file1. The client sends an RRQ message.
The server sends the first block, carrying the first 512 bytes, which is received intact
and acknowledged. These two messages are the connection establishment. The second
block, carrying the second 512 bytes, is lost. After the time-out, the server retransmits
the block, which is received. The third block, carrying the third 512 bytes, is received
intact, but the acknowledgment is lost. After the time-out, the receiver retransmits the
acknowledgment. The last block, carrying the remaining 464 bytes, is received dam-
aged, so the client simply discards it. After the time-out, the server retransmits the
block. This message is considered the connection termination because the block carries
fewer than 512 bytes.

TFTP Options
An extension to the TFTP protocol that allows the appending of options to the RRQ
and WRQ messages has been proposed. The options are mainly used to negotiate the
size of the block and possibly the initial sequence number. Without the options the size
of a block is 512 bytes except for the last block. The negotiation can define a size of
block to be any number of bytes so long as the message can be encapsulated in a UDP
user datagram.

Figure 21.18 UDP port numbers used by TFTP

Passive
open

a. Passive open by server

69 ServerClient

Server

c. Rest of communication

ClientClient 50032 62000
69

Client

b. Active open by client

69 Server50032

Active
open

for76042_ch21.fm Page 650 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP

651

A new type of message, option acknowledgment (OACK), to let the other party
accept or reject the options, has also been proposed.

Security

One important point about TFTP is that there is no provision for security: There is no
user identification or password. Today, however, precautions must be taken to prevent
hackers from accessing files. One security measure is to limit the access of TFTP to
noncritical files. One way to achieve minimal security is to implement security in the
router close to a TFTP server, which would allow only certain hosts to access the
server.

Applications

TFTP is very useful for basic file transfer where security is not a big issue. It can be used
to initialize devices such as bridges or routers. Its main application is in conjunction with
the DHCP. TFTP requires only a small amount of memory and uses only the services of
UDP and IP. It can easily be configured in ROM (or PROM). When the station is

Figure 21.19

TFTP example

file1ASCII

RRQ

DATA
1 Block 1 512 bytes

DATA

DATA

2 Block 2 512 bytes

Client Server

DATA

2 Block 2 512 bytes

DATA

3 Block 3 512 bytes

DATA

4 Block 4 464 bytes

DATA

4 Block 4 464 bytes

ACK

2

ACK

3

ACK

3

ACK
4

Time-out/Reset

Timer

ACK

1

1

2

3

4

5

6

7

12

11

10

9

8

Time-out/Reset

Timer

Time-out/Reset

Timer

Lost

Lost

Damaged

for76042_ch21.fm Page 651 Wednesday, February 18, 2009 4:30 PM

652

PART 4 APPLICATION LAYER

powered on, TFTP will be connected to a server and can download the configuration
files from there. Figure 21.20 shows the idea. The powered-on station uses the DHCP
client to get the name of the configuration file from the DHCP server. The station then
passes the name of the file to the TFTP client to get the contents of the configuration file
from the TFTP server.

21.3 FURTHER READING

For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books

Several books and RFCs give an easy but thorough coverage of FTP and TFTP includ-
ing [Com 06], [Mir 07], and [Ste 94].

RFCs

Several RFCs show updates on FTP, including RFC 959, RFC 2577, RFC 2585. More
information about TFTP can be found in RFC 906, RFC 1350, RFC 2347, RFC 2348,
and RFC 2349.

21.4 KEY TERMS

Figure 21.20

Use of TFTP with DHCP

anonymous FTP data connection
ASCII file EBCDIC file
block mode file structure
compressed mode File Transfer Protocol (FTP)
connection establishment flow control
control connection image file

Workstation Server

1

2
3

4

5

DHCP
Server

DHCP
Client

TFTP
Server

TFTP
Client

for76042_ch21.fm Page 652 Wednesday, February 18, 2009 4:30 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 653

21.5 SUMMARY
❑ File Transfer Protocol (FTP) is a TCP/IP client-server application for copying

files from one host to another. FTP requires two connections for data transfer: a
control connection and a data connection. FTP employs NVT ASCII for commu-
nication between dissimilar systems. Prior to the actual transfer of files, the file
type, data structure, and transmission mode are defined by the client through the
control connection.

❑ There are six classes of commands sent by the client to establish communication
with the server: access commands, file management commands, data formatting
commands, port defining commands, file transferring commands, and miscella-
neous commands. There are three types of file transfer: server-to-client file trans-
fer, client-to-server file transfer, transfer of list of directories.

❑ Transferring files with FTP is not secure. One solution to provide security is to add
a Secure Socket Layer (SSL) between the FTP application layer and the TCP layer.
Another solution is to use a completely independent file transfer application called
sftp that is one of the application in SSH protocol.

❑ Trivial File Transfer Protocol (TFTP) is a simple file transfer protocol without the
complexities and sophistication of FTP. A client uses the services of TFTP to
retrieve a copy of a file or send a copy of a file to a server. There are five types of
TFTP messages: RRQ, WRQ, DATA, ACK, and ERROR. TFTP can be used in
conjunction with DHCP to initialize devices by downloading configuration files.

❑ In TFTP, error control is needed in four situations: a damaged message, a lost mes-
sage, a lost acknowledgment, or a duplicated message. The sorcerer’s apprentice
bug is the duplication of both acknowledgments and data messages caused by
TFTP’s flow- and error-control mechanism.

21.6 PRACTICE SET

Exercises
1. What do you think would happen if the control connection is accidentally severed

during an FTP transfer?

2. Explain why the client issues an active open for the control connection and a pas-
sive open for the data connection.

3. Why should there be limitations on anonymous FTP? What could an unscrupulous
user do?

reading stream mode
record structure Trivial File Transfer Protocol (TFTP)
sorcerer’s apprentice bug writing
sftp

for76042_ch21.fm Page 653 Tuesday, February 17, 2009 8:10 PM

654 PART 4 APPLICATION LAYER

4. Explain why FTP does not have a message format.

5. Show a TCP segment carrying one of the FTP commands.

6. Show a TCP segment carrying one of the FTP responses.

7. Show a TCP segment carrying FTP data.

8. Explain what will happen if the file in Example 21.2 already exists.

9. Redo Example 21.1 using the PASV command instead of the PORT command.

10. Redo Example 21.2 using the STOU command instead of the STOR command to
store a file with a unique name. What happens if a file already exists with the same
name?

11. Redo Example 21.2 using the RETR command instead of the STOR command to
retrieve a file.

12. Give an example of the use of the HELP command.

13. Give an example of the use of the NOOP command.

14. Give an example of the use of the SYST command.

15. A user wants to make a directory called Jan under the directory /usr/usrs/letters.
The host is called “mcGraw.com.”. Show all of the commands and responses using
Examples 21.1 and 21.2 as a guide.

16. A user wants to move to the parent of its current directory. The host is called
“mcGraw.com.”. Show all of the commands and responses using Examples 21.1
and 21.3 as a guide.

17. A user wants to move a file named file1 from /usr/usrs/report directory to /usr/
usrs/letters directory. The host is called “mcGraw.com.”. Show all the commands
and responses using Examples 21.1 and 21.2 as a guide.

18. A user wants to retrieve an EBCDIC file named file1 from /usr/usrs/report direc-
tory. The host is called “mcGraw.com.”. The file is so large that the user wants to
compress it before transferring. Show all the commands and responses using
Examples 21.1 and 21.2 as a guide.

19. Why do we need an RRQ or WRQ message in TFTP but not in FTP?

20. Show the encapsulation of an RRQ message in a UDP user datagram. Assume the
file name is “Report” and the mode is ASCII. What is the size of the UDP datagram?

21. Show the encapsulation of a WRQ message in a UDP user datagram. Assume
the file name is “Report” and the mode is ASCII. What is the size of the UDP
datagram?

22. Show the encapsulation of a TFTP data message, carrying block number 7, in a
UDP user datagram. What is the total size of the user datagram?

23. Host A uses TFTP to read 2,150 bytes of data from host B.

a. Show all the TFTP commands including commands needed for connection
establishment and termination. Assume no error.

b. Show all the user datagrams exchanged between the two hosts.

24. Redo Exercise 23 but assume the second block is in error. Show also all the user
datagrams exchanged between the two hosts.

for76042_ch21.fm Page 654 Tuesday, February 17, 2009 8:10 PM

CHAPTER 21 FILE TRANSFER: FTP AND TFTP 655

Research Activities
25. Find how routers can use security for TFTP.

26. Use UNIX or Windows to find all commands used in FTP.

27. Use UNIX or Windows to find all commands used in TFTP.

28. Find the format of the proposed OACK message.

29. Find the types of options proposed to be appended to the RRQ and WRQ
messages.

for76042_ch21.fm Page 655 Tuesday, February 17, 2009 8:10 PM

C H A P T E R

22

656

22

World Wide Web and HTTP

he

World Wide Web (WWW)

 is a repository of information linked
together from points all over the world. The WWW has a unique

combination of flexibility, portability, and user-friendly features that dis-
tinguish it from other services provided by the Internet. The WWW
project was initiated by CERN (European Laboratory for Particle Phys-
ics) to create a system to handle distributed resources necessary for scien-
tific research. In this chapter we first discuss issues related to the Web. We
then discuss a protocol, HTTP, that is used to retrieve information from
the Web.

OBJECTIVES

The chapter has several objectives:

❑

To discuss the architecture of WWW and describe the concepts of
hypertext and hypermedia.

❑

To describe Web clients and Web servers and their components.

❑

To define URL as a tool to identify a Web server.

❑

To introduce three different Web documents: static document,
dynamic document, and active document.

❑

To discuss HTTP and its transactions.

❑

To define and list the fields in a request message.

❑

To define and list the fields in a response message.

❑

To define nonpersistent and persistent connections in HTTP.

❑

To introduce cookies and their applications in HTTP.

❑

To discuss Web caching, its application, and the method used to
update the cache.

T

for76042_ch22.fm Page 656 Tuesday, February 17, 2009 9:41 AM

657

22.1 ARCHITECTURE

The WWW today is a distributed client-server service, in which a client using a
browser can access a service using a server. However, the service provided is distrib-
uted over many locations called

sites.

 Each site holds one or more documents, referred
to as Web pages. Each

Web page

, however, can contain some links to other Web pages
in the same or other sites. In other words, a Web page can be simple or composite. A
simple Web page has no link to other Web pages; a composite Web page has one or
more links to other Web pages. Each Web page is a file with a name and address.

Example 22.1

Assume we need to retrieve a Web page that contains the biography of a famous character with
some pictures, which are embedded in the page itself. Since the pictures are not stored as separate
files, the whole document is a simple Web page. It can be retrieved using one single request/
response transaction, as shown in Figure 22.1.

Example 22.2

Now assume we need to retrieve a scientific document that contains one reference to another text
file and one reference to a large image. Figure 22.2 shows the situation.

The main document and the image are stored in two separate files in the same site (file A
and file B); the referenced text file is stored in another site (file C). Since we are dealing with
three different files, we need three transactions if we want to see the whole document. The first
transaction (request/response) retrieves a copy of the main document (file A), which has a ref-
erence (pointer) to the second and the third files. When a copy of the main document is
retrieved and browsed, the user can click on the reference to the image to invoke the second
transaction and retrieve a copy of the image (file B). If the user further needs to see the contents
of the referenced text file, she can click on its reference (pointer) invoking the third transaction
and retrieving a copy of the file C. Note that although files A and B both are stored in site I,
they are independent files with different names and addresses. Two transactions are needed to
retrieve them.

Figure 22.1

Example 22.1

Client

Request

Response

Web page

2

1

for76042_ch22.fm Page 657 Tuesday, February 17, 2009 9:41 AM

658

PART 4 APPLICATION LAYER

Example 22.3

A very important point we need to remember is that file A, file B, and file C in Example 22.2 are
independent Web pages, each with independent names and addresses. Although references to file
B or C are included in file A, it does not mean that each of these files cannot be retrieved indepen-
dently. A second user can retrieve file B with one transaction. A third user can retrieve file C with
one transaction.

Hypertext and Hypermedia

The three previous examples show the idea of

hypertext

 and

hypermedia

. Hypertext
means creating documents that refer to other documents. In a hypertext document, a
part of text can be defined as a link to another document. When a hypertext is viewed
with a browser, the link can be clicked to retrieve the other document. Hypermedia is a
term applied to document that contains links to other textual document or documents
containing graphics, video, or audio.

Web Client (Browser)

A variety of vendors offer commercial

browsers

 that interpret and display a Web docu-
ment, and all of them use nearly the same architecture. Each browser usually consists
of three parts: a controller, client protocol, and interpreters. (see Figure 22.3).

Figure 22.2

Example 22.2

Figure 22.3

Browser

Site I Site II
Client

Request 1

Response 1

Request 2

Response 2

Request 3

Response 3

A

A: Original document

B: Image
C: Referenced file

CB

2

1

3

5

6

4

Browser

Controller

HTTP FTP TELNET SMTP Interpreters

Java

JavaScript

HTML

for76042_ch22.fm Page 658 Tuesday, February 17, 2009 9:41 AM

CHAPTER 22 WORLD WIDE WEB AND HTTP

659

The controller receives input from the keyboard or the mouse and uses the client
programs to access the document. After the document has been accessed, the controller
uses one of the interpreters to display the document on the screen. The client protocol
can be one of the protocols described previously such as FTP, or TELNET, or HTTP (as
discussed later in the chapter). The interpreter can be HTML, Java, or JavaScript,
depending on the type of document. We discuss the use of these interpreters based on
the document type later in the chapter. Some commercial browsers include Internet
Explorer, Netscape Navigator, and Firefox.

Web Server

The Web page is stored at the server. Each time a client request arrives, the correspond-
ing document is sent to the client. To improve efficiency, servers normally store
requested files in a cache in memory; memory is faster to access than disk. A server can
also become more efficient through multithreading or multiprocessing. In this case, a
server can answer more than one request at a time. Some popular Web servers include
Apache and Microsoft Internet Information Server.

Uniform Resource Locator (URL)

A client that wants to access a Web page needs the file name and the address. To facili-
tate the access of documents distributed throughout the world, HTTP uses locators. The

uniform resource locator (URL)

 is a standard locator for specifying any kind of infor-
mation on the Internet. The URL defines four things: protocol, host computer, port, and
path (see Figure 22.4).

The

protocol

 is the client-server application program used to retrieve the docu-
ment. Many different protocols can retrieve a document; among them are Gopher, FTP,
HTTP, News, and TELNET. The most common today is HTTP.

The

host

 is the domain name of the computer on which the information is located.
Web pages are usually stored in computers, and computers are given domain name
aliases that usually begin with the characters “www”. This is not mandatory, however,
as the host can have any domain name.

The URL can optionally contain the port number of the server. If the

port

 is
included, it is inserted between the host and the path, and it is separated from the host
by a colon.

Path

 is the pathname of the file where the information is located. Note that the
path can itself contain slashes that, in the UNIX operating system, separate the directo-
ries from the subdirectories and files. In other words, the path defines the complete file
name where the document is stored in the directory system.

Figure 22.4

URL

:// /:Protocol Host Port Path

for76042_ch22.fm Page 659 Tuesday, February 17, 2009 9:41 AM

660

PART 4 APPLICATION LAYER

22.2 WEB DOCUMENTS

The documents in the WWW can be grouped into three broad categories: static,
dynamic, and active. The category is based on the time the contents of the document are
determined.

Static Documents

Static documents

 are fixed-content documents that are created and stored in a server.
The client can get a copy of the document only. In other words, the contents of the file
are determined when the file is created, not when it is used. Of course, the contents in
the server can be changed, but the user cannot change them. When a client accesses the
document, a copy of the document is sent. The user can then use a browsing program to
display the document (see Figure 22.5).

Static documents are prepared using one of the several languages:

Hypertext
Markup Language (HTML)

,

Extensible Markup Language (XML)

,

Extensible
Style Language (XSL)

, and

Extended Hypertext Markup Language (XHTML)

. We
discuss these languages in Appendix E.

Dynamic Documents

A

dynamic document

 is created by a Web server whenever a browser requests the
document. When a request arrives, the Web server runs an application program or a
script that creates the dynamic document. The server returns the output of the program
or script as a response to the browser that requested the document. Because a fresh
document is created for each request, the contents of a dynamic document may vary
from one request to another. A very simple example of a dynamic document is the
retrieval of the time and date from a server. Time and date are kinds of information
that are dynamic in that they change from moment to moment. The client can ask the
server to run a program such as the

date

program in UNIX and send the result of the
program to the client.

Figure 22.5

Static document

HTML, XML, XSL, and XHTML are discussed in Appendix E.

Request

Client Server

Static document

2

1

for76042_ch22.fm Page 660 Tuesday, February 17, 2009 9:41 AM

CHAPTER 22 WORLD WIDE WEB AND HTTP

661

Common Gateway Interface (CGI)

The

 Common Gateway Interface

(CGI)

 is a technology that creates and handles
dynamic documents. CGI is a set of standards that defines how a dynamic document is
written, how data are input to the program, and how the output result is used.

CGI is not a new language; instead, it allows programmers to use any of several
languages such as C, C

++

, Bourne Shell, Korn Shell, C Shell, Tcl, or Perl. The only
thing that CGI defines is a set of rules and terms that the programmer must follow.

The term

common

 in CGI indicates that the standard defines a set of rules that is
common to any language or platform. The term

gateway

 here means that a CGI pro-
gram can be used to access other resources such as databases, graphic packages, and so
on. The term

interface

 here means that there is a set of predefined terms, variables,
calls, and so on that can be used in any CGI program. A CGI program in its simplest
form is code written in one of the languages supporting CGI. Any programmer who can
encode a sequence of thoughts in a program and knows the syntax of one of the above-
mentioned languages can write a simple CGI program. Figure 22.6 illustrates the steps
in creating a dynamic program using CGI technology.

Input

In traditional programming, when a program is executed, parameters can be
passed to the program. Parameter passing allows the programmer to write a generic
program that can be used in different situations. For example, a generic copy program
can be written to copy any file to another. A user can use the program to copy a file
named

x

 to another file named

y

 by passing

x

 and

y

 as parameters.
The input from a browser to a server is sent using a

form

. If the information in a
form is small (such as a word), it can be appended to the URL after a question mark. For
example, the following URL is carrying form information (23, a value):

When the server receives the URL, it uses the part of the URL before the question
mark to access the program to be run, and it interprets the part after the question mark
(23) as the input sent by the client. It stores this string in a variable. When the CGI pro-
gram is executed, it can access this value.

If the input from a browser is too long to fit in the query string, the browser can ask
the server to send a form. The browser can then fill the form with the input data and send
it to the server. The information in the form can be used as the input to the CGI program.

Figure 22.6

Dynamic document using CGI

http://www.deanza/cgi-bin/prog.pl?23

Program
Request

Client Server

Dynamic document

2

1

for76042_ch22.fm Page 661 Tuesday, February 17, 2009 9:41 AM

http://www.deanza/cgi-bin/prog.pl?23

662

PART 4 APPLICATION LAYER

Output

The whole idea of CGI is to execute a CGI program at the server site and
send the output to the client (browser). The output is usually plain text or a text
with HTML structures; however, the output can be a variety of other things. It can be
graphics or binary data, a status code, instructions to the browser to cache the result, or
instructions to the server to send an existing document instead of the actual output.

To let the client know about the type of document sent, a CGI program creates
headers. As a matter of fact, the output of the CGI program always consists of two
parts: a header and a body. The header is separated by a blank line from the body. This
means any CGI program first creates the header, then a blank line, and then the body.
Although the header and the blank line are not shown on the browser screen, the header
is used by the browser to interpret the body.

Scripting Technologies for Dynamic Documents

The problem with CGI technology is the inefficiency that results if part of the dynamic
document that is to be created is fixed and not changing from request to request. For
example, assume that we need to retrieve a list of spare parts, their availability, and
prices for a specific car brand. Although the availability and prices vary from time to
time, the name, description, and the picture of the parts are fixed. If we use CGI, the
program must create an entire document each time a request is made. The solution is to
create a file containing the fixed part of the document using HTML and embed a script,
a source code, that can be run by the server to provide the varying availability and price
section. Figure 22.7 shows the idea.

A few technologies have been involved in creating dynamic documents using
scripts. Among the most common are

Hypertext Preprocessor (PHP),

 which uses the
Perl language;

Java Server Pages (JSP),

 which uses the Java language for scripting;

Active Server Pages (ASP),

 a Microsoft product, which uses Visual Basic language
for scripting; and

ColdFusion,

 which embeds SQL database queries in the HTML
document.

Figure 22.7

Dynamic document using server-site script

Dynamic documents are sometimes referred to as server-site dynamic documents.

Run the script (S)
inside the HTML

document

Request

Client Server

Dynamic document

2

1
S

for76042_ch22.fm Page 662 Tuesday, February 17, 2009 9:41 AM

CHAPTER 22 WORLD WIDE WEB AND HTTP

663

Active Documents

For many applications, we need a program or a script to be run at the client site.
These are called

active documents.

 For example, suppose we want to run a program
that creates animated graphics on the screen or a program that interacts with the user.
The program definitely needs to be run at the client site where the animation or inter-
action takes place. When a browser requests an active document, the server sends a
copy of the document or a script. The document is then run at the client (browser)
site.

Java Applets

One way to create an active document is to use

Java applets.

Java

 is a combination of
a high-level programming language, a run-time environment, and a class library that
allows a programmer to write an active document (an applet) and a browser to run it. It
can also be a stand-alone program that doesn’t use a browser.

An

applet

 is a program written in Java on the server. It is compiled and ready to be
run. The document is in bytecode (binary) format. The client process (browser) creates
an instance of this applet and runs it. A Java applet can be run by the browser in two
ways. In the first method, the browser can directly request the Java applet program in
the URL and receive the applet in binary form. In the second method, the browser can
retrieve and run an HTML file that has embedded the address of the applet as a tag.
Figure 22.8 shows how Java applets are used in the first method; the second is similar
but needs two transactions.

JavaScript

The idea of scripts in dynamic documents can also be used for active documents. If the
active part of the document is small, it can be written in a scripting language; then it can
be interpreted and run by the client at the same time. The script is in source code (text)
and not in binary form. The scripting technology used in this case is usually JavaScript.

JavaScript,

 which bears a small resemblance to Java, is a very high level scripting
language developed for this purpose. Figure 22.9 shows how JavaScript is used to cre-
ate an active document.

Figure 22.8

Active document using Java applet

Result

Run the applet
to get the result

Request

Client
Server

Active
document

2

1

Applet

for76042_ch22.fm Page 663 Tuesday, February 17, 2009 9:41 AM

664

PART 4 APPLICATION LAYER

22.3 HTTP

The

Hypertext Transfer Protocol (HTTP)

 is a protocol used mainly to access data on
the World Wide Web. HTTP functions like a combination of FTP (Chapter 21) and SMTP
(Chapter 23). It is similar to FTP because it transfers files and uses the services of TCP.
However, it is much simpler than FTP because it uses only one TCP connection. There is
no separate control connection; only data are transferred between the client and the server.

HTTP is like SMTP because the data transferred between the client and the server
look like SMTP messages. In addition, the format of the messages is controlled by
MIME-like headers. Unlike SMTP, the HTTP messages are not destined to be read by
humans; they are read and interpreted by the HTTP server and HTTP client (browser).
SMTP messages are stored and forwarded, but HTTP messages are delivered immedi-
ately. The commands from the client to the server are embedded in a request message.
The contents of the requested file or other information are embedded in a response
message. HTTP uses the services of TCP on well-known port 80.

HTTP Transaction

Figure 22.10 illustrates the HTTP transaction between the client and server. Although
HTTP uses the services of TCP, HTTP itself is a stateless protocol, which means that
the server does not keep information about the client. The client initializes the transac-
tion by sending a request. The server replies by sending a response.

Request Message

The format of the request is shown in Figure 22.11. A request message consists of a
request line, a header, and sometimes a body.

Request Line

The first line in a request message is called a

request line.

 There are
three fields in this line separated by some character delimiter as shown in Figure 22.11.
The fields are called methods, URL, and Version. These three should be separated by a
space character. At the end two characters, a carriage return followed by a line feed,

Figure 22.9

Active document using client-site script

Active documents are sometimes referred to as client-site dynamic documents.

HTTP uses the services of TCP on well-known port 80.

Run the JavaScript
(JS) to get the result

Result

Request

Client Server

2

1

JavaScript

JS

for76042_ch22.fm Page 664 Tuesday, February 17, 2009 9:41 AM

CHAPTER 22 WORLD WIDE WEB AND HTTP

665

terminate the line. The method field defines the

request type.

 In version 1.1 of HTTP,
several methods are defined, as shown in Table 22.1.

Figure 22.10

HTTP transaction

Figure 22.11

Format of the request message

Table 22.1

Methods

Method Action

GET Requests a document from the server
HEAD Requests information about a document but not the document itself
POST Sends some information from the client to the server
PUT

Sends a document from the server to the client

TRACE Echoes the incoming request
CONNECT Reserved
DELETE Remove the Web page
OPTIONs Enquires about available options

Client Server

2

1

Request message

Response message

Request line

Headers

Body

A blank line

Status line

Headers

Body

A blank line

Request
Line

Header
Lines

Variable Number of Lines
(Present only in some messages)

Legend

Blank
Line

Body

sp

sp

sp

sp

sp cr sp: Space
cr: Carriage Return
lf: Line Feed

lf

cr lf

Method URL Version

cr lf:Header Name Value

cr lf:Header Name Value

cr lf:Header Name Value

for76042_ch22.fm Page 665 Tuesday, February 17, 2009 9:41 AM

666

PART 4 APPLICATION LAYER

The second field, URL, was discussed earlier in the chapter. It defines the address
and name of corresponding Web page. The third field, version, gives the version of the
protocol; the most current version of HTTP is 1.1.

Header Lines In Request Message

After the request line, we can have zero or more

request header

 lines. Each header line sends additional information from the client to
the server. For example, the client can request that the document be sent in a special
format. Each header line has a header name, a colon, a space, and a header value (see
Figure 22.11). We will show some header lines in the examples at the end of this chap-
ter. Table 22.2 shows some header names commonly used in a request. The value field
defines the values associated with each header name. The list of values can be found in
the corresponding RFCs.

Body In Request Message

The body can be present in a request message. Usually, it
contains the comment to be sent.

Response Message

The format of the response message is shown in Figure 22.12. A response message con-
sists of a status line, header lines, a blank line and sometimes a body.

Status Line The first line in a response message is called the status line. There are
three fields in this line separated by spaces and terminated by a carriage return and line
feed. The first field defines the version of HTTP protocol, currently 1.1. The status code
field defines the status of the request. It consists of three digits. Whereas the codes in
the 100 range are only informational, the codes in the 200 range indicate a successful
request. The codes in the 300 range redirect the client to another URL, and the codes in
the 400 range indicate an error at the client site. Finally, the codes in the 500 range
indicate an error at the server site. The status phrase explains the status code in text
form. The possible values for the status code and status phrase are shown in Table 22.3.

Header Lines In Response Message After the status line, we can have zero or more
response header lines. Each header line sends additional information from the server
to the client. For example, the sender can send extra information about the document.

Table 22.2 Request Header Names

Header Description
User-agent Identifies the client program
Accept Shows the media format the client can accept
Accept-charset Shows the character set the client can handle
Accept-encoding Shows the encoding scheme the client can handle
Accept-language Shows the language the client can accept
Authorization Shows what permissions the client has
Host Shows the host and port number of the client
Date Shows the current date
Upgrade Specifies the preferred communication protocol
Cookie Returns the cookie to the server
If-Modified-Since Returns the cookie to the server

for76042_ch22.fm Page 666 Tuesday, February 17, 2009 9:41 AM

CHAPTER 22 WORLD WIDE WEB AND HTTP 667

Figure 22.12 Format of the response message

Table 22.3 Status Codes and Status Phrases

Status
Code

Status
Phrase Description

Informational
100 Continue The initial part of the request received, continue.
101 Switching The server is complying to switch protocols.

Success
200 OK The request is successful.
201 Created A new URL is created.
202 Accepted The request is accepted, but it is not immediately acted

upon.
204 No content There is no content in the body.

Redirection
301 Moved permanently The requested URL is no longer used by the server.
302 Moved temporarily The requested URL has moved temporarily.
304 Not modified The document has not modified.

Client Error
400 Bad request There is a syntax error in the request.
401 Unauthorized The request lacks proper authorization.
403 Forbidden Service is denied.
404 Not found The document is not found.
405 Method not allowed The method is not supported in this URL.
406 Not acceptable The format requested is not acceptable.

Server Error
500 Internal server error There is an error, such as a crash, at the server site.
501 Not implemented The action requested cannot be performed.
503 Service unavailable The service is temporarily unavailable.

Status
Line

Header
Lines

Variable Number of Lines
(Present only in some messages)

Legend

Blank
Line

Body

sp

sp

sp

sp

sp cr sp: Space
cr: Carriage Return
lf: Line Feed

lf

cr lf

Version Status
code Phrase

cr lf:Header Name Value

cr lf:Header Name Value

cr lf:Header Name Value

for76042_ch22.fm Page 667 Tuesday, February 17, 2009 9:41 AM

668 PART 4 APPLICATION LAYER

Each header line has a header name, a colon, a space, and a header value. We will show
some header lines in the examples at the end of this chapter. Table 22.4 shows some
header names commonly used in a response message.

Body The body contains the document to be sent from the server to the client. The
body is present unless the response is an error message.

Example 22.4

This example retrieves a document (see Figure 22.13).

We use the GET method to retrieve an image with the path /usr/bin/image1. The request
line shows the method (GET), the URL, and the HTTP version (1.1). The header has two lines
that show that the client can accept images in the GIF or JPEG format. The request does not have
a body. The response message contains the status line and four lines of header. The header lines
define the date, server, MIME version, and length of the document. The body of the document
follows the header.

Table 22.4 Response Header Names

Header Description
Date Shows the current date
Upgrade Specifies the preferred communication protocol
Server Gives information about the server
Set-Cookie The server asks the client to save a cookie
Content-Encoding Specifies the encoding scheme
Content-Language Specifies the language
Content-Length Shows the length of the document
Content-Type Specifies the media type
Location To ask the client to send the request to another site
Accept-Ranges The server will accept the requested byte-ranges
Last-modified Gives the date and time of the last change

Figure 22.13 Example 22.4

Request

Response

GET /usr/bin/image1 HTTP/1.1

Accept: image/gif
Accept: image/jpeg

HTTP/1.1 200 OK

Date: Mon, 07-Jan-05 13:15:14 GMT
Server: Challenger
MIME-version: 1.0
Content-length: 2048

(Body of the document)

Client Server

2

1

for76042_ch22.fm Page 668 Tuesday, February 17, 2009 9:41 AM

CHAPTER 22 WORLD WIDE WEB AND HTTP 669

Example 22.5

In this example, the client wants to send data to the server. We use the POST method. The request
line shows the method (POST), URL, and HTTP version (1.1). There are four lines of headers.
The request body contains the input information. The response message contains the status line
and four lines of headers. The created document, which is a CGI document, is included as the
body (see Figure 22.14).

Example 22.6

HTTP uses ASCII characters. The following shows how a client can directly connect to a server
using TELNET, which logs into port 80. The first three lines shows that the connection is suc-
cessful. We then type three lines. The first shows the request line (GET method), the second is the
header (defining the host), the third is a blank terminating the request. The server response is
seven lines starting with the status line. The blank line at the end terminates the server response.
The file of 14,230 lines is received after the blank line (not shown here). The last line is the output
by the client.

Figure 22.14 Example 22.5

$telnet www.mhhe.com 80
Trying 198.45.24.104...
Connected to www.mhhe.com (198.45.24.104).
Escape character is '^]'.
GET /engcs/compsci/forouzan HTTP/1.1
From: forouzanbehrouz@fhda.edu
HTTP/1.1 200 OK
Date: Thu, 28 Oct 2004 16:27:46 GMT
Server: Apache/1.3.9 (Unix) ApacheJServ/1.1.2 PHP/4.1.2 PHP/3.0.18
MIME-version:1.0

Request

Response

(Body of the document)

Client Server

2

1

POST /cgi-bin/doc.pl HTTP/1.1
Accept: */*
Accept: image/gif
Accept: image/jpeg
Content-length: 50

(Input information)

HTTP/1.1 200 OK

Date: Mon, 07-Jan-02 13:15:14 GMT
Server: Challenger
MIME-version: 1.0
Content-length: 2000

for76042_ch22.fm Page 669 Tuesday, February 17, 2009 9:41 AM

http://www.mhhe.com
http://www.mhhe.com
mailto:forouzanbehrouz@fhda.edu

670 PART 4 APPLICATION LAYER

Conditional Request
A client can add a condition in its request. In this case, the server will send the
requested Web page if the condition is met or inform the client otherwise. One of the
most common conditions imposed by the client is the time and date the Web page is
modified. The client can send the header line If-Modified-Since to the request to tell the
server that it needs the page if it is modified after a certain point of time.

Example 22.7

The following shows how a client imposes the modification data and time condition on a
request.

The status line in the responds shows the file is not modified after the defined point of time. The
body of the response message is also empty.

Persistence
HTTP, prior to version 1.1, specified a nonpersistent connection, while a persistent con-
nection is the default in version 1.1.

Nonpersistent Connection

In a nonpersistent connection, one TCP connection is made for each request/response.
The following lists the steps in this strategy:

1. The client opens a TCP connection and sends a request.

2. The server sends the response and closes the connection.

3. The client reads the data until it encounters an end-of-file marker; it then closes the
connection.

In this strategy, if a file contains link to N different pictures in different files (all
located on the same server), the connection must be opened and closed N + 1 times.
The nonpersistent strategy imposes high overhead on the server because the server
needs N + 1 different buffers and requires a slow start procedure each time a connec-
tion is opened.

Content-Type: text/html
Last-modified: Friday, 15-Oct-04 02:11:31 GMT
Content-length: 14230

Connection closed by foreign host.

GET http://www.commonServer.com/information/file1 HTTP/1.1
If-Modified-Since: Thu, Sept 04 00:00:00 GMT

HTTP/1.1 304 Not Modified
Date: Sat, Sept 06 08 16:22:46 GMT
Server: commonServer.com

(Empty Body)

for76042_ch22.fm Page 670 Tuesday, February 17, 2009 9:41 AM

http://www.commonServer.com/information/file1

CHAPTER 22 WORLD WIDE WEB AND HTTP 671

Example 22.8

Figure 22.15 shows an example of a nonpersistent connection. The client needs to access a file
that contains two links to images. The text file and images are located on the same server.

Persistent Connection

HTTP version 1.1 specifies a persistent connection by default. In a persistent connec-
tion, the server leaves the connection open for more requests after sending a response.
The server can close the connection at the request of a client or if a time-out has been
reached. The sender usually sends the length of the data with each response. However,
there are some occasions when the sender does not know the length of the data. This is
the case when a document is created dynamically or actively. In these cases, the server
informs the client that the length is not known and closes the connection after sending
the data so the client knows that the end of the data has been reached.

Example 22.9

Figure 22.16 shows the same scenario as Example 22.8, but using persistent connection.

Figure 22.15 Example 22.8

HTTP version 1.1 specifies a persistent connection by default.

Client Server

First
connection

Second
connection

Third
connection

Image1

Image1

file1

file1

Image2

Image2

Connection establishment + Request

Connection termination

Response

Connection establishment + Request

Connection termination

Response

Connection establishment + Request

Connection termination

Response

Time Time

for76042_ch22.fm Page 671 Tuesday, February 17, 2009 9:41 AM

672 PART 4 APPLICATION LAYER

Cookies
The World Wide Web was originally designed as a stateless entity. A client sends a
request; a server responds. Their relationship is over. The original design of WWW,
retrieving publicly available documents, exactly fits this purpose. Today the Web has
other functions; some are listed below:

❑ Websites are being used as electronic stores that allow users to browse through the
store, select wanted items, put them in an electronic cart, and pay at the end with a
credit card.

❑ Some websites need to allow access to registered clients only.

❑ Some websites are used as portals: The user selects the Web pages he wants to see.

❑ Some websites are just advertising.

For these purposes, the cookie mechanism was devised. We discussed the use of cook-
ies at the transport layer in Chapter 15; we now discuss their use in Web pages.

Creating and Storing Cookies

The creation and storing of cookies depend on the implementation; however, the princi-
ple is the same.

1. When a server receives a request from a client, it stores information about the client
in a file or a string. The information may include the domain name of the client, the
contents of the cookie (information the server has gathered about the client such as

Figure 22.16 Example 22.9

Client Server

One
connection

Time Time

Image1

Image1

file1

file1

Image2

Image2

Connection establishment + Request

Request

Response

Response

Response

Connection termination

Request

for76042_ch22.fm Page 672 Tuesday, February 17, 2009 9:41 AM

CHAPTER 22 WORLD WIDE WEB AND HTTP 673

name, registration number, and so on), a timestamp, and other information depend-
ing on the implementation.

2. The server includes the cookie in the response that it sends to the client.

3. When the client receives the response, the browser stores the cookie in the cookie
directory, which is sorted by the domain server name.

Using Cookies

When a client sends a request to a server, the browser looks in the cookie directory to
see if it can find a cookie sent by that server. If found, the cookie is included in the
request. When the server receives the request, it knows that this is an old client, not a
new one. Note that the contents of the cookie are never read by the browser or disclosed
to the user. It is a cookie made by the server and eaten by the server. Now let us see how
a cookie is used for the four previously mentioned purposes:

❑ An electronic store (e-commerce) can use a cookie for its client shoppers. When a
client selects an item and inserts it into a cart, a cookie that contains information
about the item, such as its number and unit price, is sent to the browser. If the client
selects a second item, the cookie is updated with the new selection information.
And so on. When the client finishes shopping and wants to check out, the last
cookie is retrieved and the total charge is calculated.

❑ The site that restricts access to registered clients only sends a cookie to the client
when the client registers for the first time. For any repeated access, only those
clients that send the appropriate cookie are allowed.

❑ A Web portal uses the cookie in a similar way. When a user selects her favorite
pages, a cookie is made and sent. If the site is accessed again, the cookie is sent to
the server to show what the client is looking for.

❑ A cookie is also used by advertising agencies. An advertising agency can place
banner ads on some main website that is often visited by users. The advertising
agency supplies only a URL that gives the banner address instead of the banner
itself. When a user visits the main website and clicks the icon of an advertised cor-
poration, a request is sent to the advertising agency. The advertising agency sends
the banner, a GIF file for example, but it also includes a cookie with the ID of the
user. Any future use of the banners adds to the database that profiles the Web
behavior of the user. The advertising agency has compiled the interests of the user
and can sell this information to other parties. This use of cookies has made them
very controversial. Hopefully, some new regulations will be devised to preserve the
privacy of users.

Example 22.10

Figure 22.17 shows a scenario in which an electronic store can benefit from the use of cook-
ies. Assume a shopper wants to buy a toy from an electronic store named BestToys. The
shopper browser (client) sends a request to the BestToys server. The server creates an empty
shopping cart (a list) for the client and assigns an ID to the cart (for example, 12343). The
server then sends a response message, which contains the images of all toys available with a

for76042_ch22.fm Page 673 Tuesday, February 17, 2009 9:41 AM

674 PART 4 APPLICATION LAYER

link under each toy that select the toy if it is being clicked. This response message also
includes the Set-Cookie header line whose value is 12343. The client displays the images and
store the cookie value in a file named BestToys. The cookie is not revealed to the shopper.
Now the shopper selects one of the toys and clicks on it. The client sends a request, but
includes the ID 12343 in the Cookie header line. Although the server may have been busy and
has forgotten about this shopper, when it receives the request and check the header it finds the
value 12343 as the cookie. The server knows that the customer is not new, it searches for a
shopping cart with ID 12343. The shopping cart (list) is opened and the selected toy is
inserted to the list. The server now sends another response to the shopper to tell her the total
price and ask her to provide payment. The shopper provides information about her credit card
and sends a new request with the ID 12343 as the cookie value. When the request arrives at
the server, it again sees the ID 12343, and accepts the order and the payment and sends a con-
firmation in a response. Other information about the client, such as the credit card number,
name, and address is stored in the server. If the shopper accesses the store sometime in the
future, the client sends the cookie again; the store retrieves the file and has all information
about the client.

Figure 22.17 Example 22.10

Time Time

A customer file is
created with ID: 12343

Update

Update

Update

Request

Response

GET BestToys.com HTTP/1.1

HTTP/1.1 200 OK
Set-Cookie: 12343

Page Representing the Toys

Client Server

2

3

4

5

6

1

Request

Request

GET image HTTP/1.1

Response
HTTP/1.1 200 OK

Page Representing the price

Response
HTTP/1.1 200 OK

Order confirmation

Cookie: 12343

GET image HTTP/1.1

Cookie: 12343

Information about the payment

A vendor file is created
with cookie: 12343

Cookie

Cookie

for76042_ch22.fm Page 674 Tuesday, February 17, 2009 9:41 AM

CHAPTER 22 WORLD WIDE WEB AND HTTP 675

Web Caching: Proxy Server
HTTP supports proxy servers. A proxy server is a computer that keeps copies of
responses to recent requests. The HTTP client sends a request to the proxy server. The
proxy server checks its cache. If the response is not stored in the cache, the proxy
server sends the request to the corresponding server. Incoming responses are sent to the
proxy server and stored for future requests from other clients.

The proxy server reduces the load on the original server, decreases traffic, and
improves latency. However, to use the proxy server, the client must be configured to
access the proxy instead of the target server.

Note that the proxy server acts both as a server and client. When it receives a
request from a client for which it has a response, it acts as a server and sends the
response to the client. When it receives a request from a client for which it does not
have a response, it first acts as a server and sends a request to the target server. When
the response has been received, it acts again as a server and sends the response to the
client.

Proxy Server Location

The proxy servers are normally located at the client site. This means that we can have a
hierarchy of proxy servers as shown below:

1. A client computer can also be used as a proxy server in a small capacity that stores
responses to requests often invoked by the client.

2. In a company, a proxy server may be installed on the computer LAN to reduce the
load going out of and coming into the LAN.

3. An ISP with many customers can install a proxy server to reduce the load going
out of and coming into the ISP network.

Cache Update

A very important question is how long a response should remain in the proxy server
before being deleted and replaced. Several different strategies are used for this purpose.
One solution is to store the list of sites whose information remains the same for a while.
For example, a news agency may change its news page every morning. This means that
a proxy server can get the news early in the morning and keep it until the next day.
Another recommendation is to add some headers to show the last modification time of
the information. The proxy server can then use the information in this header to guess
how long the information would be valid. There are more recommendations for Web
caching, but we leave them to more specific books on this subject.

HTTP Security
The HTTP per se does not provide security. However, as we show in Chapter 30, HTTP
can be run over the Secure Socket Layer (SSL). In this case, HTTP is referred to as
HTTPS. HTTPS provides confidentiality, client and server authentication, and data
integrity.

for76042_ch22.fm Page 675 Tuesday, February 17, 2009 9:41 AM

676 PART 4 APPLICATION LAYER

22.4 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give an easy but thorough coverage of HTTP, including [Com 06], [Mir 07],
[Ste 94], and [Tan 03].

RFCs
Several RFCs show updates on HTTP, including RFC 2068, and RFC 2109.

22.5 KEY TERMS

22.6 SUMMARY
❑ The World Wide Web (WWW) is a repository of information linked together from

points all over the world. Hypertext and hypermedia documents are linked to one
another through pointers.

❑ The WWW architecture is made up of clients and servers. A client or a browser
interprets and displays a Web document. A browser consists of a controller, client
programs, and interpreters. A server stores Web pages.

❑ A Web document can be classified as static, dynamic, or active. A static document
is one in which the contents are fixed and stored in a server. A dynamic Web

active document JavaScript
Active Server Pages (ASP) Java Server Pages (JSP)
applet nonpersistent connection
browser path
ColdFusion persistent connection
Common Gateway Interface (CGI) proxy server
dynamic document request header
Extensible Markup Language (XML) request line
Extensisible Style Language (XSL) request type
host response header
hypermedia static document
hypertext status code
Hypertext Markup Language (HTML) status line
Hypertext Preprocessor (PHP) uniform resource locator (URL)
Hypertext Transfer Protocol (HTTP) Web page
Java World Wide Web (WWW)
Java applet

for76042_ch22.fm Page 676 Tuesday, February 17, 2009 9:41 AM

CHAPTER 22 WORLD WIDE WEB AND HTTP 677

document is created by a server only at a browser request. An active document is a
copy of a program retrieved by the client and run at the client site.

❑ The Hypertext Transfer Protocol (HTTP) is the main protocol used to access data
on the World Wide Web (WWW). HTTP uses a TCP connection to transfer files.
HTTP transactions are made of request and response messages.

❑ HTTP can be used in two modes: nonpersistent and persistent. The nonpersistent
mode uses a new TCP connection for each transaction; the persistent mode uses
only one connection. The default in the new version of HTTP is the persistent mode.

❑ HTTP can use cookies to keep the state of the transactions. The server sends a
cookie that can be stored in the client and be retrieved later by the server.

❑ Web caching using proxy servers improves the efficiency of the HTTP. The proxy
servers are installed in the client sites.

❑ A secure version of HTTP, HTTPS uses the services of a Secure Socket Layer (SSL)
protocol to provide confidentiality, client and server authentication, and data integrity.

22.7 PRACTICE SET

Exercises
1. Assume there is a server with the domain name www.common.com

a. Show a request that retrieves the document /usr/users/doc/doc1. Use at least two
general headers, two request headers, and one entity header.

b. Show the response to part a for a successful request.

c. Show the response to part a for a document that has permanently moved to
/usr/deads/doc1.

d. Show the response to part a if there is a syntax error in the request.

e. Show the response to part a if the client is unauthorized to access the document.

2. Assume there is a server with the domain name www.uncommon.com

a. Show a request that asks for information about a document at /bin/users/file.
Use at least two general headers and one request header.

b. Show the response to part a for a successful request.

3. Assume there is a server with the domain name www.public.edu

a. Show the request to copy the file at location /bin/usr/bin/file1 to /bin/file1.

b. Show the response to part a.

4. Assume there is a server with the domain name www.bigBusiness.com

a. Show the request to delete the file at location /bin/file1.

b. Show the response to part a.

5. Assume there is a server with the domain name www.EveryOne.com

a. Show a request to store a file at location /bin/letter. The client identifies the
types of documents it can accept.

b. Show the response to part a. The response shows the age of the document as
well as the date and time when the contents may change.

for76042_ch22.fm Page 677 Tuesday, February 17, 2009 9:41 AM

http://www.common.com
http://www.uncommon.com
http://www.public.edu
http://www.bigBusiness.com
http://www.EveryOne.com

678 PART 4 APPLICATION LAYER

6. In Figure 22.5, find the actual number of TCP segments exchanged between the
client and the server and draw a similar figure to show all segments.

7. In Figure 22.6, find the actual number of TCP segments exchanged between the
client and the server and draw a similar figure to show all segments.

8. Draw a figure similar to Figure 22.17 to show the application of cookies in a sce-
nario in which the server allows only the registered customer to access the server.

9. Draw a figure similar to Figure 22.17 to show the application of cookies in a Web
portal.

10. Draw a figure similar to Figure 22.17 to show the application of cookies in a sce-
nario in which the server uses cookies for advertisement.

11. Draw a diagram to show the use of a proxy server that is part of the client computer:

a. Show the transactions between the client, proxy server, and the target server
when the response is stored in the proxy server.

b. Show the transactions between the client, proxy server, and the target server
when the response is not stored in the proxy server.

12. Draw a diagram to show the use of a proxy server that is installed in the LAN
where the client is:

a. Show the transactions between the client, proxy server, and the target server
when the response is stored in the proxy server.

b. Show the transactions between the client, proxy server, and the target server
when the response is not stored in the proxy server.

13. Draw a diagram to show the use of a proxy server that is installed in the ISP network:

a. Show the transactions between the client, proxy server, and the target server
when the response is stored in the proxy server.

b. Show the transactions between the client, proxy server, and the target server
when the response is not stored in the proxy server.

Research Activities
14. Find out why IP addresses cannot replace cookies.

15. Find out about Web mirroring, in which caching is done at the server site instead of
the client site.

for76042_ch22.fm Page 678 Tuesday, February 17, 2009 9:41 AM

for76042_ch22.fm Page 679 Tuesday, February 17, 2009 9:41 AM

C H A P T E R

23

680

23

Electronic Mail:
SMTP, POP, IMAP, and MIME

ne of the most popular Internet services is electronic mail (e-mail).
The designers of the Internet probably never imagined the popularity

of this application program. Its architecture consists of several compo-
nents that we will discuss in this chapter.

At the beginning of the Internet era, the messages sent by electronic
mail were short and consisted of text only; they let people exchange quick
memos. Today, electronic mail is much more complex. It allows a mes-
sage to include text, audio, and video. It also allows one message to be
sent to one or more recipients.

In this chapter, we first study the general architecture of an e-mail
system including the three main components: user agent, message trans-
fer agent, and message access agent. We then describe the protocols that
implement these components.

OBJECTIVES

The chapter has several objectives:

❑

To explain the architecture of electronic mail using four scenarios.

❑

To explain the user agent (UA), services provided by it, and two
types of user agents.

❑

To explain the mechanism of sending and receiving e-mails.

❑

To introduce the role of a message transfer agent and Simple Mail
Transfer Protocol (SMTP) as the formal protocol that handles MTA.

❑

To explain e-mail transfer phases.

❑

To discuss two message access agents (MAAs): POP and IMAP.

❑

To discuss MIME as a set of software functions that transforms non-
ASCII data to ASCII data and vice versa.

❑

To discuss the idea of Web-based e-mail.

❑

To explain the security of the e-mail system.

O

for76042_ch23.fm Page 680 Wednesday, February 18, 2009 10:47 AM

681

23.1 ARCHITECTURE

To explain the architecture of e-mail, we give four scenarios. We begin with the simplest
situation and add complexity as we proceed. The fourth scenario is the most common in
the exchange of e-mail.

First Scenario

In the first scenario, the sender and the receiver of the e-mail are users (or application
programs) on the same mail server; they are directly connected to a shared mail server.
The administrator has created one mailbox for each user where the received messages
are stored. A

mailbox

 is part of a local hard drive, a special file with permission restric-
tions. Only the owner of the mailbox has access to it. When Alice needs to send a mes-
sage to Bob, she runs a

user agent

(

UA

) program to prepare the message and store it in
Bob’s mailbox. The message has the sender and recipient mailbox addresses (names of
files). Bob can retrieve and read the contents of his mailbox at his convenience using a
user agent. Figure 23.1 shows the concept.

This is similar to the traditional memo exchange between employees in an
office. There is a mail room where each employee has a mailbox with his or her
name on it. When Alice needs to send a memo to Bob, she writes the memo and
inserts it into Bob’s mailbox. When Bob checks his mailbox, he finds Alice’s memo
and reads it.

Figure 23.1

First scenario

When the sender and the receiver of an e-mail are on the same mail server,
we need only two user agents.

Mail serverAlice Bob

User agent
................
................
................................
................................
................................

User agent
................
................
................................
................................
................................

B
ox

es

1

2

for76042_ch23.fm Page 681 Wednesday, February 18, 2009 10:47 AM

682

PART 4 APPLICATION LAYER

Second Scenario

In the second scenario, the sender and the receiver of the e-mail are users (or application pro-
grams) on two different mail servers. The message needs to be sent over the Internet. Here
we need

user agents (UAs)

and

message transfer agents (MTAs)

 as shown in Figure 23.2.

Alice needs to use a user agent program to send her message to the mail server at
her own site. The mail server at her site uses a queue (spool) to store messages waiting
to be sent. Bob also needs a user agent program to retrieve messages stored in the mail-
box of the system at his site. The message, however, needs to be sent through the Inter-
net from Alice’s site to Bob’s site. Here two message transfer agents are needed: one
client and one server. Like most client-server programs on the Internet, the server needs
to run all of the time because it does not know when a client will ask for a connection.
The client, on the other hand, can be triggered by the system when there is a message in
the queue to be sent.

Third Scenario

Figure 23.3 shows the third scenario. Bob, as in the second scenario, is directly con-
nected to his mail server. Alice, however, is separated from her mail server. Alice is
either connected to the mail server via a point-to-point WAN—such as a dial-up
modem, a DSL, or a cable modem—or she is connected to a LAN in an organization
that uses one mail server for handling e-mails; all users need to send their messages to
this mail server.

Alice still needs a user agent to prepare her message. She then needs to send the
message through the LAN or WAN. This can be done through a pair of message trans-
fer agents (client and server). Whenever Alice has a message to send, she calls the user
agent which, in turn, calls the MTA client. The MTA client establishes a connection
with the MTA server on the system, which is running all the time. The system at Alice’s
site queues all messages received. It then uses an MTA client to send the messages to
the system at Bob’s site; the system receives the message and stores it in Bob’s mailbox.

Figure 23.2

Second scenario

When the sender and the receiver of an e-mail are on different mail servers,
we need two UAs and a pair of MTAs (client and server).

Mail server Mail server

UA: user agent

UA UA

MTA: message transfer agent

S
po

ol

B
ox

es

Alice

................

................

................................

................................

................................

................

................

................................

................................

................................

MTA
Client

MTA
Server

51

2 3 4

Internet

Bob

for76042_ch23.fm Page 682 Wednesday, February 18, 2009 10:47 AM

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME

683

At his convenience, Bob uses his user agent to retrieve the message and reads it. Note
that we need two pairs of MTA client-server programs.

Fourth Scenario

In the fourth and most common scenario, Bob is also connected to his mail server by a
WAN or a LAN. After the message has arrived at Bob’s mail server, Bob needs to
retrieve it. Here, we need another set of client-server agents, which we call

message
access agents (MAAs).

 Bob uses an MAA client to retrieve his messages. The client
sends a request to the MAA server, which is running all the time, and requests the
transfer of the messages. The situation is shown in Figure 23.4.

There are two important points we need to emphasize here. First, Bob cannot
bypass the mail server and use the MTA server directly. To use the MTA server
directly, Bob would need to run the MTA server all the time because he does not
know when a message will arrive. This implies that Bob must keep his computer on
all the time if he is connected to his system through a LAN. If he is connected
through a WAN, he must keep the connection up all the time. Neither of these situa-
tions is feasible today.

Second, note that Bob needs another pair of client-server programs: message
access programs. This is because an MTA client-server program is a

push

 program: the
client pushes the message to the server. Bob needs a

pull

 program. The client needs to
pull the message from the server. Figure 23.5 shows the difference.

Figure 23.3

Third scenario

When the sender is connected to the mail server via a LAN or a WAN, we need two UAs
and two pairs of MTAs (client and server).

LAN or WAN

Mail server Mail server

UA: user agent

UA

UA

MTA: message transfer agent

S
po

ol

B
ox

es

Alice

Bob

................

................

................................

................................

................................

................

................

................................

................................

................................

MTA
Client

MTA
Client

MTA
Server

MTA
Server

5 6

7

3

4

1

2

Internet

for76042_ch23.fm Page 683 Wednesday, February 18, 2009 10:47 AM

684

PART 4 APPLICATION LAYER

23.2 USER AGENT

The first component of an electronic mail system is the

user agent (UA).

 It provides
service to the user to make the process of sending and receiving a message easier.

Services Provided by a User Agent

A user agent is a software package (program) that composes, reads, replies to, and for-
wards messages. It also handles local mailboxes on the user computers.

Figure 23.4

Fourth scenario

Figure 23.5

Push vs. pull

When both sender and receiver are connected to the mail server via a LAN or a WAN,
we need two UAs, two pairs of MTAs (client and server), and a pair of MAAs (client and

server). This is the most common situation today.

UA: user agent
MTA: message transfer agent
MAA: message access agent

LAN or W
AN

LAN or W
AN

Mail server Mail server

UA

S
po

ol

B
ox

es

Alice Bob

................

................

................................

................................

................................

MTA
Client

MTA
Client

MTA
Server

MTA
Server

5 6

73

4

1

UA
................
................
................................
................................
................................

MAA
Client

MAA
Server

9

2 8

Internet

a. Client pushes messages b. Client pulls messages

Request

Response

MTA
Client
MTA
Client

MTA
Server
MTA
Server

MAA
Client
MAA
Client

MAA
Server
MAA
Server

for76042_ch23.fm Page 684 Wednesday, February 18, 2009 10:47 AM

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME

685

User Agent Types

There are two types of user agents: command-driven and GUI-based. Command-driven
user agents belong to the early days of electronic mail. They are still present as the
underlying user agents in servers. A command-driven user agent normally accepts a one-
character command from the keyboard to perform its task. For example, a user can type
the character

r

, at the command prompt, to reply to the sender of the message, or type
the character

R

 to reply to the sender and all recipients.

Modern user agents are GUI-based. They contain graphical user interface (GUI)
components that allow the user to interact with the software by using both the keyboard
and the mouse. They have graphical components such as icons, menu bars, and win-
dows that make the services easy to access.

Sending Mail

To send mail, the user, through the UA, creates mail that looks very similar to postal
mail. It has an

envelope

 and a

message

 (see Figure 23.6).

Envelope

The

envelope

 usually contains the sender address, the receiver address, and other
information.

Some examples of command-driven user agents are

mail, pine,

 and

elm

.

Some examples of GUI-based user agents are

Eudora, Outlook,

 and

Netscape

.

Figure 23.6

Format of an e-mail

Firouz Mosharraf
Com-Net
Cupertino, CA 95014

Behrouz Forouzan
De Anza College
Cupertino, CA 96014

Firouz Mosharraf
Com-Net
Cupertino, CA 95014
Jan. 5, 2005

Subject: Network

Dear Mr. Mosharraf
We want to inform you that
our network is working pro-
perly after the last repair.

Yours truly,
Behrouz Forouzan

Mail From: forouzan@deanza.edu
RCPT To: firouz@net.edu

From: Behrouz Forouzan
To: Firouz Mosharraf
Date: 1/5/05
Subject: Network

Dear Mr. Mosharraf
We want to inform you that
our network is working pro-
perly after the last repair.

Yours truly,
Behrouz Forouzan

E
nv

el
op

e
M

es
sa

ge

H
ea

de
r

B
od

y

for76042_ch23.fm Page 685 Wednesday, February 18, 2009 10:47 AM

mailto:forouzan@deanza.edu
mailto:firouz@net.edu

686

PART 4 APPLICATION LAYER

Message

The message contains the

header

 and the

body.

 The header of the message defines the
sender, the receiver, the subject of the message, and some other information. The body
of the message contains the actual information to be read by the recipient.

Receiving Mail

The user agent is triggered by the user (or a timer). If a user has mail, the UA informs
the user with a notice. If the user is ready to read the mail, a list is displayed in which
each line contains a summary of the information about a particular message in the mail-
box. The summary usually includes the sender mail address, the subject, and the time
the mail was sent or received. The user can select any of the messages and display its
contents on the screen.

Addresses

To deliver mail, a mail handling system must use an addressing system with unique
addresses. In the Internet, the address consists of two parts: a

local part

 and a

domain
name,

 separated by an @ sign (see Figure 23.7).

Local Part

The local part defines the name of a special file, called the user mailbox, where all of
the mail received for a user is stored for retrieval by the message access agent.

Domain Name

The second part of the address is the domain name. An organization usually selects
one or more hosts to receive and send e-mail; they are sometimes called

mail servers

or

 exchangers

. The domain name assigned to each mail exchanger either comes from
the DNS database or is a logical name (for example, the name of the organization).

Mailing List or Group List

Electronic mail allows one name, an

alias,

to represent several different e-mail
addresses; this is called a mailing list. Every time a message is to be sent, the sys-
tem checks the recipient’s name against the alias database; if there is a mailing list
for the defined alias, separate messages, one for each entry in the list, must be pre-
pared and handed to the MTA. If there is no mailing list for the alias, the name
itself is the receiving address and a single message is delivered to the mail transfer
entity.

Figure 23.7

E-mail address

Mailbox address of the recepient

Local part

The domain name of the mail server

Domain name@

for76042_ch23.fm Page 686 Wednesday, February 18, 2009 10:47 AM

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME

687

23.3 MESSAGE TRANSFER AGENT: SMTP

The actual mail transfer is done through message transfer agents (MTAs). To send mail,
a system must have the client MTA, and to receive mail, a system must have a server
MTA. The formal protocol that defines the MTA client and server in the Internet is called

Simple Mail Transfer Protocol

(SMTP).

 As we said before, two pairs of MTA client-
server programs are used in the most common situation (fourth scenario). Figure 23.8
shows the range of the SMTP protocol in this scenario.

SMTP is used two times, between the sender and the sender’s mail server and
between the two mail servers. As we will see shortly, another protocol is needed
between the mail server and the receiver.

SMTP simply defines how commands and responses must be sent back and forth.
Each network is free to choose a software package for implementation. We will discuss
the mechanism of mail transfer by SMTP in the remainder of the section.

Commands and Responses

SMTP uses commands and responses to transfer messages between an MTA client and
an MTA server (see Figure 23.9).

Each command or reply is terminated by a two-character (carriage return and line
feed) end-of-line token.

Figure 23.8

SMTP range

Figure 23.9

Commands and responses

Mail server

LAN or W
AN

SMTP SMTP

LAN or
 W

AN

Mail server

Alice Bob

Internet

Commands

Responses

MTA
Client

MTA
Client

MTA
Server

MTA
Server

for76042_ch23.fm Page 687 Wednesday, February 18, 2009 10:47 AM

688

PART 4 APPLICATION LAYER

Commands

Commands are sent from the client to the server. The format of a command is shown below:

It consists of a keyword followed by zero or more arguments. SMTP defines 14
commands listed in Table 23.1 and described in more detail below.

❑

HELO.

 This command is used by the client to identify itself. The argument is the
domain name of the client host. The format is

❑

MAIL FROM.

This command is used by the client to identify the sender of the
message. The argument is the e-mail address of the sender (local part plus the
domain name). The format is

❑

RCPT TO.

This command is used by the client to identify the intended recipient of
the message. The argument is the e-mail address of the recipient. If there are multi-
ple recipients, the command is repeated. The format is

❑

DATA.

This command is used to send the actual message. All lines that follow the
DATA command are treated as the mail message. The message is terminated by a
line containing just one period. The format is

Keyword:

 argument(s)

Table 23.1

Commands

Keyword Argument(s) Keyword Argument(s)

HELO Sender’s host name NOOP
MAIL FROM Sender of the message TURN
RCPT TO Intended recipient EXPN Mailing list
DATA Body of the mail HELP Command name
QUIT SEND FROM Intended recipient
RSET SMOL FROM Intended recipient
VRFY Name of recipient SMAL FROM Intended recipient

HELO:

 challenger.atc.fhda.edu

MAIL FROM:

 forouzan@challenger.atc.fhda.edu

RCPT TO:

 betsy@mcgraw-hill.com

DATA

This is the message
to be sent to the McGraw-Hill
Company.

.

for76042_ch23.fm Page 688 Wednesday, February 18, 2009 10:47 AM

mailto:forouzan@challenger.atc.fhda.edu
mailto:betsy@mcgraw-hill.com

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME

689

❑

QUIT.

This command terminates the message. The format is

❑

RSET.

 This command aborts the current mail transaction. The stored information
about the sender and recipient is deleted. The connection will be reset.

❑

VRFY.

This command is used to verify the address of the recipient, which is sent
as the argument. The sender can ask the receiver to confirm that a name identifies a
valid recipient. Its format is

❑

NOOP.

This command is used by the client to check the status of the recipient. It
requires an answer from the recipient. Its format is

❑

TURN

.

This command lets the sender and the recipient switch positions, whereby
the sender becomes the recipient and vice versa. However, most SMTP implemen-
tations today do not support this feature. The format is

❑

EXPN.

This command asks the receiving host to expand the mailing list sent as the
arguments and to return the mailbox addresses of the recipients that comprise the
list. The format is

❑

HELP.

This command asks the recipient to send information about the command
sent as the argument. The format is

❑

SEND FROM.

 This command specifies that the mail is to be delivered to the
terminal of the recipient, and not the mailbox. If the recipient is not logged in,
the mail is bounced back. The argument is the address of the sender. The
format is

❑

SMOL FROM.

 This command specifies that the mail is to be delivered to the termi-
nal or the mailbox of the recipient. This means that if the recipient is logged in, the

QUIT

RSET

VRFY: betsy@mcgraw-hill.com

NOOP

TURN

EXPN: x y z

HELP: mail

SEND FROM: forouzan@fhda.atc.edu

for76042_ch23.fm Page 689 Wednesday, February 18, 2009 10:47 AM

mailto:betsy@mcgraw-hill.com
mailto:forouzan@fhda.atc.edu

690 PART 4 APPLICATION LAYER

mail is delivered only to the terminal. If the recipient is not logged in, the mail is
delivered to the mailbox. The argument is the address of the sender. The format is

❑ SMAL FROM. This command specifies that the mail is to be delivered to the ter-
minal and the mailbox of the recipient. This means that if the recipient is logged in,
the mail is delivered to the terminal and the mailbox. If the recipient is not logged
in, the mail is delivered only to the mailbox. The argument is the address of the
sender. The format is

Responses

Responses are sent from the server to the client. A response is a three-digit code that
may be followed by additional textual information. The idea is the same as discussed in
the case of HTTP responses in Chapter 22. Table 23.2 lists some of the responses.

SMOL FROM: forouzan@fhda.atc.edu

SMAL FROM: forouzan@fhda.atc.edu

Table 23.2 Responses

Code Description
Positive Completion Reply

211 System status or help reply
214 Help message
220 Service ready
221 Service closing transmission channel
250 Request command completed
251 User not local; the message will be forwarded

Positive Intermediate Reply
354 Start mail input

Transient Negative Completion Reply
421 Service not available
450 Mailbox not available
451 Command aborted: local error
452 Command aborted; insufficient storage

Permanent Negative Completion Reply
500 Syntax error; unrecognized command
501 Syntax error in parameters or arguments
502 Command not implemented
503 Bad sequence of commands
504 Command temporarily not implemented
550 Command is not executed; mailbox unavailable
551 User not local
552 Requested action aborted; exceeded storage location
553 Requested action not taken; mailbox name not allowed
554 Transaction failed

for76042_ch23.fm Page 690 Wednesday, February 18, 2009 10:47 AM

mailto:forouzan@fhda.atc.edu
mailto:forouzan@fhda.atc.edu

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME 691

Mail Transfer Phases
The process of transferring a mail message occurs in three phases: connection estab-
lishment, mail transfer, and connection termination.

Connection Establishment

After a client has made a TCP connection to the well-known port 25, the SMTP server
starts the connection phase. This phase involves the following three steps, which are
illustrated in Figure 23.10.

1. The server sends code 220 (service ready) to tell the client that it is ready to receive
mail. If the server is not ready, it sends code 421 (service not available).

2. The client sends the HELO message to identify itself using its domain name
address. This step is necessary to inform the server of the domain name of the
client. Remember that during TCP connection establishment, the sender and
receiver know each other through their IP addresses.

3. The server responds with code 250 (request command completed) or some other
code depending on the situation.

Message Transfer

After connection has been established between the SMTP client and server, a single
message between a sender and one or more recipients can be exchanged. This phase
involves eight steps. Steps 3 and 4 are repeated if there is more than one recipient (see
Figure 23.11).

1. The client sends the MAIL FROM message to introduce the sender of the message.
It includes the mail address of the sender (mailbox and the domain name). This
step is needed to give the server the return mail address for returning errors and
reporting messages.

2. The server responds with code 250 or some other appropriate code.

3. The client sends the RCPT TO (recipient) message, which includes the mail
address of the recipient.

4. The server responds with code 250 or some other appropriate code.

5. The client sends the DATA message to initialize the message transfer.

Figure 23.10 Connection establishment

HELO: deanza.edu

250 OK

220 service ready

MTA
Client

MTA
Client

MTA
Server

MTA
Server

1

2

3

for76042_ch23.fm Page 691 Wednesday, February 18, 2009 10:47 AM

692 PART 4 APPLICATION LAYER

6. The server responds with code 354 (start mail input) or some other appropriate
message.

7. The client sends the contents of the message in consecutive lines. Each line is ter-
minated by a two-character end-of-line token (carriage return and line feed). The
message is terminated by a line containing just one period.

8. The server responds with code 250 (OK) or some other appropriate code.

Connection Termination

After the message is transferred successfully, the client terminates the connection. This
phase involves two steps (see Figure 23.12).

Figure 23.11 Message transfer

Figure 23.12 Connection termination

MAIL FROM: forouzan@deanza.edu

RCPT TO: firouz@net.edu

Date: 1/6/05

Subject: Network

Dear Mr. Mosharraf

We want to inform you that

From: Behrouz Forouzan

To: Firouz Mosharraf

DATA

250 OK

250 OK

250 OK

354 start mail input

Blank line

A single dot

E
nv

el
op

e
H

ea
de

r
B

od
y

MTA
Client

MTA
Client

MTA
Server

MTA
Server

1

2

3

4

5

6

7

8

9

10

11

12

13

n−1

n

MTA
Client

MTA
Client

MTA
Server

MTA
Server

1

2

QUIT

221 service closed

for76042_ch23.fm Page 692 Wednesday, February 18, 2009 10:47 AM

mailto:forouzan@deanza.edu
mailto:firouz@net.edu

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME 693

1. The client sends the QUIT command.

2. The server responds with code 221 or some other appropriate code.

After the connection termination phase, the TCP connection must be closed.

Example 23.1

Let us see how we can directly use SMTP to send an e-mail and simulate the commands
and responses we described in this section. We use TELNET to log into port 25 (the well-known
port for SMTP). We then use the commands directly to send an e-mail. In this example,
forouzanb@adelphia.net is sending an e-mail to himself. The first few lines show TELNET try-
ing to connect to the adelphia mail server.

After connection, we can type the SMTP commands and then receive the responses as
shown below. We have shown the commands in black and the responses in color. Note that we
have added for clarification some comment lines, designated by the “=” sign. These lines are not
part of the e-mail procedure.

23.4 MESSAGE ACCESS AGENT: POP AND IMAP
The first and the second stages of mail delivery use SMTP. However, SMTP is not
involved in the third stage because SMTP is a push protocol; it pushes the message
from the client to the server. In other words, the direction of the bulk data (messages) is

$ telnet mail.adelphia.net 25
Trying 68.168.78.100...
Connected to mail.adelphia.net (68.168.78.100).

================== Connection Establishment ================
 220 mta13.adelphia.net SMTP server ready Fri, 6 Aug 2004 . . .
HELO mail.adelphia.net
 250 mta13.adelphia.net
===================== Envelope ==================
MAIL FROM: forouzanb@adelphia.net
 250 Sender <forouzanb@adelphia.net> Ok
RCPT TO: forouzanb@adelphia.net
 250 Recipient <forouzanb@adelphia.net> Ok
=================== Header and Body =================
DATA
 354 Ok Send data ending with <CRLF>.<CRLF>
From: Forouzan
TO: Forouzan

This is a test message
to show SMTP in action.
.

==================== Connection Termination ==================
250 Message received: adelphia.net@mail.adelphia.net

QUIT
 221 mta13.adelphia.net SMTP server closing connection
Connection closed by foreign host.

for76042_ch23.fm Page 693 Wednesday, February 18, 2009 10:47 AM

mailto:forouzanb@adelphia.net
mailto:forouzanb@adelphia.net
mailto:forouzanb@adelphia.net
mailto:forouzanb@adelphia.net
mailto:forouzanb@adelphia.net
mailto:adelphia.net@mail.adelphia.net

694 PART 4 APPLICATION LAYER

from the client to the server. On the other hand, the third stage needs a pull protocol; the
client must pull messages from the server. The direction of the bulk data are from the
server to the client. The third stage uses a message access agent.

Currently two message access protocols are available: Post Office Protocol, version 3
(POP3) and Internet Mail Access Protocol, version 4 (IMAP4). Figure 23.13 shows the
position of these two protocols in the most common situation (fourth scenario).

POP3
Post Office Protocol, version 3 (POP3) is simple and limited in functionality. The
client POP3 software is installed on the recipient computer; the server POP3 software
is installed on the mail server.

Mail access starts with the client when the user needs to download its e-mail from
the mailbox on the mail server. The client opens a connection to the server on TCP port
110. It then sends its user name and password to access the mailbox. The user can then
list and retrieve the mail messages, one by one. Figure 23.14 shows an example of
downloading using POP3.

Figure 23.13 POP3 and IMAP4

Figure 23.14 POP3

POP3 or IMAP4

Mail server

SMTP SMTP

Mail server

Alice Bob

LAN/WAN LAN/WAN
Internet

e-mail 1

retrieve 1

e-mail numbers and their sizes

OK

list

OK

password

user-name

User ComputerMail Server

retrieve N

e-mail N

POP3
Client

POP3
Server

1

2

3

4

5

6

7

8

n−1

n

for76042_ch23.fm Page 694 Wednesday, February 18, 2009 10:47 AM

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME 695

POP3 has two modes: the delete mode and the keep mode. In the delete mode, the
mail is deleted from the mailbox after each retrieval. In the keep mode, the mail
remains in the mailbox after retrieval. The delete mode is normally used when the user
is working at her permanent computer and can save and organize the received mail after
reading or replying. The keep mode is normally used when the user accesses her mail
away from her primary computer (e.g., a laptop). The mail is read but kept in the sys-
tem for later retrieval and organizing.

IMAP4
Another mail access protocol is Internet Mail Access Protocol, version 4 (IMAP4).
IMAP4 is similar to POP3, but it has more features; IMAP4 is more powerful and more
complex.

POP3 is deficient in several ways. It does not allow the user to organize her mail on
the server; the user cannot have different folders on the server. (Of course, the user can
create folders on her own computer.) In addition, POP3 does not allow the user to par-
tially check the contents of the mail before downloading.

IMAP4 provides the following extra functions:

❑ A user can check the e-mail header prior to downloading.

❑ A user can search the contents of the e-mail for a specific string of characters prior
to downloading.

❑ A user can partially download e-mail. This is especially useful if bandwidth is lim-
ited and the e-mail contains multimedia with high bandwidth requirements.

❑ A user can create, delete, or rename mailboxes on the mail server.

❑ A user can create a hierarchy of mailboxes in a folder for e-mail storage.

23.5 MIME
Electronic mail has a simple structure. Its simplicity, however, comes with a price. It
can send messages only in NVT 7-bit ASCII format. In other words, it has some limita-
tions. It cannot be used for languages other than English (such as French, German,
Hebrew, Russian, Chinese, and Japanese). Also, it cannot be used to send binary files or
video or audio data.

Multipurpose Internet Mail Extensions (MIME) is a supplementary protocol that
allows non-ASCII data to be sent through e-mail. MIME transforms non-ASCII data at
the sender site to NVT ASCII data and delivers it to the client MTA to be sent through
the Internet. The message at the receiving site is transformed back to the original data.

We can think of MIME as a set of software functions that transforms non-ASCII
data to ASCII data and vice versa, as shown in Figure 23.15.

MIME Headers
MIME defines five headers that can be added to the original e-mail header section to
define the transformation parameters:

1. MIME-Version

2. Content-Type

for76042_ch23.fm Page 695 Wednesday, February 18, 2009 10:47 AM

696 PART 4 APPLICATION LAYER

3. Content-Transfer-Encoding

4. Content-Id

5. Content-Description

Figure 23.16 shows the MIME headers. We will describe each header in detail.

MIME-Version

This header defines the version of MIME used. The current version is 1.1.

Content-Type

This header defines the type of data used in the body of the message. The content
type and the content subtype are separated by a slash. Depending on the subtype, the
header may contain other parameters. MIME allows seven different types of data,
listed in Table 23.3.

❑ Text. The original message is in 7-bit ASCII format and no transformation by
MIME is needed. There are two subtypes currently used, plain and HTML.

❑ Multipart. The body contains multiple, independent parts. The multipart header
needs to define the boundary between each part. A parameter is used for this purpose.
The parameter is a string token that comes before each part; it is on a separate line
by itself and is preceded by two hyphens. The body is terminated using the bound-
ary token, again preceded by two hyphens and then terminated with two hyphens.
Four subtypes are defined for this type: mixed, parallel, digest, and alternative. In
the mixed subtype, the parts must be presented to the recipient in the exact order as
in the message. Each part has a different type and is defined at the boundary. The
parallel subtype is similar to the mixed subtype, except that the order of the parts is

Figure 23.15 MIME

Figure 23.16 MIME header

MIME MIME

7-bit NVT
ASCII

Non-ASCII
code

UA

Alice Bob

Non-ASCII
code

7-bit NVT
ASCII

E-mail System

MIME-Version: 1.1
Content-Type: type/subtype
Content-Transfer-Encoding: encoding type
Content-Id: message id
Content-Description: textual explanation of nontextual contents

E-mail header

E-mail body

MIME headers

for76042_ch23.fm Page 696 Wednesday, February 18, 2009 10:47 AM

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME 697

unimportant. The digest subtype is also similar to the mixed subtype except that
the default type/subtype is message/RFC822 as defined below. In the alternative
subtype, the same message is repeated using different formats. The following is an
example of a multipart message using a mixed subtype:

❑ Message. In the message type, the body is itself an entire mail message, a part of a
mail message, or a pointer to a message. Three subtypes are currently used:
RFC822, partial, and external-body. The subtype RFC822 is used if the body is
encapsulating another message (including header and the body). The partial sub-
type is used if the original message has been fragmented into different mail mes-
sages and this mail message is one of the fragments. The fragments must be
reassembled at the destination by MIME. Three parameters must be added: id,
number, and the total. The id identifies the message and is present in all the frag-
ments. The number defines the sequence order of the fragment. The total defines
the number of fragments that comprise the original message. The following is an
example of a message with three fragments:

Table 23.3 Data Types and Subtypes in MIME

Type Subtype Description

Text
Plain Unformatted
HTML HTML format (see Appendix E)

Multipart
Mixed Body contains ordered parts of different data types
Parallel Same as above, but no order
Digest Similar to Mixed, but the default is message/RFC822
Alternative Parts are different versions of the same message

Message
RFC822 Body is an encapsulated message
Partial Body is a fragment of a bigger message
External-Body Body is a reference to another message

Image JPEG Image is in JPEG format
GIF Image is in GIF format

Video MPEG Video is in MPEG format
Audio Basic Single channel encoding of voice at 8 KHz
Application PostScript Adobe PostScript

Octet-stream General binary data (eight-bit bytes)

Content-Type: multipart/mixed; boundary=xxxx

--xxxx
Content-Type: text/plain;
...
--xxxx
Content-Type: image/gif;
...
--xxxx--

Content-Type: message/partial;
id=“forouzan@challenger.atc.fhda.edu”;
number=1;
total=3;
...

for76042_ch23.fm Page 697 Wednesday, February 18, 2009 10:47 AM

mailto:forouzan@challenger.atc.fhda.edu%E2%80%9D

698 PART 4 APPLICATION LAYER

The subtype external-body indicates that the body does not contain the actual message
but is only a reference (pointer) to the original message. The parameters following the
subtype define how to access the original message. The following is an example:

❑ Image. The original message is a stationary image, indicating that there is no
animation. The two currently used subtypes are Joint Photographic Experts
Group (JPEG), which uses image compression, and Graphics Interchange
Format (GIF).

❑ Video. The original message is a time-varying image (animation). The only sub-
type is Moving Picture Experts Group (MPEG). If the animated image contains
sounds, it must be sent separately using the audio content type.

❑ Audio. The original message is sound. The only subtype is basic, which uses 8-kHz
standard audio data.

❑ Application. The original message is a type of data not previously defined. There
are only two subtypes used currently: PostScript and octet-stream. PostScript is
used when the data are in Adobe PostScript format. Octet-stream is used when the
data must be interpreted as a sequence of 8-bit bytes (binary file).

Content-Transfer-Encoding

This header defines the method used to encode the messages into 0s and 1s for
transport:

The five types of encoding methods are listed in Table 23.4.

❑ 7bit. This is 7-bit NVT ASCII encoding. Although no special transformation is
needed, the length of the line should not exceed 1,000 characters.

Content-Type: message/external-body;
name=“report.txt”;
site=“fhda.edu”;
access-type=“ftp”;
…

Content-Transfer-Encoding: <type>

Table 23.4 Content-Transfer-Encoding

Type Description
7bit NVT ASCII characters and short lines
8bit Non-ASCII characters and short lines
Binary Non-ASCII characters with unlimited-length lines
Base64 6-bit blocks of data are encoded into 8-bit ASCII characters
Quoted-printable Non-ASCII characters are encoded as an equal sign plus an ASCII

code

for76042_ch23.fm Page 698 Wednesday, February 18, 2009 10:47 AM

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME 699

❑ 8bit. This is 8-bit encoding. Non-ASCII characters can be sent, but the length of the
line still should not exceed 1,000 characters. MIME does not do any encoding here;
the underlying SMTP protocol must be able to transfer 8-bit non-ASCII characters.
It is, therefore, not recommended. Base64 and quoted-printable types are preferable.

❑ Binary. This is 8-bit encoding. Non-ASCII characters can be sent, and the length
of the line can exceed 1,000 characters. MIME does not do any encoding here; the
underlying SMTP protocol must be able to transfer binary data. It is, therefore, not
recommended. Base64 and quoted-printable types are preferable.

❑ Base64. This is a solution for sending data made of bytes when the highest bit is
not necessarily zero. Base64 transforms this type of data to printable characters,
which can then be sent as ASCII characters or any type of character set supported
by the underlying mail transfer mechanism. Base64 divides the binary data (made
of streams of bits) into 24-bit blocks. Each block is then divided into four sections,
each made of 6 bits (see Figure 23.17).

Each 6-bit section is interpreted as one character according to Table 23.5.

Figure 23.17 Base64

Table 23.5 Base-64 Converting Table

Value Code Value Code Value Code Value Code Value Code Value Code
0 A 11 L 22 W 33 h 44 s 55 3
1 B 12 M 23 X 34 i 45 t 56 4
2 C 13 N 24 Y 35 j 46 u 57 5
3 D 14 O 25 Z 36 k 47 v 58 6
4 E 15 P 26 a 37 l 48 w 59 7
5 F 16 Q 27 b 38 m 49 x 60 8
6 G 17 R 28 c 39 n 50 y 61 9
7 H 18 S 29 d 40 o 51 z 62 +
8 I 19 T 30 e 41 p 52 0 63 /
9 J 20 U 31 f 42 q 53 1

10 K 21 V 32 g 43 r 54 2

11001100

z

51 578 4

10000001

I E

00111001

110011 001000 000100 111001

5

Non-ASCII data
A set of bits

Combine and split

Four 6-bit numbers

Four Characters
ASCII data

Base-64 converter

for76042_ch23.fm Page 699 Wednesday, February 18, 2009 10:47 AM

700 PART 4 APPLICATION LAYER

❑ Quoted-printable. Base64 is a redundant encoding scheme; that is, 24 bits
become four characters, and eventually are sent as 32 bits. We have an overhead of
25 percent. If the data consist mostly of ASCII characters with a small non-ASCII
portion, we can use quoted-printable encoding. If a character is ASCII, it is sent as
is. If a character is not ASCII, it is sent as three characters. The first character is the
equal sign (=). The next two characters are the hexadecimal representations of the
byte. Figure 23.18 shows an example.

Content-Id

This header uniquely identifies the whole message in a multiple message environment.

Content-Description

This header defines whether the body is image, audio, or video.

23.6 WEB-BASED MAIL
E-mail is such a common application that some websites today provide this service to
anyone who accesses the site. Three common sites are Hotmail, Yahoo, and Google.
The idea is very simple. Let us go through two cases:

Case I
In the first case, Alice, the sender, uses a traditional mail server; Bob, the receiver, has
an account on a Web-based server. Mail transfer from Alice’s browser to her mail
server is done through SMTP. The transfer of the message from the sending mail server
to the receiving mail server is still through SMTP. However, the message from the
receiving server (the web server) to Bob’s browser is done through HTTP. In other
words, instead of using POP3 or IMAP4, HTTP is normally used. When Bob needs to
retrieve his e-mails, he sends a request HTTP message to the website (Hotmail, for
example). The website sends a form to be filled in by Bob, which includes the log-in
name and the password. If the log-in name and password match, the list of e-mails is
transferred from the Web server to Bob’s browser in HTML format. Now Bob can

Figure 23.18 Quoted-printable

01001100
L

1001 1101
9D

00111001
9

Mixed ASCII and
non-ASCII data

Non-ASCII

ASCII data

00100110
&

01001011
K

00100110
&

01001011
K

01001100
L

00111001
9

00111101
=

01000100
D

00111001
9

Quoted-printable

for76042_ch23.fm Page 700 Wednesday, February 18, 2009 10:47 AM

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME 701

browse through his received e-mails and then, using more HTTP transactions, can get
his e-mails one by one. This is shown in Figure 23.19.

Case II
In the second case, both Alice and Bob use Web servers, but not necessarily the same
server. Alice sends the message to the Web server using HTTP transactions. Alice sends
an HTTP request message to her Web server using the name and address of Bob’s mail-
box as the URL. The server at the Alice site passes the message to the SMTP client and
sends it to the server at the Bob site using SMTP protocol. Bob receives the message
using HTTP transactions. However, the message from the server at the Alice site to the
server at the Bob site still takes place using SMTP protocol. Figure 23.20 shows the idea.

23.7 E-MAIL SECURITY
The protocol discussed in this chapter does not provide any security provisions per se.
However, e-mail exchanges can be secured using two application-layer securities
designed in particular for e-mail systems. Two of these protocols, Pretty Good Privacy
(PGP) and Secure MIME (SMIME) are discussed in Chapter 30 after we have
discussed the basic network security.

Figure 23.19 Web-base e-mail, case I

Figure 23.20 Web-based e-mail, case II

HTTP
transactions

Alice

Alice site Bob site

Bob

SMTP
Client

SMTP
Server

SMTP
Server

SMTP
Client

HTTP
Server

HTTP
Client

32 4

1

Internet

HTTP
transactions

HTTP
transactions

Alice

Alice site Bob site

Bob
SMTP
Server

HTTP
Server

HTTP
Client

HTTP
Client

3

HTTP
Server

1

SMTP
Client

2

Internet

for76042_ch23.fm Page 701 Wednesday, February 18, 2009 10:47 AM

702 PART 4 APPLICATION LAYER

23.8 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give an easy but thorough coverage of electronic mail including [Com 06],
[Ste 94], and [Tan 03], and [Kur & Ros 08].

RFCs
Several RFCs show updates on SMTP, including RFC 2821 and RFC 2822. POP3 is
explained in RFC 1939. Several RFCs refer to MIME, including RFC 2046, RFC 2047,
RFC 2048, and RFC 2049.

23.9 KEY TERMS

23.10 SUMMARY
❑ Electronic mail is one of the most common applications on the Internet. The e-mail

architectures consists of several components such as user agent (UA), main trans-
fer agent (MTA), and main access agent (MAA).

❑ The UA prepares the message, creates the envelope, and puts the message in the
envelope. The mail address consists of two parts: a local part (user mailbox) and a
domain name. The form is localpart@domainname. An alias allows the use of a
mailing list.

❑ The MTA transfers the mail across the Internet, a LAN, or a WAN. The protocol
that implements MTA is called Simple Main Transfer Protocol (SMTP). SMTP
uses commands and responses to transfer messages between an MTA client and an
MTA server. The steps in transferring a mail message are: connection establish-
ment mail transfer, and connection termination.

alias local part
body message access agent (MAA)
connection establishment message transfer agent (MTA)
connection termination
domain name
envelope
header
Internet Mail Access Protocol, version 4

(IMAP4)

Multipurpose Internet Mail Extensions
(MIME)

Post Office Protocol, version 3 (POP3)
Simple Mail Transfer Protocol (SMTP)
user agent (UA)

for76042_ch23.fm Page 702 Wednesday, February 18, 2009 10:47 AM

CHAPTER 23 ELECTRONIC MAIL: SMTP, POP, IMAP, AND MIME 703

❑ Two protocols are used to implement MAA: Post Office Protocol, version 3 (POP3)
and Internet Mail Access Protocol, version 4 (IMAP4). These protocols are used by
the receiver to pull messages from a mail server.

❑ Multipurpose Internet Mail Extension (MIME) allows the transfer of multimedia
messages. MIME changes multimedia characters into ASCII characters that are
transferable through the e-mail system.

❑ Web-based e-mails get popularity through sites that offer free e-mails for the users.
In Web-based e-mail systems part of the data transfer is done through the SMTP
protocol and part through the HTTP protocol.

❑ Secure e-mail is possible through two technologies: Pretty Good Privacy (PGP)
and SMIME (Secure MIME).

23.11 PRACTICE SET

Exercises
1. A sender sends unformatted text. Show the MIME header.

2. A sender sends a JPEG message. Show the MIME header.

3. A non-ASCII message of 1,000 bytes is encoded using base64. How many bytes
are in the encoded message? How many bytes are redundant? What is the ratio of
redundant bytes to the total message?

4. A message of 1,000 bytes is encoded using quoted-printable. The message consists
of 90 percent ASCII and 10 percent non-ASCII characters. How many bytes are in
the encoded message? How many bytes are redundant? What is the ratio of redun-
dant bytes to the total message?

5. Compare the results of Exercises 3 and 4. How much is the efficiency improved if
the message is a combination of ASCII and non-ASCII characters?

6. Encode the following message in base64:

7. Encode the following message in quoted-printable:

8. Encode the following message in base64:

9. Encode the following message in quoted-printable:

01010111 00001111 11110000 10101111 01110001 01010100

01010111 00001111 11110000 10101111 01110001 01010100

01010111 00001111 11110000 10101111 01110001

01010111 00001111 11110000 10101111 01110001

for76042_ch23.fm Page 703 Wednesday, February 18, 2009 10:47 AM

704 PART 4 APPLICATION LAYER

10. Are the HELO and MAIL FROM commands both necessary? Why or why not?

11. In Figure 23.11 what is the difference between MAIL FROM in the envelope and
the From in the header?

12. Why is a connection establishment for mail transfer needed if TCP has already
established a connection?

13. Show the connection establishment phase from aaa@xxx.com to bbb@yyy.com.

14. Show the message transfer phase from aaa@xxx.com to bbb@yyy.com. The message
is “Good morning my friend.”

15. Show the connection termination phase from aaa@xxx.com to bbb@yyy.com.

16. User aaa@xxx.com sends a message to user bbb@yyy.com, which is forwarded to
user ccc@zzz.com. Show all SMTP commands and responses.

17. User aaa@xxx.com sends a message to user bbb@yyy.com. The latter replies.
Show all SMTP commands and responses.

18. In SMTP, if we send a one-line message between two users, how many lines of
commands and responses are exchanged?

Research Activities
19. A new version of SMTP, called ESMTP, is in use today. Find the differences

between the two.

20. Find information about the smileys used to express a user’s emotions.

for76042_ch23.fm Page 704 Wednesday, February 18, 2009 10:47 AM

mailto:aaa@xxx.com
mailto:bbb@yyy.com
mailto:aaa@xxx.com
mailto:bbb@yyy.com
mailto:aaa@xxx.com
mailto:bbb@yyy.com
mailto:aaa@xxx.com
mailto:bbb@yyy.com
mailto:ccc@zzz.com
mailto:aaa@xxx.com
mailto:bbb@yyy.com

for76042_ch23.fm Page 705 Wednesday, February 18, 2009 10:47 AM

C H A P T E R

24

706

24

Network Management: SNMP

he

Simple Network Management Protocol (SNMP)

 is a framework
for managing devices in an internet using the TCP/IP protocol suite. It

provides a set of fundamental operations for monitoring and maintaining
an internet.

OBJECTIVES

The chapter has several objectives:

❑

To discuss SNMP as a framework for managing devices in an internet
using the TCP/IP protocol suite.

❑

To define a manager as a host that runs SNMP client and any agents
as a router or host that runs a server program.

❑

Discuss SMI and MIB, which are used by SNMP.

❑

To show how SMI names objects, defines the type of data, and
encodes data.

❑

To show how data types are defined using ASN.1.

❑

To show how SMI uses BER to encode data.

❑

To show the functionality of SNMP using three methods.

❑

To discuss the format of SNMP messages.

❑

To show how SNMP uses two different ports of UDP.

❑

To show how SNMPv3 has enhanced security features over previous
versions.

T

for76042_ch24.fm Page 706 Wednesday, February 18, 2009 10:14 AM

707

24.1 CONCEPT

SNMP uses the concept of manager and agent. That is, a manager, usually a host,
controls and monitors a set of agents, usually routers or servers (see Figure 24.1).

SNMP is an application-level protocol in which a few manager stations control a
set of agents. The protocol is designed at the application level so that it can monitor
devices made by different manufacturers and installed on different physical networks.
In other words, SNMP frees management tasks from both the physical characteristics
of the managed devices and the underlying networking technology. It can be used in a
heterogeneous internet made of different LANs and WANs connected by routers made
by different manufacturers.

Managers and Agents

A management station, called a

manager,

 is a host that runs the SNMP client program.
A managed station, called an

agent,

 is a router (or a host) that runs the SNMP server
program. Management is achieved through simple interaction between a manager and
an agent.

The agent keeps performance information in a database. The manager has access
to the values in the database. For example, a router can store in appropriate variables
the number of packets received and forwarded. The manager can fetch and compare the
values of these two variables to see if the router is congested or not.

The manager can also make the router perform certain actions. For example, a
router periodically checks the value of a reboot counter to see when it should reboot

Figure 24.1

SNMP concept

Manager

Manager

Agent

Agent

Agent

Agent

Agent variables

for76042_ch24.fm Page 707 Wednesday, February 18, 2009 10:14 AM

708

PART 4 APPLICATION LAYER

itself. It reboots itself, for example, if the value of the counter is 0. The manager can
use this feature to reboot the agent remotely at any time. It simply sends a packet to
force a 0 value in the counter.

Agents can also contribute to the management process. The server program run-
ning on the agent can check the environment and, if it notices something unusual, it can
send a warning message (called a

trap

) to the manager.
In other words, management with SNMP is based on three basic ideas:

1.

A manager checks an agent by requesting information that reflects the behavior of
the agent.

2.

A manager forces an agent to perform a task by resetting values in the agent database.

3.

An agent contributes to the management process by warning the manager of an
unusual situation.

24.2 MANAGEMENT COMPONENTS

To do management tasks, SNMP uses two other protocols:

Structure of Management
Information (SMI)

 and

Management Information Base (MIB).

 In other words, man-
agement on the Internet is done through the cooperation of three protocols: SNMP,
SMI, and MIB, as shown in Figure 24.2.

Let us elaborate on the interactions between these protocols.

Role of SNMP

SNMP has some very specific roles in network management. It defines the format of
the packet to be sent from a manager to an agent and vice versa. It also interprets the
result and creates statistics (often with the help of other management software). The
packets exchanged contain the object (variable) names and their status (values). SNMP
is responsible for reading and changing these values.

Role of SMI

To use SNMP, we need rules. We need rules for naming objects. This is particularly
important because the objects in SNMP form a hierarchical structure (an object may

Figure 24.2

Components of network management on the Internet

SNMP defines the format of packets exchanged between a manager and an agent.
It reads and changes the status of objects (values of variables) in SNMP packets.

SMI MIB

SNMP

Management

for76042_ch24.fm Page 708 Wednesday, February 18, 2009 10:14 AM

CHAPTER 24 NETWORK MANAGEMENT: SNMP

709

have a parent object and some child objects). Part of a name can be inherited from the
parent. We also need rules to define the type of the objects. What types of objects are
handled by SNMP? Can SNMP handle simple types or structured types? How many
simple types are available? What are the sizes of these types? What is the range of these
types? In addition, how are each of these types encoded?

We need these universal rules because we do not know the architecture of the com-
puters that send, receive, or store these values. The sender may be a powerful computer
in which an integer is stored as 8-byte data; the receiver may be a small computer that
stores an integer as 4-byte data.

SMI is a protocol that defines these rules. However, we must understand that SMI
only defines the rules; it does not define how many objects are managed in an entity or
which object uses which type. SMI is a collection of general rules to name objects and
to list their types. The association of an object with the type is not done by SMI.

Role of MIB

We hope it is clear that we need another protocol. For each entity to be managed, this
protocol must define the number of objects, name them according to the rules defined
by SMI, and associate a type to each named object. This protocol is MIB. MIB creates
a set of objects defined for each entity similar to a database (mostly meta data in a data-
base, names and types without values).

An Analogy

Before discussing each of these protocols in more detail, let us give an analogy. The
three network management components are similar to what we need when we write a
program in a computer language to solve a problem. Figure 24.3 shows the analogy.

SMI defines the general rules for naming objects, defining object types (including
range and length), and showing how to encode objects and values.

MIB creates a collection of named objects, their types, and their
relationships to each other in an entity to be managed.

Figure 24.3

 Comparing computer programming and network management

Network
Management

Computer
Programming

Language
Syntax

SMI

Objects Declaration
and definition MIB

Program
Coding SNMP

for76042_ch24.fm Page 709 Wednesday, February 18, 2009 10:14 AM

710

PART 4 APPLICATION LAYER

Syntax: SMI

Before we write a program, the syntax of the language (such as C or Java) must be pre-
defined. The language also defines the structure of variables (simple, structured,
pointer, and so on) and how the variables must be named. For example, a variable name
must be 1 to

n

 characters in length and start with a letter followed by alphanumeric
characters. The language also defines the type of data to be used (integer, float, char,
etc.). In programming the rules are defined by the syntax of the language. In network
management the rules are defined by SMI.

Object Declaration and Definition: MIB

Most computer languages require that objects be declared and defined in each specific
program. Declaration and definition creates objects using predefined type and allocates
memory location for them. For example, if a program has two variables (an integer
named

counter

and

an array named

grades

 of type char), they must be declared at the
beginning of the program:

MIB does this task in network management. MIB names each object and defines the
type of the objects. Because the type is defined by SMI, SNMP knows the range and size.

Program Coding: SNMP

After declaration in programming, the program needs to write statements to store val-
ues in the variables and change them if needed. SNMP does this task in network man-
agement. SNMP stores, changes, and interprets the values of objects already declared
by MIB according to the rules defined by SMI.

An Overview

Before discussing each component in detail, let us show how each of these components
is involved in a simple scenario. This is an overview that will be developed later at the
end of the chapter. A manager station (SNMP client) wants to send a message to an
agent station (SNMP server) to find the number of UDP user datagrams received by the
agent. Figure 24.4 shows an overview of steps involved.

int

counter

;

char

grades

[40];

Figure 24.4

Management overview

The object has an integer value and
is called udpInDatagram with id

1.3.6.1.2.1.7.1.0
MIB

Encapsulate the request in a
GetRequest messageSNMP

SMI Integer values are defined
using three attributes

Number of UDP user
datagrams received?

Get Request

Response

Manager

Management
question

Agent

SNMP packet

SNMP packet

1

2

3

4

5

6

for76042_ch24.fm Page 710 Wednesday, February 18, 2009 10:14 AM

CHAPTER 24 NETWORK MANAGEMENT: SNMP

711

MIB is responsible for finding the object that holds the number of UDP user data-
grams received. SMI, with the help of another embedded protocol, is responsible for
encoding the name of the object. SNMP is responsible for creating a message, called a
GetRequest message, and encapsulating the encoded message. Of course, things are more
complicated than this simple overview, but we first need more details of each protocol.

24.3 SMI

The Structure of Management Information, version 2 (SMIv2) is a component for net-
work management. Its functions are:

1.

To name objects.

2.

To define the type of data that can be stored in an object.

3.

To show how to encode data for transmission over the network.

SMI is a guideline for SNMP. It emphasizes three attributes to handle an object: name,
data type, and encoding method.

Name

SMI requires that each managed object (such as a router, a variable in a router, a value,
etc.) have a unique name. To name objects globally, SMI uses an

object identifier,

which is a hierarchical identifier based on a tree structure (see Figure 24.5).

The tree structure starts with an unnamed root. Each object can be defined using a
sequence of integers separated by dots. The tree structure can also define an object
using a sequence of textual names separated by dots. The integer-dot representation is
used in SNMP. The name-dot notation is used by people. For example, the following
shows the same object in two different notations:

Figure 24.5

Object identifier

iso.org.dod.internet.mgmt.mib-2

↔

1.3.6.1.2.1

iso
1

iso-itu-u
2

1.3.6.1 (iso.org.dod.internet)

1.3.6.1.2.1 (iso.org.dod.internet.mgmt.mib-2)

itu-t
0

org
3

dod
6

internet
1

mgmt
2

mib-2
1

root

for76042_ch24.fm Page 711 Wednesday, February 18, 2009 5:59 PM

712

PART 4 APPLICATION LAYER

The objects that are used in SNMP are located under the

mib-2

 object, so their
identifiers always start with 1.3.6.1.2.1.

Type

The second attribute of an object is the type of data stored in it. To define the data
type, SMI uses fundamental

Abstract Syntax Notation 1 (ASN.1)

 definitions and
adds some new definitions. In other words, SMI is both a subset and a superset of
ASN.1.

SMI has two broad categories of data type:

simple

 and

structured.

We first define
the simple types and then show how the structured types can be constructed from the
simple ones.

Simple Type

The

simple data types

 are atomic data types. Some of them are taken directly from
ASN.1; some are added by SMI. The most important ones are given in Table 24.1. The
first five are from ASN.1; the next seven are defined by SMI.

All objects managed by SNMP are given an object identifier.
The object identifier always starts with 1.3.6.1.2.1.

Table 24.1

Data Types

Type Size Description

INTEGER 4 bytes An integer with a value between

−

2

31

 and 2

31

−

1

Integer32 4 bytes Same as INTEGER

Unsigned32 4 bytes Unsigned with a value between 0 and 2

32

−

1

OCTET STRING Variable Byte-string up to 65,535 bytes long

OBJECT IDENTIFIER Variable An object identifier

IPAddress 4 bytes An IP address made of four integers

Counter32 4 bytes An integer whose value can be incremented from
zero to 2

32

; when it reaches its maximum value it
wraps back to zero

Counter64 8 bytes 64-bit counter

Gauge32 4 bytes Same as Counter32, but when it reaches its maxi-
mum value, it does not wrap; it remains there until
it is reset

TimeTicks 4 bytes A counting value that records time in 1/100ths of a
second

BITS A string of bits

Opaque Variable Uninterpreted string

for76042_ch24.fm Page 712 Wednesday, February 18, 2009 10:14 AM

CHAPTER 24 NETWORK MANAGEMENT: SNMP

713

Structured Type

By combining simple and structured data types, we can make new structured data
types. SMI defines two

structured data types:

sequence

 and

sequence of

.

❑

Sequence.

 A

sequence

 data type is a combination of simple data types, not neces-
sarily of the same type. It is analogous to the concept of a

struct

 or a

record

 used in
programming languages such as C.

❑

Sequence of.

 A

sequence of

 data type is a combination of simple data types all
of the same type or a combination of sequence data types all of the same type.
It is analogous to the concept of an

array

 used in programming languages such
as C.

Figure 24.6 shows a conceptual view of data types.

Encoding Method

SMI uses another standard,

Basic Encoding Rules (BER),

 to encode data to be trans-
mitted over the network. BER specifies that each piece of data be encoded in triplet
format: tag, length, and value, as illustrated in Figure 24.7.

Figure 24.6

Conceptual data types

Figure 24.7

Encoding format

c. Sequencea. Simple variable

b. Sequence of
(simple variables)

d. Sequence of
(sequences)

Tag

1 byte 1 or more bytes Variable size

Length

Length field

Value

a. The colored part defines the length (2)

b. The shaded part defines number of rest of the bytes (2 bytes);
the colored bytes define the length (260 bytes)

0 0 0 0 0 0 1 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 00

for76042_ch24.fm Page 713 Wednesday, February 18, 2009 10:14 AM

714

PART 4 APPLICATION LAYER

The tag is a 1-byte field that defines the type of data. Table 24.2 shows the data
types we use in this chapter and their tags in binary and hexadecimal numbers. The
length field is 1 or more bytes. If it is 1 byte, the most significant bit must be 0. The
other 7 bits define the length of the data. If it is more than 1 byte, the most significant
bit of the first byte must be 1. The other 7 bits of the first byte define the number of
bytes needed to define the length. The value field codes the value of the data according
to the rules defined in BER.

Example 24.1

Figure 24.8 shows how to define INTEGER 14. Note that we have used both binary representa-
tion and hexadecimal representation for the tag. The size of the length field is from Table 24.1.

Example 24.2

Figure 24.9 shows how to define the OCTET STRING “HI.”

Table 24.2

Codes for Data Types

Data Type
Tag

(Binary)
Tag

(Hex)

INTEGER

00000010 02

OCTET STRING

00000100 04

OBJECT IDENTIFIER

00000110 06

NULL

00000101 05

Sequence, sequence of

00110000 30

IPAddress

01000000 40

Counter

01000001 41

Gauge

01000010 42

TimeTicks

01000011 43

Opaque

01000100 44

Figure 24.8 Example 24.1: INTEGER 14

Figure 24.9 Example 24.2: OCTET STRING “HI”

00000010 00000100 00000000 00000000 00000000 00001110

02 04 00 00 00 0E

Tag
(integer)

Length
(4 bytes)

Value (14)

00000100

04

Tag
(String)

00000010

02

Length
(2 bytes)

01001000

48

Value
(H)

01001001

49

Value
(I)

for76042_ch24.fm Page 714 Wednesday, February 18, 2009 10:14 AM

CHAPTER 24 NETWORK MANAGEMENT: SNMP 715

Example 24.3

Figure 24.10 shows how to define ObjectIdentifier 1.3.6.1 (iso.org.dod.internet).

Example 24.4

Figure 24.11 shows how to define IPAddress 131.21.14.8.

24.4 MIB
The Management Information Base, version 2 (MIB2) is the second component used
in network management. Each agent has its own MIB2, which is a collection of all
the objects that the manager can manage. The objects in MIB2 are categorized under
10 different groups: system, interface, address translation, ip, icmp, tcp, udp, egp,
transmission, and snmp. These groups are under the mib-2 object in the object identi-
fier tree (see Figure 24.12). Each group has defined variables and/or tables.

The following is a brief description of some of the objects:

❑ sys This object (system) defines general information about the node (system),
such as the name, location, and lifetime.

Figure 24.10 Example 24.3: ObjectIdentifier 1.3.6.1

Figure 24.11 Example 24.4: IPAddress 131.21.14.8

Figure 24.12 mib-2

1.3.6.1 (iso.org.dod.internet)

00000110

06

Tag
(ObjectId)

00000100

04

Length
(4 bytes)

00000001

01

Value
(1)

00000011

03

Value
(3)

00000110

06

Value
(6)

00000001

01

Value
(1)

131.21.14.8

01000000

40

Tag
(IPAddress)

00000100

04

Length
(4 bytes)

10000011

83

Value
(131)

00010101

15

Value
(21)

00001110

0E

Value
(14)

00001000

08

Value
(8)

1.3.6.1.2.1

sys ipat icmp tcp udp egpif
1 2 3 4 5 6 7 8

trans
11 12

snmp

mib-2

for76042_ch24.fm Page 715 Wednesday, February 18, 2009 10:14 AM

716 PART 4 APPLICATION LAYER

❑ if This object (interface) defines information about all of the interfaces of the
node including interface number, physical address, and IP address.

❑ at This object (address translation) defines the information about the ARP table.

❑ ip This object defines information related to IP, such as the routing table and the
IP address.

❑ icmp This object defines information related to ICMP, such as the number of
packets sent and received and total errors created.

❑ tcp This object defines general information related to TCP, such as the connec-
tion table, time-out value, number of ports, and number of packets sent and
received.

❑ udp This object defines general information related to UDP, such as the number
of ports and number of packets sent and received.

❑ snmp This object defines general information related to SNMP itself.

Accessing MIB Variables
To show how to access different variables, we use the udp group as an example. There
are four simple variables in the udp group and one sequence of (table of) records.
Figure 24.13 shows the variables and the table.

We will show how to access each entity.

Simple Variables

To access any of the simple variables, we use the id of the group (1.3.6.1.2.1.7) fol-
lowed by the id of the variable. The following shows how to access each variable.

Figure 24.13 udp group

udpInDatagrams → 1.3.6.1.2.1.7.1

udpNoPorts → 1.3.6.1.2.1.7.2

udpInErrors → 1.3.6.1.2.1.7.3

udpOutDatagrams → 1.3.6.1.2.1.7.4

1.3.6.1.2.1.7

1 2 3 4 5

1

1 2

udpIn
Datagrams

udpNo
Ports

udpIn
Errors

udpOut
Datagrams

udpLocal
Address

udpTable

udpEntry

udpLocal
Port

udp

for76042_ch24.fm Page 716 Wednesday, February 18, 2009 10:14 AM

CHAPTER 24 NETWORK MANAGEMENT: SNMP 717

However, these object identifiers define the variable, not the instance (contents). To
show the instance or the contents of each variable, we must add an instance suffix. The
instance suffix for a simple variable is simply a zero. In other words, to show an
instance of the above variables, we use the following:

Tables

To identify a table, we first use the table id. The udp group has only one table (with id 5),
as illustrated in Figure 24.14.

So to access the table, we use the following:

However, the table is not at the leaf level in the tree structure. We cannot access the
table; we define the entry (sequence) in the table (with id of 1), as follows:

udpInDatagrams.0 → 1.3.6.1.2.1.7.1.0

udpNoPorts.0 → 1.3.6.1.2.1.7.2.0

udpInErrors.0 → 1.3.6.1.2.1.7.3.0

udpOutDatagrams.0 → 1.3.6.1.2.1.7.4.0

udpTable → 1.3.6.1.2.1.7.5

Figure 24.14 udp variables and tables

udpEntry → 1.3.6.1.2.1.7.5.1

udpNoPorts
(1.3.6.1.2.1.7.2)

udpLocalAddress
(1.3.6.1.2.1.7.5.1.1)

udpEntry
(1.3.6.1.2.1.7.5.1)

udpLocalPort
(1.3.6.1.2.1.7.5.1.2)

udpLocalAddress
(1.3.6.1.2.1.7.5.1.1)

udpEntry
(1.3.6.1.2.1.7.5.1)

udpLocalPort
(1.3.6.1.2.1.7.5.1.2)

udpLocalAddress
(1.3.6.1.2.1.7.5.1.1)

udpEntry
(1.3.6.1.2.1.7.5.1)

udpTable
(1.3.6.1.2.1.7.5)

udpLocalPort
(1.3.6.1.2.1.7.5.1.2)

udpInErrors
(1.3.6.1.2.1.7.3)

udpOutDatagrams
(1.3.6.1.2.1.7.4)

udpInDatagrams
(1.3.6.1.2.1.7.1)

for76042_ch24.fm Page 717 Wednesday, February 18, 2009 10:14 AM

718 PART 4 APPLICATION LAYER

This entry is also not a leaf and we cannot access it. We need to define each entity
(field) in the entry.

These two variables are at the leaf of the tree. Although we can access their
instances, we need to define which instance. At any moment, the table can have sev-
eral values for each local address/local port pair. To access a specific instance (row)
of the table, we add the index to the above ids. In MIB, the indexes of arrays are not
integers (like most programming languages). The indexes are based on the value of
one or more fields in the entries. In our example, the udpTable is indexed based on
both the local address and the local port number. For example, Figure 24.15 shows a
table with four rows and values for each field. The index of each row is a combina-
tion of two values.

To access the instance of the local address for the first row, we use the identifier aug-
mented with the instance index:

Note that not all tables are indexed the same way. Some tables are indexed using the
value of one field, some using the value of two fields, and so on.

Lexicographic Ordering
One interesting point about the MIB variables is that the object identifiers (including
the instance identifiers) follow in lexicographic order. Tables are ordered according to
column-row rules, which means one should go column by column. In each column, one
should go from the top to the bottom, as shown in Figure 24.16.

udpLocalAddress → 1.3.6.1.2.1.7.5.1.1

udpLocalPort → 1.3.6.1.2.1.7.5.1.2

Figure 24.15 Indexes for udpTable

udpLocalAddress.181.23.45.14.23 → 1.3.6.1.2.7.5.1.1.181.23.45.14.2

1.3.6.1.2.1.7.5.1.1.192.13.5.10.161 1.3.6.1.2.1.7.5.1.2.192.13.5.10.161

192.13.5.10 161

1.3.6.1.2.1.7.5.1.1.227.2.45.18.180 1.3.6.1.2.1.7.5.1.2.227.2.45.18.180

227.2.45.18 180

1.3.6.1.2.1.7.5.1.1.230.20.5.24.212 1.3.6.1.2.1.7.5.1.2.230.20.5.24.212

230.20.5.24 212

1.3.6.1.2.1.7.5.1.1.181.23.45.14.23

181.23.45.14

1.3.6.1.2.1.7.5.1.2.181.23.45.14.23

23

for76042_ch24.fm Page 718 Wednesday, February 18, 2009 10:14 AM

CHAPTER 24 NETWORK MANAGEMENT: SNMP 719

The lexicographic ordering enables a manager to access a set of variables one
after another by defining the first variable, as we will see in the GetNextRequest com-
mand in the next section.

24.5 SNMP
SNMP uses both SMI and MIB in Internet network management. It is an application
program that allows:

1. A manager to retrieve the value of an object defined in an agent.

2. A manager to store a value in an object defined in an agent.

3. An agent to send an alarm message about an abnormal situation to the manager.

PDUs
SNMPv3 defines eight types of protocol data units (or PDUs): GetRequest, GetNext-
Request, GetBulkRequest, SetRequest, Response, Trap, InformRequest, and Report
(see Figure 24.17).

GetRequest

The GetRequest PDU is sent from the manager (client) to the agent (server) to retrieve
the value of a variable or a set of variables.

GetNextRequest

The GetNextRequest PDU is sent from the manager to the agent to retrieve the value of
a variable. The retrieved value is the value of the object following the defined ObjectId
in the PDU. It is mostly used to retrieve the values of the entries in a table. If the man-
ager does not know the indexes of the entries, it cannot retrieve the values. However, it
can use GetNextRequest and define the ObjectId of the table. Because the first entry has

Figure 24.16 Lexicographic ordering

1.3.6.1.2.1.7.5.1.1.192.13.5.10.161 1.3.6.1.2.1.7.5.1.2.192.13.5.10.161

192.13.5.10 161

1.3.6.1.2.1.7.5.1.1.227.2.45.18.180 1.3.6.1.2.1.7.5.1.2.227.2.45.18.180

227.2.45.18 180

1.3.6.1.2.1.7.5.1.1.230.20.5.24.212 1.3.6.1.2.1.7.5.1.2.230.20.5.24.212

230.20.5.24 212

1.3.6.1.2.1.7.5.1.1.181.23.45.14.23

181.23.45.14

1.3.6.1.2.1.7.5.1.2.181.23.45.14.23

23

for76042_ch24.fm Page 719 Wednesday, February 18, 2009 10:14 AM

720 PART 4 APPLICATION LAYER

the ObjectId immediately after the ObjectId of the table, the value of the first entry is
returned. The manager can use this ObjectId to get the value of the next one, and so on.

GetBulkRequest

The GetBulkRequest PDU is sent from the manager to the agent to retrieve a large amount
of data. It can be used instead of multiple GetRequest and GetNextRequest PDUs.

SetRequest

The SetRequest PDU is sent from the manager to the agent to set (store) a value in a
variable.

Response

The Response PDU is sent from an agent to a manager in response to GetRequest or
GetNextRequest. It contains the value(s) of the variable(s) requested by the manager.

Trap

The Trap (also called SNMPv2 Trap to distinguish it from SNMPv1 Trap) PDU is sent
from the agent to the manager to report an event. For example, if the agent is rebooted,
it informs the manager and reports the time of rebooting.

InformRequest

The InformRequest PDU is sent from one manager to another remote manager to get
the value of some variables from agents under the control of the remote manager. The
remote manager responds with a Response PDU.

Report

The Report PDU is designed to report some types of errors between managers. It is not
yet in use.

Figure 24.17 SNMP PDUs

Client

SNMP
manager

Server

SNMP
agent

SetRequest

GetNextRequest

GetRequest

InformRequest

GetBulkRequest

Response

Trap

UDP
connections

To another manager

Report To another manager

for76042_ch24.fm Page 720 Wednesday, February 18, 2009 10:14 AM

CHAPTER 24 NETWORK MANAGEMENT: SNMP 721

Format
The format for the eight SNMP PDUs is shown in Figure 24.18. The GetBulkRequest
PDU differs from the others in two areas as shown in the figure.

The fields are listed below:

❑ PDU type. This field defines the type of the PDU (see Table 24.3) .

❑ Request ID. This field is a sequence number used by the manager in a request PDU
and repeated by the agent in a response. It is used to match a request to a response.

❑ Error status. This is an integer that is used only in response PDUs to show the
types of errors reported by the agent. Its value is 0 in request PDUs. Table 24.4
lists the types of errors that can occur.

❑ Non-repeaters. This field is used only in GetBulkRequest and replaces the error
status field, which is empty in request PDUs.

❑ Error index. The error index is an offset that tells the manager which variable
caused the error.

Figure 24.18 SNMP PDU format

Table 24.3 PDU Types

Type Tag (Binary) Tag (Hex)
GetRequest 10100000 A0
GetNextRequest 10100001 A1
Response 10100010 A2
SetRequest 10100011 A3
GetBulkRequest 10100101 A5
InformRequest 10100110 A6
Trap (SNMPv2) 10100111 A7
Report 10101000 A8

Request
ID

PDU
Type

Error
status

Error
index

Variable Value Variable Value

PDU

VarBind list

Differences:

1. Error status and error index values are zeros for all
 request messages except GetBulkRequest.
2. Error status field is replaced by non-repeater field and error index
 field is replaced by max-repetitions field in GetBulkRequest.

for76042_ch24.fm Page 721 Wednesday, February 18, 2009 10:14 AM

722 PART 4 APPLICATION LAYER

❑ Max-repetition. This field is also used only in GetBulkRequest and replaces the
error index field, which is empty in request PDUs.

❑ VarBind list. This is a set of variables with the corresponding values the manager
wants to retrieve or set. The values are null in GetRequest and GetNextRequest. In
a Trap PDU, it shows the variables and values related to a specific PDU.

Messages
SNMP does not send only a PDU, it embeds the PDU in a message. A message in
SNMPv3 is a sequence made of four elements: Version, GlobalData, SecurityParameters,
and ScopePDU (which includes the encoded PDU) as shown in Figure 24.19. The first
and the third elements are simple data types; the second and the fourth are sequences.

Version

The Version field is an INTEGER data type that defines the version. The current version is 3.

Table 24.4 Types of Errors

Status Name Meaning
0 noError No error
1 tooBig Response too big to fit in one message
2 noSuchName Variable does not exist
3 badValue The value to be stored is invalid
4 readOnly The value cannot be modified
5 genErr Other errors

Figure 24.19 SNMP message

Message

ID

contextName

PDU

Example: GetRequest PDU

contextEngine

request-id

error-index

VarBindList

VarBind

VarBind

Variable

Variable

Value

Value

error-status
MaxSize

Flags

SecurityModel

Version

SecurityParameter

GlobalData

ScopePDU

for76042_ch24.fm Page 722 Wednesday, February 18, 2009 10:14 AM

CHAPTER 24 NETWORK MANAGEMENT: SNMP

723

GlobalData

The GlobalData field is a sequence with four elements of simple data type: ID, Max-
Size, Flags, and SecurityModel.

Security Parameter

This element is a sequence that can be very complex, depending on the type of security
provision used in version 3.

ScopePDU

The last element contains two simple data type and the actual PDU. We have shown
only one example of GetRequest PDU. Note that VarBindList is a sequence made of
one or more sequences called VarBind. Each VarBind is made of two simple data ele-
ments: Variable and Value.

Example 24.5

In this example, a manager station (SNMP client) uses a message with GetRequest PDU to
retrieve the number of UDP datagrams that a router has received (Figure 24.20). There is only

Figure 24.20

 Example 24.5

06 09 01 03 06 01 02 01 07 01 00

05 00

30 0D

A0 1D

30 6D

30 28

30 2F

30 0D

30 0F

02 04 00 01 06 11

02 01 00

02 01 00

02 01 40

02 02 04 00

04 01 04

02 01 03

04 0C 00 00 00 61 02 00 00 B2 C1 41 82 20

Coding

Sequence (111 bytes)

Sequence (13 bytes)

Sequence (40 bytes)

Sequence (15 bytes)

Sequence (13 bytes)

Sequence (47 bytes)

PDU (29 bytes)

40 bytes of parameters

04 00

02 01 03

Message

ID

contextName

contextEngine

MaxSize

Flags

SecurityModel

Version

SecurityParameter

Different parameters

GlobalData

ScopePDU

PDU

request-id

error-index

VarBindList

VarBind

Variable

Value

error-status

for76042_ch24.fm Page 723 Wednesday, February 18, 2009 6:00 PM

724 PART 4 APPLICATION LAYER

one VarBind sequence. The corresponding MIB variable related to this information is
udpInDatagrams with the object identifier 1.3.6.1.2.1.7.1.0. The manager wants to retrieve a
value (not to store a value), so the value defines a null entity. The bytes to be sent are shown in
hexadecimal representation.

The VarBind list has only one VarBind. The variable is of type 06 and length 09. The value
is of type 05 and length 00. The whole VarBind is a sequence of length 0D (13). The VarBind list
is also a sequence of length 0F (15). The GetRequest PDU is of length ID (29). The PDU is
embedded in ScopePDU sequence, which is of 47 bytes. The Security Parameters assumed to be
40 bytes, but the details are not shown. The GlobalData itself is a sequence of 13 bytes. Three
sequences and one integer (version) are embedded in the message sequence, which is the length
of 111 bytes. The whole message is of 113 bytes.

Note that we have intended the bytes to show the inclusion of simple data types inside a
sequence or the inclusion of sequences and simple data type inside larger sequences. Note that
the PDU itself is like a sequence, but its tag is A0 in hexadecimal.

Figure 24.21 shows the actual message sent. We show the message using rows of 16 bytes to
save space on the paper, but the actual message is sent in rows of 4 bytes. The bytes that are
shown using dashes are the one related to the security parameters.

24.6 UDP PORTS
SNMP uses the services of UDP on two well-known ports, 161 and 162. The well-
known port 161 is used by the server (agent), and the well-known port 162 is used by
the client (manager).

The agent (server) issues a passive open on port 161. It then waits for a connection
from a manager (client). A manager (client) issues an active open using an ephemeral
port. The request messages are sent from the client to the server using the ephemeral
port as the source port and the well-known port 161 as the destination port. The
response messages are sent from the server to the client using the well-known port 161
as the source port and the ephemeral port as the destination port.

The manager (client) issues a passive open on port 162. It then waits for a connec-
tion from an agent (server). Whenever it has a Trap message to send, an agent (server)
issues an active open, using an ephemeral port. This connection is only one-way, from
the server to the client (see Figure 24.22).

The client-server mechanism in SNMP is different from other protocols. Here both
the client and the server use well-known ports. In addition, both the client and the

Figure 24.21 Actual message sent for Example 24.5

Message
30 6D 02 01 03 30 0D 02 01 04 02 02 04 00 04 01

04 02 01 03

04 0C 00 00 00 61 02 00 00 B2 C1 41 82 20 04 00

A0 1D 02 04 00 01 06 11 02 01 00 02 01 00 30 0F

30 0D 06 09 01 03 06 01 02 01 07 01 00 05 00

30 28 -- -- -- -- -- -- -- -- -- --

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

-- -- -- -- -- -- -- -- -- -- -- -- -- -- 30 2F

for76042_ch24.fm Page 724 Wednesday, February 18, 2009 10:14 AM

CHAPTER 24 NETWORK MANAGEMENT: SNMP 725

server are running infinitely. The reason is that request messages are initiated by a man-
ager (client), but Trap messages are initiated by an agent (server).

24.7 SECURITY
SNMPv3 has added two new features to the previous version: security and remote
administration. SNMPv3 allows a manager to choose one or more levels of security
when accessing an agent. Different aspects of security can be configured by the man-
ager to allow message authentication, confidentiality, and integrity.

SNMPv3 also allows remote configuration of security aspects without requiring
the administrator to actually be at the place where the device is located.

24.8 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give thorough coverage of SNMP [Com 06], [Ste 94], and [Tan 03], and
[Kur & Ros 08]. [Mau & Sch 01] is a book totally devoted to SNMP and recommended
for deep study of different features present in this protocol.

RFCs
Several RFCs show different update on SMTP including RFC 3410, RFC 3412, RFC 3415,
and RFC 3418. More information about MIB can be found in RFC 2578, RFC 2579, and
RFC 2580.

Figure 24.22 Port numbers for SNMP

Active
open

Active
open

Passive
open

Passive
open

a. Passive open by both client and server

Client

Client

Client

b. Exchange of request and response messages

c. Server sends trap message

Server

58000

61150

161

162

162

162

161

161

Server

Server

for76042_ch24.fm Page 725 Wednesday, February 18, 2009 10:14 AM

726 PART 4 APPLICATION LAYER

24.9 KEY TERMS

24.10 SUMMARY
❑ Simple Network Management Protocol (SNMP) is a framework for managing

devices in an internet using the TCP/IP protocol suite. A manager, usually a host,
controls and monitors a set of agents, usually routers. The manager is a host that
runs the SNMP client program. The agent is a router or host that runs the SNMP
server program. SNMP frees management tasks from both the physical character-
istics of the managed devices and the underlying networking technology. SNMP
uses the services of two other protocols: Structure of Management Information
(SMI) and Management Information Base (MIB).

❑ SMI names objects, defines the type of data that can be stored in an object, and
encodes the data. SMI objects are named according to a hierarchical tree structure.
SMI data types are defined according to Abstract Syntax Notation 1 (ASN.1). SMI
uses Basic Encoding Rules (BER) to encode data.

❑ MIB is a collection of groups of objects that can be managed by SNMP. MIB uses
lexicographic ordering to manage its variables.

❑ SNMP functions in three ways: A manager can retrieve the value of an object
defined in an agent. A manager can store a value in an object defined in an agent.
An agent can send an alarm message to the manager.

❑ SNMP defines eight types of packets: GetRequest, GetNextRequest, SetRequest,
GetBulkRequest, Trap, InformRequest, Response, and Report. SNMP uses the ser-
vices of UDP on two well-known ports, 161 and 162. SNMPv3 has enhanced secu-
rity features over previous versions.

❑ The third version of SNMP has added two new features to the previous version:
different levels of security and remote administration.

24.11 PRACTICE SET

Exercises
1. Show the encoding for the INTEGER 1456.

2. Show the encoding for the OCTET STRING “Hello World.”

Abstract Syntax Notation 1 (ASN.1)
agent
Basic Encoding Rules (BER)
lexicographic ordering
Management Information Base (MIB)
manager
object identifier

simple data type
Simple Network Management Protocol

(SNMP)
Structure of Management Information (SMI)
structured data type
Trap

for76042_ch24.fm Page 726 Wednesday, February 18, 2009 10:14 AM

CHAPTER 24 NETWORK MANAGEMENT: SNMP 727

3. Show the encoding for an arbitrary OCTET STRING of length 1,000.

4. Show how the following record (sequence) is encoded.

5. Show how the following record (sequence) is encoded.

6. Show how the following array (sequence) is encoded. Each element is an integer.

7. Show how the following array of records (sequence of sequences) is encoded using
the BER encoding described in the chapter. Note that the titles for each column

shows the type of the data item.

8. Decode the following:

a. 02 04 01 02 14 32

b. 30 06 02 01 11 02 01 14

c. 30 09 04 03 41 43 42 02 02 14 14

d. 30 0A 40 04 23 51 62 71 02 02 14 12

Research Activity
9. Find more information about ASN.1.

INTEGER OCTET STRING IP Address

2345 “COMPUTER” 185.32.1.5

Time Tick INTEGER Object Id

12000 14564 1.3.6.1.2.1.7

2345 1236 122 1236

INTEGER OCTET STRING Counter

2345 “COMPUTER” 345

1123 “DISK” 1430

3456 “MONITOR” 2313

for76042_ch24.fm Page 727 Wednesday, February 18, 2009 10:14 AM

C H A P T E R

25

728

25

Multimedia

ecent advances in technology have changed our use of audio and
video. In the past, we listened to an audio broadcast through a radio

and watched a video program broadcast through a TV. We used the tele-
phone network to interactively communicate with another party. But
times have changed. People want to use the Internet not only for text and
image communications, but also for audio and video services. In this
chapter, we concentrate on applications that use the Internet for audio and
video services.

OBJECTIVES

The chapter has several objectives:

❑

To show how audio/video files can be downloaded for future use or
broadcast to clients over the Internet. The Internet can also be used
for live audio/video interaction. Audio and video need to be digitized
before being sent over the Internet.

❑

To discuss how audio and video files are compressed for transmission
through the Internet.

❑

To discuss the phenomenon called Jitter that can be created on a
packet-switched network when transmitting real-time data.

❑

To introduce the Real-Time Transport Protocol (RTP) and Real-Time
Transport Control Protocol (RTCP) used in multimedia applications.

❑

To discuss voice over IP as a real-time interactive audio/video
application.

❑

To introduce the Session Initiation Protocol (SIP) as an application
layer protocol that establishes, manages, and terminates multimedia
sessions.

❑

To introduce quality of service (QoS) and how it can be improved
using scheduling techniques and traffic shaping techniques.

❑

To discuss Integrated Services and Differential Services and how
they can be implemented.

❑

To introduce Resource Reservation Protocol (RSVP) as a signaling
protocol that helps IP create a flow and makes a resource reservation.

R

for76042_ch25.fm Page 728 Wednesday, February 18, 2009 10:22 AM

729

25.1 INTRODUCTION

We can divide audio and video services into three broad categories:

streaming stored
audio/video, streaming live audio/video,

and

interactive audio/video,

 as shown in
Figure 25.1. Streaming means a user can listen (or watch) the file after the downloading
has started.

In the first category, streaming stored audio/video, the files are compressed and
stored on a server. A client downloads the files through the Internet. This is sometimes
referred to as

on-demand audio/video.

 Examples of stored audio files are songs,
symphonies, books on tape, and famous lectures. Examples of stored video files are
movies, TV shows, and music video clips.

In the second category, streaming live audio/video, a user listens to broadcast
audio and video through the Internet. A good example of this type of application is the
Internet radio. Some radio stations broadcast their programs only on the Internet; many
broadcast them both on the Internet and on the air. Internet TV

is not popular yet, but
many people believe that TV stations will broadcast their programs on the Internet in
the future.

In the third category, interactive audio/video, people use the Internet to interac-
tively communicate with one another. A good example of this application is Internet
telephony and Internet teleconferencing.

Figure 25.1

Internet audio/video

Streaming stored audio/video refers to on-demand requests for compressed
audio/video files.

Streaming live audio/video refers to the broadcasting of radio and TV
programs through the Internet.

Streaming stored
audio/video

Interactive
audio/video

Streaming live
audio/video

Internet
audio/video

for76042_ch25.fm Page 729 Wednesday, February 18, 2009 10:22 AM

730

PART 4 APPLICATION LAYER

We will discuss these three applications in this chapter, but first we need to discuss
some other issues related to audio/video: digitizing audio and video and compressing
audio and video.

25.2 DIGITIZING AUDIO AND VIDEO

Before audio or video signals can be sent on the Internet, they need to be digitized. We
discuss audio and video separately.

Digitizing Audio

When sound is fed into a microphone, an electronic analog signal is generated that rep-
resents the sound amplitude as a function of time. The signal is called an

analog audio
signal

. An analog signal, such as audio, can be digitized to produce a digital signal.
According to the Nyquist theorem, if the highest frequency of the signal is

 f

, we need to
sample the signal 2

f

 times per second. There are other methods for digitizing an audio
signal, but the principle is the same.

Voice is sampled at 8,000 samples per second with 8 bits per sample. This results in a
digital signal of 64 kbps. Music is sampled at 44,100 samples per second with 16 bits per
sample. This results in a digital signal of 705.6 kbps for monaural and 1.411 Mbps for stereo.

Digitizing Video

A video consists of a sequence of frames. If the frames are displayed on the screen fast
enough, we get an impression of motion. The reason is that our eyes cannot distinguish
the rapidly flashing frames as individual ones. There is no standard number of frames
per second; in North America 25 frames per second is common. However, to avoid a
condition known as flickering, a frame needs to be refreshed. The TV industry repaints
each frame twice. This means 50 frames need to be sent, or if there is memory at the
sender site, 25 frames with each frame repainted from the memory.

Each frame is divided into small grids, called picture elements or

pixels.

For black-
and-white TV, each 8-bit pixel represents one of 256 different gray levels. For a color
TV, each pixel is 24 bits, with 8 bits for each primary color (red, green, and blue).

We can calculate the number of bits in a second for a specific resolution. In the
lowest resolution a color frame is made of 1,024

×

 768 pixels. This means that we need

This data rate needs a very high data rate technology such as SONET. To send
video using lower-rate technologies, we need to compress the video.

Interactive audio/video refers to the use of the Internet for interactive
audio/video applications.

2

××××

 25

××××

 1,024

××××

 768

××××

 24

====

 944 Mbps

Compression is needed to send video over the Internet.

for76042_ch25.fm Page 730 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA

731

25.3 AUDIO AND VIDEO COMPRESSION

To send audio or video over the Internet requires

compression.

 In this section, we first
discuss audio compression and then video compression.

Audio Compression

Audio compression can be used for speech or music. For speech, we need to compress
a 64-kHz digitized signal; for music, we need to compress a 1.411-MHz signal. Two
categories of techniques are used for audio compression: predictive encoding and
perceptual encoding.

Predictive Encoding

In

predictive encoding,

 the differences between the samples are encoded instead of
encoding all the sampled values. This type of compression is normally used for speech.
Several standards have been defined such as GSM (13 kbps), G.729 (8 kbps), and
G.723.3 (6.4 or 5.3 kbps). Detailed discussions of these techniques are beyond the
scope of this book.

Perceptual Encoding: MP3

The most common compression technique that is used to create CD-quality audio is
based on the

perceptual encoding

 technique. As we mentioned before, this type of
audio needs at least 1.411 Mbps; this cannot be sent over the Internet without compres-
sion.

MP3

 (MPEG audio layer 3), a part of the MPEG standard (discussed in the video
compression section), uses this technique.

Perceptual encoding is based on the science of psychoacoustics, which is the study
of how people perceive sound. The idea is based on some flaws in our auditory system:
Some sounds can mask other sounds. Masking can happen in frequency and time. In

frequency masking,

 a loud sound in a frequency range can partially or totally mask a
softer sound in another frequency range. For example, we cannot hear what our dance
partner says in a room where a loud heavy metal band is performing. In

temporal
masking,

 a loud sound can numb our ears for a short time even after the sound has
stopped.

MP3 uses these two phenomena, frequency and temporal masking, to compress
audio signals. The technique analyzes and divides the spectrum into several groups.
Zero bits are allocated to the frequency ranges that are totally masked. A small number
of bits are allocated to the frequency ranges that are partially masked. A larger number of
bits are allocated to the frequency ranges that are not masked.

MP3 produces three data rates: 96 kbps, 128 kbps, and 160 kbps. The rate is based
on the range of the frequencies in the original analog audio.

Video Compression

As we mentioned before, video is composed of multiple frames. Each frame is one
image. We can compress video by first compressing images. Two standards are preva-
lent in the market.

Joint Photographic Experts Group (JPEG)

 is used to compress

for76042_ch25.fm Page 731 Wednesday, February 18, 2009 10:22 AM

732

PART 4 APPLICATION LAYER

images.

Moving Picture Experts Group (MPEG)

 is used to compress video. We
briefly discuss JPEG and then MPEG.

Image Compression: JPEG

As we discussed previously, if the picture is not in color (gray scale), each pixel can be
represented by an 8-bit integer (256 levels). If the picture is in color, each pixel can
be represented by 24 bits (3

×

 8 bits), with each 8 bits representing red, blue, or green
(RBG). To simplify the discussion, we concentrate on a gray scale picture.

In JPEG, a gray scale picture is divided into blocks of 8

×

 8 pixels (see Figure 25.2).

The purpose of dividing the picture into blocks is to decrease the number of calcu-
lations because, as you will see shortly, the number of mathematical operations for each
picture is the square of the number of units.

The whole idea of JPEG is to change the picture into a linear (vector) set of numbers
that reveals the redundancies. The redundancies (lack of changes) can then be removed
by using one of the text compression methods. A simplified scheme of the process is
shown in Figure 25.3.

Discrete Cosine Transform (DCT)

In this step, each block of 64 pixels goes through
a transformation called the

discrete cosine transform (DCT).

 The transformation
changes the 64 values so that the relative relationships between pixels are kept but the
redundancies are revealed. We do not give the formula here, but we do show the results
of the transformation for three cases.

Case 1

In this case, we have a block of uniform gray, and the value of each pixel is
20. When we do the transformations, we get a nonzero value for the first element

Figure 25.2

JPEG gray scale

Figure 25.3

JPEG process

• • •

• • •

• • •

• • •

• • •

8 8

8 8

8 8

• • •

8 8

8 8

8 8

• • •

8 8

8 8

8 8

Quantization
Data

compressionDCT 01111 . . . 1

Blocked
image

Compressed
image

Three Phases of JPEG

. . .

. . .

. . .

for76042_ch25.fm Page 732 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA

733

(upper left corner); the rest of the pixels have a value of 0. The value of

T

(0,0) is the
average (multiplied by a constant) of the

P

(

x

,

y

) values and is called the

dc value

 (direct
current, borrowed from electrical engineering). The rest of the values, called

ac values,

in

T

(

m

,

n

) represent changes in the pixel values. But because there are no changes, the
rest of the values are 0s (see Figure 25.4).

Case 2

In the second case, we have a block with two different uniform gray scale sec-
tions. There is a sharp change in the values of the pixels (from 20 to 50). When we do
the transformations, we get a dc value as well as nonzero ac values. However, there are
only a few nonzero values clustered around the dc value. Most of the values are 0 (see
Figure 25.5).

Case 3

In the third case, we have a block that changes gradually. That is, there is no
sharp change between the values of neighboring pixels. When we do the transforma-
tions, we get a dc value, with many nonzero ac values also (Figure 25.6).

We can say the following:

❑

The transformation creates table

T

 from table

P.

❑

The dc value is the average value (multiplied by a constant) of the pixels.

❑

The ac values are the changes.

❑

Lack of changes in neighboring pixels creates 0s.

Figure 25.4

Case 1: uniform gray scale

Figure 25.5

Case 2: two sections

T(m,n)

160 0 0 0 0 0 00
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000

P(x,y)

20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20

Picture

T(m,n)

280 0 0 0 2239 225
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000

P(x,y)

20 20 20 20 50 50 50 50
20 20 20 20 50 50 50 50
20 20 20 20 50 50 50 50
20 20 20 20 50 50 50 50
20 20 20 20 50 50 50 50
20 20 20 20 50 50 50 50
20 20 20 20 50 50 50 50
20 20 20 20 50 50 50 50

Picture

2109

for76042_ch25.fm Page 733 Wednesday, February 18, 2009 10:22 AM

734

PART 4 APPLICATION LAYER

Quantization

After the

T

 table is created, the values are quantized to reduce the
number of bits needed for encoding. Previously in

quantization,

 we dropped the frac-
tion from each value and kept the integer part. Here, we divide the number by a con-
stant and then drop the fraction. This reduces the required number of bits even more. In
most implementations, a quantizing table (8 by 8) defines how to quantize each value.
The divisor depends on the position of the value in the

T

 table. This is done to optimize
the number of bits and the number of 0s for each particular application. Note that the
only phase in the process that is not completely reversible is the quantizing phase. We
lose some information here that is not recoverable. As a matter of fact, the only reason
that JPEG is called

lossy compression

 is because of this quantization phase.

Compression

After quantization, the values are read from the table, and redundant
0s are removed. However, to cluster the 0s together, the table is read diagonally in a
zigzag fashion rather than row by row or column by column. The reason is that if the
picture changes smoothly, the bottom right corner of the

T

 table is all 0s. Figure 25.7
shows the process.

Figure 25.6

Case 3: gradient gray scale

Figure 25.7

Reading the table

T (m,n)

400 2146 231 21 30
0 0 0

21 28
0 0 000

0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000

P(x,y)

20 30 40 50 60 70 80 90

20 30 40 50 60 70 80 90
20 30 40 50 60 70 80 90
20 30 40 50 60 70 80 90
20 30 40 50 60 70 80 90
20 30 40 50 60 70 80 90
20 30 40 50 60 70 80 90
20 30 40 50 60 70 80 90

Picture

T(m,n)

Result after
compression

20 15 12 00000

000000 0 0

000000 0 0

000000 0 0

000000 0 0

000000 0 0

000000 0

00000015 17

12

20 15 15 12 17 12 0

for76042_ch25.fm Page 734 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA

735

Video Compression: MPEG

The Moving Picture Experts Group (MPEG) method is used to compress video. In
principle, a motion picture is a rapid flow of a set of frames, where each frame is an
image. In other words, a frame is a spatial combination of pixels, and a video is a
temporal combination of frames that are sent one after another. Compressing video,
then, means spatially compressing each frame and temporally compressing a set of
frames.

Spatial Compression

The

spatial compression

 of each frame is done with JPEG (or
a modification of it). Each frame is a picture that can be independently compressed.

Temporal Compression

In

temporal compression,

 redundant frames are removed.
When we watch television, we receive 50 frames per second. However, most of the
consecutive frames are almost the same. For example, when someone is talking, most
of the frame is the same as the previous one except for the segment of the frame around
the lips, which changes from one frame to another.

To temporally compress data, the MPEG method first divides frames into three cat-
egories: I-frames, P-frames, and B-frames. Figure 25.8 shows a sample sequence of
frames.

Figure 25.9 shows how I-, P-, and B-frames are constructed from a series of seven
frames.

Figure 25.8

MPEG frames

Figure 25.9

MPEG frame construction

I B B B BP I

1 2 3 4 5 6 7

I B B P B B I

for76042_ch25.fm Page 735 Wednesday, February 18, 2009 10:22 AM

736

PART 4 APPLICATION LAYER

❑

I-frames.

An

intracoded frame (I-frame)

 is

an independent frame that is not
related to any other frame (not to the frame sent before or to the frame sent after).
They are present at regular intervals (e.g., every ninth frame is an I-frame). An
I-frame must appear periodically to handle some sudden change in the frame
that the previous and following frames cannot show. Also, when a video is
broadcast, a viewer may tune at any time. If there is only one I-frame at the
beginning of the broadcast, the viewer who tunes in late will not receive a
complete picture. I-frames are independent of other frames and cannot be con-
structed from other frames.

❑

P-frames.

A

predicted frame (P-frame)

 is

related to the preceding I-frame or
P-frame. In other words, each P-frame contains only the changes from the preced-
ing frame. The changes, however, cannot cover a big segment. For example, for a
fast-moving object, the new changes may not be recorded in a P-frame. P-frames
can be constructed only from previous I- or P-frames. P-frames carry much less
information than other frame types and carry even fewer bits after compression.

❑

B-frames.

A

bidirectional frame (B-frame)

 is

related to the preceding and
following I-frame or P-frame. In other words, each B-frame is relative to the past
and the future. Note that a B-frame is never related to another B-frame.

MPEG has gone through two versions. MPEG1 was designed for a CD-ROM with
a data rate of 1.5 Mbps. MPEG2 was designed for high-quality DVD with a data rate of
3 to 6 Mbps.

25.4 STREAMING STORED AUDIO/VIDEO
Now that we have discussed digitizing and compressing audio/video, we turn our
attention to specific applications. The first is streaming stored audio and video. Down-
loading these types of files from a Web server can be different from downloading other
types of files. To understand the concept, let us discuss three approaches, each with a
different complexity.

First Approach: Using a Web Server
A compressed audio/video file can be downloaded as a text file. The client (browser)
can use the services of HTTP and send a GET message to download the file. The Web
server can send the compressed file to the browser. The browser can then use a help
application, normally called a media player, to play the file. Figure 25.10 shows this
approach.

This approach is very simple and does not involve streaming. However, it has a
drawback. An audio/video file is usually large even after compression. An audio file
may contain tens of megabits, and a video file may contain hundreds of megabits. In
this approach, the file needs to download completely before it can be played. Using
contemporary data rates, the user needs some seconds or tens of seconds before the file
can be played.

for76042_ch25.fm Page 736 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 737

Second Approach: Using a Web Server with Metafile
In another approach, the media player is directly connected to the Web server for down-
loading the audio/video file. The Web server stores two files: the actual audio/video
file and a metafile that holds information about the audio/video file. Figure 25.11
shows the steps in this approach.

1. The HTTP client accesses the Web server using the GET message.

2. The information about the metafile comes in the response.

3. The metafile is passed to the media player.

4. The media player uses the URL in the metafile to access the audio/video file.

5. The Web server responds.

Figure 25.10 Using a Web server

Figure 25.11 Using a Web server with a metafile

Server machine
Client machine

Browser

Media
player

Web
server

Audio/video
file

GET: audio/video file

RESPONSE

1

2

3

Server machine
Client machine

Browser

Media
player

Web
serverMetafile

3

GET: metafile

RESPONSE
2

1

GET: audio/video file

RESPONSE

1

2

3

4

5

for76042_ch25.fm Page 737 Wednesday, February 18, 2009 10:22 AM

738 PART 4 APPLICATION LAYER

Third Approach: Using a Media Server
The problem with the second approach is that the browser and the media player
both use the services of HTTP. HTTP is designed to run over TCP. This is appropri-
ate for retrieving the metafile, but not for retrieving the audio/video file. The reason
is that TCP retransmits a lost or damaged segment, which is counter to the philoso-
phy of streaming. We need to dismiss TCP and its error control; we need to use
UDP. However, HTTP, which accesses the Web server, and the Web server itself are
designed for TCP; we need another server, a media server. Figure 25.12 shows the
concept.

1. The HTTP client accesses the Web server using a GET message.

2. The information about the metafile comes in the response.

3. The metafile is passed to the media player.

4. The media player uses the URL in the metafile to access the media server to down-
load the file. Downloading can take place by any protocol that uses UDP.

5. The media server responds.

Fourth Approach: Using a Media Server and RTSP
The Real-Time Streaming Protocol (RTSP) is a control protocol designed to add
more functionalities to the streaming process. Using RTSP, we can control the playing
of audio/video. RTSP is an out-of-band control protocol that is similar to the second
connection in FTP. Figure 25.13 shows a media server and RTSP.

1. The HTTP client accesses the Web server using a GET message.

2. The information about the metafile comes in the response.

3. The metafile is passed to the media player.

4. The media player sends a SETUP message to create a connection with the media
server.

Figure 25.12 Using a media server

Server machineClient machine

Browser

Media
player

Media
server

Web
server

Metafile

GET: metafile

RESPONSE

GET: audio/video file

RESPONSE

1

2

3

4

5

for76042_ch25.fm Page 738 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 739

5. The media server responds.

6. The media player sends a PLAY message to start playing (downloading).

7. The audio/video file is downloaded using another protocol that runs over UDP.

8. The connection is broken using the TEARDOWN message.

9. The media server responds.

The media player can send other types of messages. For example, a PAUSE message
temporarily stops the downloading; downloading can be resumed with a PLAY
message.

25.5 STREAMING LIVE AUDIO/VIDEO
Streaming live audio/video is similar to the broadcasting of audio and video by radio
and TV stations. Instead of broadcasting to the air, the stations broadcast through the
Internet. There are several similarities between streaming stored audio/video and
streaming live audio/video. They are both sensitive to delay; neither can accept retrans-
mission. However, there is a difference. In the first application, the communication is
unicast and on-demand. In the second, the communication is multicast and live. Live
streaming is better suited to the multicast services of IP and the use of protocols such as
UDP and RTP (discussed later). However, presently, live streaming is still using TCP
and multiple unicasting instead of multicasting. There is still much progress to be made
in this area.

Figure 25.13 Using a media server and RTSP

Server machineClient machine

Metafile

GET: metafile

RESPONSE

SETUP

RESPONSE

PLAY

RESPONSE

Audio/video
Stream

TEARDOWN

RESPONSE

Media
player

Media
server

Browser Web
server

1

2

3

4

8

9

5

6

7

for76042_ch25.fm Page 739 Wednesday, February 18, 2009 10:22 AM

740 PART 4 APPLICATION LAYER

25.6 REAL-TIME INTERACTIVE AUDIO/VIDEO
In real-time interactive audio/video, people communicate with one another in real
time. The Internet phone or voice over IP is an example of this type of application.
Video conferencing is another example that allows people to communicate visually
and orally.

Characteristics
Before discussing the protocols used in this class of applications, we discuss some
characteristics of real-time audio/video communication.

Time Relationship

Real-time data on a packet-switched network require the preservation of the time rela-
tionship between packets of a session. For example, let us assume that a real-time video
server creates live video images and sends them online. The video is digitized and pack-
etized. There are only three packets, and each packet holds 10 s of video information.
The first packet starts at 00:00:00, the second packet starts at 00:00:10, and the third
packet starts at 00:00:20. Also imagine that it takes 1 s (an exaggeration for simplicity)
for each packet to reach the destination (equal delay). The receiver can play back the first
packet at 00:00:01, the second packet at 00:00:11, and the third packet at 00:00:21.
Although there is a 1-s time difference between what the server sends and what the
client sees on the computer screen, the action is happening in real time. The time rela-
tionship between the packets is preserved. The 1-s delay is not important. Figure 25.14
shows the idea.

But what happens if the packets arrive with different delays? For example, the first
packet arrives at 00:00:01 (1-s delay), the second arrives at 00:00:15 (5-s delay), and
the third arrives at 00:00:27 (7-s delay). If the receiver starts playing the first packet
at 00:00:01, it will finish at 00:00:11. However, the next packet has not yet arrived; it

Figure 25.14 Time relationship

ServerClient

Send timeArrive and play time

00.00.01

00.00.11

00.00.21

00.00.31

00.00.00

00.00.10

00.00.20

00.00.30

30
 s

ec
on

ds

30
 s

ec
on

dsFirst Packet

Second Packet

Third Packet

Flow

Internet

for76042_ch25.fm Page 740 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 741

arrives 4 s later. There is a gap between the first and second packets and between the
second and the third as the video is viewed at the remote site. This phenomenon is
called jitter. Figure 25.15 shows the situation.

Timestamp

One solution to jitter is the use of a timestamp. If each packet has a timestamp that
shows the time it was produced relative to the first (or previous) packet, then the
receiver can add this time to the time at which it starts the playback. In other words, the
receiver knows when each packet is to be played. Imagine the first packet in the previ-
ous example has a timestamp of 0, the second has a timestamp of 10, and the third a
timestamp of 20. If the receiver starts playing back the first packet at 00:00:08, the sec-
ond will be played at 00:00:18, and the third at 00:00:28. There are no gaps between the
packets. Figure 25.16 shows the situation.

Playback Buffer

To be able to separate the arrival time from the playback time, we need a buffer to store
the data until they are played back. The buffer is referred to as a playback buffer.
When a session begins (the first bit of the first packet arrives), the receiver delays play-
ing the data until a threshold is reached. In the previous example, the first bit of the first
packet arrives at 00:00:01; the threshold is 7 s, and the playback time is 00:00:08. The
threshold is measured in time units of data. The replay does not start until the time units
of data are equal to the threshold value.

Data are stored in the buffer at a possibly variable rate, but they are extracted
and played back at a fixed rate. Note that the amount of data in the buffer shrinks or
expands, but as long as the delay is less than the time to play back the threshold amount
of data, there is no jitter. Figure 25.17 shows the buffer at different times for our
example.

Jitter is introduced in real-time data by the delay between packets.

Figure 25.15 Jitter

First Packet

Second Packet

Third Packet

ServerClient

Send timeArrive and play time

00.00.01

00.00.15

00.00.27

00.00.37

00.00.00

00.00.10

00.00.20

00.00.30

30
 s

ec
on

ds

Flow

Internet

for76042_ch25.fm Page 741 Wednesday, February 18, 2009 10:22 AM

742 PART 4 APPLICATION LAYER

Ordering

In addition to time relationship information and timestamps for real-time traffic, one
more feature is needed. We need a sequence number for each packet. The timestamp
alone cannot inform the receiver if a packet is lost. For example, suppose the timestamps
are 0, 10, and 20. If the second packet is lost, the receiver receives just two packets with
timestamps 0 and 20. The receiver assumes that the packet with timestamp 20 is the

Figure 25.16 Timestamp

To prevent jitter, we can timestamp the packets and separate the arrival time from
the playback time.

Figure 25.17 Playback buffer

A playback buffer is required for real-time traffic.

First Packet (0)

Second Packet (10)

Third Packet

Server
Client

Send timeArrive timePlay time

00.00.01

00.00.08

00.00.18

00.00.28

00.00.38

00.00.15

00.00.27

00.00.37

00.00.00

00.00.10

00.00.20

00.00.30

Flow

Internet

7

At time 00:00:08

At time 00:00:18

At time 00:00:28

PlaybackArrival

PlaybackArrival

PlaybackArrival

3

1

for76042_ch25.fm Page 742 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 743

second packet, produced 20 s after the first. The receiver has no way of knowing that
the second packet has actually been lost. A sequence number to order the packets is
needed to handle this situation.

Multicasting

Multimedia play a primary role in audio and video conferencing. The traffic can be
heavy, and the data are distributed using multicasting methods. Conferencing requires
two-way communication between receivers and senders.

Translation

Sometimes real-time traffic needs translation. A translator is a computer that can
change the format of a high-bandwidth video signal to a lower-quality narrow-
bandwidth signal. This is needed, for example, for a source creating a high-quality video
signal at 5 Mbps and sending to a recipient having a bandwidth of less than 1 Mbps. To
receive the signal, a translator is needed to decode the signal and encode it again at a
lower quality that needs less bandwidth.

Mixing

If there is more than one source that can send data at the same time (as in a video or
audio conference), the traffic is made of multiple streams. To converge the traffic to one
stream, data from different sources can be mixed. A mixer mathematically adds signals
coming from different sources to create one single signal.

Support from Transport Layer Protocol

The procedures mentioned in the previous sections can be implemented in the applica-
tion layer. However, they are so common in real-time applications that implementation
in the transport layer protocol is preferable. Let’s see which of the existing transport
layers is suitable for this type of traffic.

TCP is not suitable for interactive traffic. It has no provision for timestamping, and
it does not support multicasting. However, it does provide ordering (sequence num-
bers). One feature of TCP that makes it particularly unsuitable for interactive traffic is
its error control mechanism. In interactive traffic, we cannot allow the retransmission of

A sequence number on each packet is required for real-time traffic.

Real-time traffic needs the support of multicasting.

Translation means changing the encoding of a payload to a lower quality to match the
bandwidth of the receiving network.

Mixing means combining several streams of traffic into one stream.

for76042_ch25.fm Page 743 Wednesday, February 18, 2009 10:22 AM

744 PART 4 APPLICATION LAYER

a lost or corrupted packet. If a packet is lost or corrupted in interactive traffic, it must
just be ignored. Retransmission upsets the whole idea of timestamping and playback.
Today there is so much redundancy in audio and video signals (even with compression)
that we can simply ignore a lost packet. The listener or viewer at the remote site may
not even notice it.

UDP is more suitable for interactive multimedia traffic. UDP supports multicasting
and has no retransmission strategy. However, UDP has no provision for timestamping,
sequencing, or mixing. A new transport protocol, Real-Time Transport Protocol (RTP),
provides these missing features.

25.7 RTP
Real-time Transport Protocol (RTP) is the protocol designed to handle real-time traffic
on the Internet. RTP does not have a delivery mechanism (multicasting, port numbers,
and so on); it must be used with UDP. RTP stands between UDP and the application
program. The main contributions of RTP are timestamping, sequencing, and mixing
facilities. Figure 25.18 shows the position of RTP in the protocol suite.

TCP, with all its sophistication, is not suitable for interactive multimedia traffic because
we cannot allow retransmission of packets.

UDP is more suitable than TCP for interactive traffic. However, we need the services of
RTP, another transport layer protocol, to make up for the deficiencies of UDP.

Figure 25.18 RTP

Application
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

IP

Underlying LAN or WAN
technology

UDP

RTP

PCM
MPEG
Audio

MPEG1
Video

MPEG2
Video

Motion
JPEG

H.261

for76042_ch25.fm Page 744 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 745

RTP Packet Format
Figure 25.19 shows the format of the RTP packet header. The format is very simple and
general enough to cover all real-time applications. An application that needs more
information adds it to the beginning of its payload. A description of each field follows.

❑ Ver. This 2-bit field defines the version number. The current version is 2.

❑ P. This 1-bit field, if set to 1, indicates the presence of padding at the end of the
packet. In this case, the value of the last byte in the padding defines the length of
the padding. Padding is the norm if a packet is encrypted. There is no padding if
the value of the P field is 0.

❑ X. This 1-bit field, if set to 1, indicates an extra extension header between the
basic header and the data. There is no extra extension header if the value of this
field is 0.

❑ Contributor count. This 4-bit field indicates the number of contributors. Note that
we can have a maximum of 15 contributors because a 4-bit field only allows a
number between 0 and 15.

❑ M. This 1-bit field is a marker used by the application to indicate, for example, the
end of its data.

❑ Payload type. This 7-bit field indicates the type of the payload. Several payload
types have been defined so far. We list some common applications in Table 25.1.
A discussion of the types is beyond the scope of this book.

Figure 25.19 RTP packet header format

Table 25.1 Payload Types

Type Application Type Application Type Application
0 PCMµ Audio 7 LPC audio 15 G728 audio
1 1016 8 PCMA audio 26 Motion JPEG
2 G721 audio 9 G722 audio 31 H.261
3 GSM audio 10–11 L16 audio 32 MPEG1 video

5–6 DV14 audio 14 MPEG audio 33 MPEG2 video

Ver
Contr.
countP X M Payload type Sequence number

Timestamp

Synchronization source identifier

Contributor identifier

Contributor identifier

for76042_ch25.fm Page 745 Wednesday, February 18, 2009 10:22 AM

746 PART 4 APPLICATION LAYER

❑ Sequence number. This field is 16 bits in length. It is used to number the RTP
packets. The sequence number of the first packet is chosen randomly; it is incre-
mented by 1 for each subsequent packet. The sequence number is used by the
receiver to detect lost or out of order packets.

❑ Timestamp. This is a 32-bit field that indicates the time relationship between
packets. The timestamp for the first packet is a random number. For each succeed-
ing packet, the value is the sum of the preceding timestamp plus the time the first
byte is produced (sampled). The value of the clock tick depends on the application.
For example, audio applications normally generate chunks of 160 bytes; the clock
tick for this application is 160. The timestamp for this application increases 160 for
each RTP packet.

❑ Synchronization source identifier. If there is only one source, this 32-bit field
defines the source. However, if there are several sources, the mixer is the synchro-
nization source and the other sources are contributors. The value of the source
identifier is a random number chosen by the source. The protocol provides a strat-
egy in case of conflict (two sources start with the same sequence number).

❑ Contributor identifier. Each of these 32-bit identifiers (a maximum of 15) defines
a source. When there is more than one source in a session, the mixer is the syn-
chronization source and the remaining sources are the contributors.

UDP Port
Although RTP is itself a transport layer protocol, the RTP packet is not encapsulated
directly in an IP datagram. Instead, RTP is treated like an application program and is
encapsulated in a UDP user datagram. However, unlike other application programs, no
well-known port is assigned to RTP. The port can be selected on demand with only
one restriction: The port number must be an even number. The next number (an odd
number) is used by the companion of RTP, Real-Time Transport Control Protocol
(RTCP).

25.8 RTCP
RTP allows only one type of message, one that carries data from the source to the desti-
nation. In many cases, there is a need for other messages in a session. These messages
control the flow and quality of data and allow the recipient to send feedback to the source
or sources. Real-Time Transport Control Protocol (RTCP) is a protocol designed for
this purpose. RTCP has five types of messages, as shown in Figure 25.20. The number
next to each box defines the type of the message.

Sender Report
The sender report is sent periodically by the active senders in a conference to report
transmission and reception statistics for all RTP packets sent during the interval. The

RTP uses a temporary even-numbered UDP port.

for76042_ch25.fm Page 746 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 747

sender report includes an absolute timestamp, which is the number of seconds elapsed
since midnight January 1, 1970. The absolute timestamp allows the receiver to synchro-
nize different RTP messages. It is particularly important when both audio and video are
transmitted (audio and video transmissions use separate relative timestamps).

Receiver Report
The receiver report is for passive participants, those that do not send RTP packets. The
report informs the sender and other receivers about the quality of service.

Source Description Message
The source periodically sends a source description message to give additional informa-
tion about itself. This information can be the name, e-mail address, telephone number,
and address of the owner or controller of the source.

Bye Message
A source sends a bye message to shut down a stream. It allows the source to announce
that it is leaving the conference. Although other sources can detect the absence of a
source, this message is a direct announcement. It is also very useful to a mixer.

Application-Specific Message
The application-specific message is a packet for an application that wants to use new
applications (not defined in the standard). It allows the definition of a new message
type.

UDP Port
RTCP, like RTP, does not use a well-known UDP port. It uses a temporary port. The
UDP port chosen must be the number immediately following the UDP port selected for
RTP, which makes it an odd-numbered port.

Figure 25.20 RTCP message types

RTCP uses an odd-numbered UDP port number that follows the port number
selected for RTP.

RTCP
Message types

Sender report

Source description message

Bye message

Application specific message

Receiver report

200

201

202

203

204

for76042_ch25.fm Page 747 Wednesday, February 18, 2009 10:22 AM

748 PART 4 APPLICATION LAYER

25.9 VOICE OVER IP
Let us concentrate on one real-time interactive audio/video application: voice over IP,
or Internet telephony. The idea is to use the Internet as a telephone network with some
additional capabilities. Instead of communicating over a circuit-switched network, this
application allows communication between two parties over the packet-switched Internet.
Two protocols have been designed to handle this type of communication: SIP and
H.323. We briefly discuss both.

SIP
The Session Initiation Protocol (SIP) was designed by IETF. It is an application
layer protocol that establishes, manages, and terminates a multimedia session (call).
It can be used to create two-party, multiparty, or multicast sessions. SIP is designed
to be independent of the underlying transport layer; it can run on either UDP, TCP, or
SCTP.

Messages

SIP is a text-based protocol like HTTP. SIP, like HTTP, uses messages. Six messages
are defined as shown in Figure 25.21.

Each message has a header and a body. The header consists of several lines that
describe the structure of the message, caller’s capability, media type, and so on. We
give a brief description of each message. Then we show their applications in a simple
session.

The caller initializes a session with the INVITE message. After the callee answers
the call, the caller sends an ACK message for confirmation. The BYE message termi-
nates a session. The OPTIONS message queries a machine about its capabilities. The
CANCEL message cancels an already started initialization process. The REGISTER
message makes a connection when the callee is not available.

Addresses

In a regular telephone communication a telephone number identifies the sender, and
another telephone number identifies the receiver. SIP is very flexible. In SIP, an e-mail
address, an IP address, a telephone number, and other types of addresses can be used to
identify the sender and receiver. However, the address needs to be in SIP format (also
called scheme). Figure 25.22 shows some common formats.

Figure 25.21 SIP messages

SIP
messages

ACK BYE OPTIONS CANCEL REGISTERINVITE

for76042_ch25.fm Page 748 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 749

Simple Session

A simple session using SIP consists of three modules: establishing, communicating,
and terminating. Figure 25.23 shows a simple session using SIP.

Establishing a Session Establishing a session in SIP requires a three-way handshake.
The caller sends an INVITE message, using UDP, TCP, or SCTP to begin the commu-
nication. If the callee is willing to start the session, she sends a reply message. To con-
firm that a reply code has been received, the caller sends an ACK message.

Communicating After the session has been established, the caller and the callee can
communicate using two temporary ports.

Terminating the Session The session can be terminated with a BYE message sent
by either party.

Tracking the Callee

What happens if the callee is not sitting at her terminal? She may be away from her sys-
tem or at another terminal. She may not even have a fixed IP address if DHCP is being
used. SIP has a mechanism (similar to one in DNS) that finds the IP address of the ter-
minal at which the callee is sitting. To perform this tracking, SIP uses the concept of
registration. SIP defines some servers as registrars. At any moment a user is registered
with at least one registrar server; this server knows the IP address of the callee.

Figure 25.22 SIP formats

Figure 25.23 SIP simple session

sip:bob@201.23.45.78

IPv4 address E-mail address Phone number

sip:bob@fhda.edu sip:bob@408-864-8900

INVITE: address, options

OK: address

ACK

BYE

Caller

Establishing

Communicating

Terminating

Callee

Exchanging audio

for76042_ch25.fm Page 749 Wednesday, February 18, 2009 10:22 AM

mailto:bob@201.23.45.78
mailto:bob@fhda.edu

750 PART 4 APPLICATION LAYER

When a caller needs to communicate with the callee, the caller can use the e-mail
address instead of the IP address in the INVITE message. The message goes to a proxy
server. The proxy server sends a lookup message (not part of SIP) to some registrar
server that has registered the callee. When the proxy server receives a reply message
from the registrar server, the proxy server takes the caller’s INVITE message and
inserts the newly discovered IP address of the callee. This message is then sent to the
callee. Figure 25.24 shows the process.

H.323
H.323 is a standard designed by ITU to allow telephones on the public telephone
network to talk to computers (called terminals in H.323) connected to the Internet.
Figure 25.25 shows the general architecture of H.323.

Figure 25.24 Tracking the callee

Figure 25.25 H.323 architecture

INVITE
Lookup

Reply

OK

ACK

INVITE

ACK

BYE

OK

Caller Proxy server Registrar Callee

Exchanging audio

Gateway

Gatekeeper

Internet Telephone
Network

for76042_ch25.fm Page 750 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 751

A gateway connects the Internet to the telephone network. In general, a gateway is
a five-layer device that can translate a message from one protocol stack to another. The
gateway here does exactly the same thing. It transforms a telephone network message
into an Internet message. The gatekeeper server on the local area network plays the
role of the registrar server, as we discussed in the SIP protocol.

Protocols

H.323 uses a number of protocols to establish and maintain voice (or video) communi-
cation. Figure 25.26 shows these protocols.

H.323 uses G.71 or G.723.1 for compression. It uses a protocol named H.245
which allows the parties to negotiate the compression method. Protocol Q.931 is used
for establishing and terminating connections. Another protocol called H.225, or RAS
(Registration/Administration/Status), is used for registration with the gatekeeper.

Operation

Let us show the operation of a telephone communication using H.323 with a
simple example. Figure 25.27 shows the steps used by a terminal to communicate with
a telephone.

1. The terminal sends a broadcast message to the gatekeeper. The gatekeeper
responds with its IP address.

2. The terminal and gatekeeper communicate, using H.225 to negotiate bandwidth.

3. The terminal, the gatekeeper, gateway, and the telephone communicate using
Q.931 to set up a connection.

4. The terminal, the gatekeeper, gateway, and the telephone communicate using
H.245 to negotiate the compression method.

5. The terminal, gateway, and the telephone exchange audio using RTP under the
management of RTCP.

6. The terminal, the gatekeeper, gateway, and the telephone communicate using
Q.931 to terminate the communication.

Figure 25.26 H.323 protocols

UDP TCP

Control and SignalingAudio

H.245Q.931H.225RTCP
RTP

Compression
code

IP

for76042_ch25.fm Page 751 Wednesday, February 18, 2009 10:22 AM

752 PART 4 APPLICATION LAYER

25.10 QUALITY OF SERVICE
Quality of service (QoS) is an internetworking issue that has been discussed more than
defined. We can informally define quality of service as something a flow of data seeks to
attain. Although QoS can be applied to both textual data and multimedia, it is more an
issue when we are dealing with multimedia.

Flow Characteristics
Traditionally, four types of characteristics are attributed to a flow: reliability, delay,
jitter, and bandwidth, as shown in Figure 25.28.

Reliability

Reliability is a characteristic that a flow needs. Lack of reliability means losing a
packet or acknowledgment, which entails retransmission. However, the sensitivity of

Figure 25.27 H.323 example

Figure 25.28 Flow characteristics

Find IP address
of gatekeeper

H.225 message
for bandwidth allocation

Terminal Gatekeeper Gateway
Telephone

Q.931 message
for setup

Q.931 message
for termination

H.245 message
compression method negotiation

RTP for audio exchange
RTCP for management

Flow
characteristics

Reliability Delay Jitter Bandwidth

for76042_ch25.fm Page 752 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA

753

application programs to reliability is not the same. For example, it is more important
that electronic mail, file transfer, and Internet access have reliable transmissions than
telephony or audio conferencing.

Delay

Source-to-destination

delay

 is another flow characteristic. Again applications can toler-
ate delay in different degrees. In this case, telephony, audio conferencing, video confer-
encing, and remote log-in need minimum delay, while delay in file transfer or e-mail is
less important.

Jitter

Jitter

 is the variation in delay for packets belonging to the same flow. For example, if
four packets depart at times 0, 1, 2, 3 and arrive at 20, 21, 22, 23, all have the same
delay, 20 units of time. On the other hand, if the above four packets arrive at 21, 23, 21,
and 28, they will have different delays: 21, 22, 19, and 24.

For applications such as audio and video, the first case is completely acceptable;
the second case is not. For these applications, it does not matter if the packets arrive
with a short or long delay as long as the delay is the same for all packets. For this appli-
cation, the second case is not acceptable.

Jitter is defined as the variation in the packet delay. High jitter means the difference
between delays is large; low jitter means the variation is small.

Bandwidth

Different applications need different bandwidths. In video conferencing we need to
send millions of bits per second to refresh a color screen while the total number of bits
in an e-mail may not reach even a million.

Flow Classes

Based on the flow characteristics, we can classify flows into groups, with each group
having similar levels of characteristics. This categorization is not formal or universal;
some protocols such as ATM have defined classes.

Techniques to Improve QoS

In the previous section we tried to define QoS in terms of its characteristics. In this sec-
tion, we discuss some techniques that can be used to improve the quality of service. We
briefly discuss four common methods: scheduling, traffic shaping, admission control,
and resource reservation.

Scheduling

Packets from different flows arrive at a switch or router for processing. A good schedul-
ing technique treats the different flows in a fair and appropriate manner. Several sched-
uling techniques are designed to improve the quality of service. We discuss three of
them here: FIFO queuing, priority queuing, and weighted fair queuing.

FIFO Queuing

In

first-in, first-out (FIFO) queuing,

 packets wait in a buffer
(queue) until the node (router or switch) is ready to process them. If the average arrival

for76042_ch25.fm Page 753 Monday, February 23, 2009 1:33 PM

754 PART 4 APPLICATION LAYER

rate is higher than the average processing rate, the queue will fill up and new packets will
be discarded. A FIFO queue is familiar to those who have had to wait for a bus at a bus
stop. Figure 25.29 shows a conceptual view of a FIFO queue.

Priority Queuing In priority queuing, packets are first assigned to a priority class.
Each priority class has its own queue. The packets in the highest-priority queue are pro-
cessed first. Packets in the lowest-priority queue are processed last. Note that the system
does not stop serving a queue until it is empty. Figure 25.30 shows priority queuing with
two priority levels (for simplicity).

A priority queue can provide better QoS than the FIFO queue because higher-
priority traffic, such as multimedia, can reach the destination with less delay. However,
there is a potential drawback. If there is a continuous flow in a high-priority queue, the
packets in the lower-priority queues will never have a chance to be processed. This is a
condition called starvation.

Weighted Fair Queuing A better scheduling method is weighted fair queuing. In
this technique, the packets are still assigned to different classes and admitted to differ-
ent queues. The queues, however, are weighted based on the priority of the queues;
higher priority means a higher weight. The system processes packets in each queue in a
round-robin fashion with the number of packets selected from each queue based on the

Figure 25.29 FIFO queue

Figure 25.30 Priority queuing

DepartureArrival

Queue

Processor

Discard

N

Y

Full?

Departure

The switch turns to the other
queue when the current one
is empty.

Higher-priority
queue

ClassifierArrival Processor
Discard

Lower-priority
queue

N

Y

N

Full?

Discard

Y

Full?

for76042_ch25.fm Page 754 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 755

corresponding weight. For example, if the weights are 3, 2, and 1, three packets are pro-
cessed from the first queue, two from the second queue, and one from the third queue.
If the system does not impose priority on the classes, all weights can be equal. In this
way, we have fair queuing with priority. Figure 25.31 shows the technique with three
classes.

Traffic Shaping

Traffic shaping is a mechanism to control the amount and the rate of the traffic sent to
the network. Two techniques can shape traffic: leaky bucket and token bucket.

Leaky Bucket If a bucket has a small hole at the bottom, the water leaks from the
bucket at a constant rate as long as there is water in the bucket. The rate at which the water
leaks does not depend on the rate at which the water is input to the bucket unless the
bucket is empty. The input rate can vary, but the output rate remains constant. Similarly, in
networking, a technique called leaky bucket can smooth out bursty traffic. Bursty chunks
are stored in the bucket and sent out at an average rate. Figure 25.32 shows a leaky bucket
and its effects.

In the figure, we assume that the network has committed a bandwidth of 3 Mbps
for a host. The use of the leaky bucket shapes the input traffic to make it conform to this
commitment. In Figure 25.32 the host sends a burst of data at a rate of 12 Mbps for 2 s,
for a total of 24 Mbits of data. The host is silent for 5 s and then sends data at a rate of
2 Mbps for 3 s, for a total of 6 Mbits of data. In all, the host has sent 30 Mbits of data in
10 s. The leaky bucket smooths the traffic by sending out data at a rate of 3 Mbps during
the same 10 s. Without the leaky bucket, the beginning burst may have hurt the network
by consuming more bandwidth than is set aside for this host. We can also see that the
leaky bucket may prevent congestion. As an analogy, consider the freeway during rush
hour (bursty traffic). If, instead, commuters could stagger their working hours, congestion
on our freeways could be avoided.

Figure 25.31 Weighted fair queuing

The turning switch selects
3 packets from first queue,
then 2 packets from the second
queue, then 1 packet from the
third queue. The cycle repeats.

Classifier Departure

Weight: 3

Arrival Processor

Full?

Discard

Discard

Weight: 1

Full?

Discard

Weight: 2

Full?

N

Y

N

Y

N

Y

for76042_ch25.fm Page 755 Wednesday, February 18, 2009 10:22 AM

756 PART 4 APPLICATION LAYER

A simple leaky bucket implementation is shown in Figure 25.33. A FIFO queue
holds the packets. If the traffic consists of fixed-size packets (e.g., cells in ATM
networks), the process removes a fixed number of packets from the queue at each tick
of the clock. If the traffic consists of variable-length packets, the fixed output rate must
be based on the number of bytes or bits.

The following is an algorithm for variable-length packets:

1. Initialize a counter to n at the tick of the clock.

2. If n is greater than the size of the packet, send the packet and decrement the
counter by the packet size. Repeat this step until n is smaller than the packet size.

3. Reset the counter and go to step 1.

Figure 25.32 Leaky bucket

Figure 25.33 Leaky bucket implementation

A leaky bucket algorithm shapes bursty traffic into fixed-rate traffic by
averaging the data rate. It may drop the packets if the bucket is full.

 Fixed-rate data

Bursty data

3 Mbps

2 Mbps

12 Mbps

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

s

s

Leaky bucket

Bursty flow

Fixed flow

DepartureArrival

Queue

Processor

Discard

Remove packets
at a constant rate.

Leaky bucket algorithm

N

Y

Full?

for76042_ch25.fm Page 756 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 757

Token Bucket The leaky bucket is very restrictive. It does not credit an idle host. For
example, if a host is not sending for a while, its bucket becomes empty. Now if the host
has bursty data, the leaky bucket allows only an average rate. The time when the host was
idle is not taken into account. On the other hand, the token bucket algorithm allows idle
hosts to accumulate credit for the future in the form of tokens. For each tick of the clock,
the system sends n tokens to the bucket. The system removes one token for every cell (or
byte) of data sent. For example, if n is 100 and the host is idle for 100 ticks, the bucket
collects 10,000 tokens. Now the host can consume all these tokens in one tick with
10,000 cells, or the host takes 1,000 ticks with 10 cells per tick. In other words, the host
can send bursty data as long as the bucket is not empty. Figure 25.34 shows the idea.

The token bucket can easily be implemented with a counter. The token is initial-
ized to zero. Each time a token is added, the counter is incremented by 1. Each time a
unit of data is sent, the counter is decremented by 1. When the counter is zero, the host
cannot send data.

Combining Token Bucket and Leaky Bucket The two techniques can be combined
to credit an idle host and at the same time regulate the traffic. The leaky bucket is
applied after the token bucket; the rate of the leaky bucket needs to be higher than the
rate of tokens dropped in the bucket.

Resource Reservation
A flow of data needs resources such as a buffer, bandwidth, CPU time, and so on. The
quality of service is improved if these resources are reserved beforehand. We discuss in

Figure 25.34 Token bucket

The token bucket allows bursty traffic at a regulated maximum rate.

Departure

One token removed
and discarded
per cell transmitted

Arrival

Queue

Processor

One token added
per tick

Discard

N

Y

Full?

for76042_ch25.fm Page 757 Wednesday, February 18, 2009 10:22 AM

758 PART 4 APPLICATION LAYER

Section 25.11 one QoS model called Integrated Services, which depends heavily on
resource reservation to improve the quality of service.

Admission Control
Admission control refers to the mechanism used by a router, or a switch, to accept or
reject a flow based on predefined parameters called flow specifications. Before a router
accepts a flow for processing, it checks the flow specifications to see if its capacity (in
terms of bandwidth, buffer size, CPU speed, etc.) and its previous commitments to other
flows can handle the new flow.

25.11 INTEGRATED SERVICES
Based on the topics in Sections 25.10 two models have been designed to provide quality
of service in the Internet: Integrated Services and Differentiated Services. Both models
emphasize the use of quality of service at the network layer (IP), although the model
can also be used in other layers such as the data link. We discuss Integrated Services in
this section and Differentiated Service in Section 25.12.

As we learned in Chapter 7, IP was originally designed for best-effort delivery.
This means that every user receives the same level of services. This type of delivery
does not guarantee the minimum of a service, such as bandwidth, to applications such
as real-time audio and video. If such an application accidentally gets extra bandwidth,
it may be detrimental to other applications, resulting in congestion.

Integrated Services, sometimes called IntServ, is a flow-based QoS model, which
means that a user needs to create a flow, a kind of virtual circuit, from the source to the
destination and inform all routers of the resource requirement.

Signaling
The reader may remember that IP is a connectionless, datagram, packet-switching pro-
tocol. How can we implement a flow-based model over a connectionless protocol? The
solution is a signaling protocol to run over IP that provides the signaling mechanism for
making a reservation. This protocol is called Resource Reservation Protocol (RSVP)
and will be discussed shortly.

Flow Specification
When a source makes a reservation, it needs to define a flow specification. A flow speci-
fication has two parts: Rspec (resource specification) and Tspec (traffic specification).
Rspec defines the resource that the flow needs to reserve (buffer, bandwidth, etc.). Tspec
defines the traffic characterization of the flow.

Integrated Services is a flow-based QoS model designed for IP.

for76042_ch25.fm Page 758 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 759

Admission
After a router receives the flow specification from an application, it decides to admit or
deny the service. The decision is based on the previous commitments of the router and
the current availability of the resource.

Service Classes
Two classes of services have been defined for Integrated Services: guaranteed service
and controlled-load service.

Guaranteed Service Class

This type of service is designed for real-time traffic that needs a guaranteed minimum
end-to-end delay. The end-to-end delay is the sum of the delays in the routers, the prop-
agation delay in the media, and the setup mechanism. Only the first, the sum of the
delays in the routers, can be guaranteed by the router. This type of service guarantees
that the packets will arrive within a certain delivery time and are not discarded if flow
traffic stays within the boundary of Tspec. We can say that guaranteed services are
quantitative services, in which the amount of end-to-end delay and the data rate must be
defined by the application.

Controlled-Load Service Class

This type of service is designed for applications that can accept some delays, but are
sensitive to an overloaded network and to the danger of losing packets. Good examples
of these types of applications are file transfer, e-mail, and Internet access. The controlled-
load service is a qualitative type of service in that the application requests the possibility
of low-loss or no-loss packets.

RSVP
In the Integrated Services model, an application program needs resource reservation. As
we learned in the discussion of the IntServ model, the resource reservation is for a flow.
This means that if we want to use IntServ at the IP level, we need to create a flow, a kind
of virtual-circuit network, out of the IP, which was originally designed as a datagram
packet-switched network. A virtual-circuit network needs a signaling system to set up the
virtual circuit before data traffic can start. The Resource Reservation Protocol (RSVP) is
a signaling protocol to help IP create a flow and consequently make a resource reserva-
tion. Before discussing RSVP, we need to mention that it is an independent protocol
separate from the Integrated Services model. It may be used in other models in the future.

Multicast Trees

RSVP is different from some other signaling systems we have seen before in that it is a
signaling system designed for multicasting. However, RSVP can be also used for uni-
casting because unicasting is just a special case of multicasting with only one member
in the multicast group. The reason for this design is to enable RSVP to provide resource
reservations for all kinds of traffic including multimedia which often uses multicasting.

for76042_ch25.fm Page 759 Wednesday, February 18, 2009 10:22 AM

760 PART 4 APPLICATION LAYER

Receiver-Based Reservation

In RSVP, the receivers, not the sender, make the reservation. This strategy matches the
other multicasting protocols. For example, in multicast routing protocols, the receivers,
not the sender, make a decision to join or leave a multicast group.

RSVP Messages

RSVP has several types of messages. However, for our purposes, we discuss only two
of them: Path and Resv.

Path Messages Recall that the receivers in a flow make the reservation in RSVP.
However, the receivers do not know the path traveled by packets before the reservation
is made. The path is needed for the reservation. To solve the problem, RSVP uses Path
messages. A Path message travels from the sender and reaches all receivers in the multi-
cast path. On the way, a Path message stores the necessary information for the receivers.
A Path message is sent in a multicast environment; a new message is created when the
path diverges. Figure 25.35 shows path messages.

Resv Messages After a receiver has received a Path message, it sends a Resv message.
The Resv message travels toward the sender (upstream) and makes a resource reservation
on the routers that support RSVP. If a router does not support RSVP on the path, it routes
the packet based on the best-effort delivery methods we discussed before. Figure 25.36
shows the Resv messages.

Figure 25.35 Path messages

Figure 25.36 Resv messages

S1 Path

Path

Path Rc3

Rc1 Rc2

Path Path Path

S1
Resv Resv

Rc3

Rc1 Rc2

Resv Resv Resv Resv

for76042_ch25.fm Page 760 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 761

Reservation Merging

In RSVP, the resources are not reserved for each receiver in a flow; the reservation is
merged. In Figure 25.37, Rc3 requests a 2-Mbps bandwidth while Rc2 requests a 1-Mbps
bandwidth. Router R3, which needs to make a bandwidth reservation, merges the two
requests. The reservation is made for 2 Mbps, the larger of the two, because a 2-Mbps
input reservation can handle both requests. The same situation is true for R2. The
reader may ask why Rc2 and Rc3, both belonging to one single flow, request different
amounts of bandwidth. The answer is that, in a multimedia environment, different
receivers may handle different grades of quality. For example, Rc2 may be able to
receive video only at 1 Mbps (lower quality), while Rc3 may be able to receive video at
2 Mbps (higher quality).

Reservation Styles

When there is more than one flow, the router needs to make a reservation to accommodate
all of them. RSVP defines three types of reservation styles, as shown in Figure 25.38.

Wild Card Filter Style In this style, the router creates a single reservation for all
senders. The reservation is based on the largest request. This type of style is used when
the flows from different senders do not occur at the same time.

Fixed Filter Style In this style, the router creates a distinct reservation for each flow.
This means that if there are n flows, n different reservations are made. This type of style
is used when there is a high probability that flows from different senders will occur at
the same time.

Figure 25.37 Reservation merging

Figure 25.38 Reservation styles

S1 R1

R2 R3
3 Mbps

3 Mbps 1 Mbps

3 Mbps 2 Mbps 2 Mbps

Rc3

Rc1 Rc2

Shared
explicit (SE)

Wild card
filter (WF)

Fixed filter
(FF)

Reservation
styles

for76042_ch25.fm Page 761 Wednesday, February 18, 2009 10:22 AM

762 PART 4 APPLICATION LAYER

Shared Explicit Style In this style, the router creates a single reservation that can be
shared by a set of flows.

Soft State

The reservation information (state) stored in every node for a flow needs to be refreshed
periodically. This is referred to as a soft state as compared to the hard state used in
other virtual-circuit protocols such as ATM or Frame Relay, where the information
about the flow is maintained until it is erased. The default interval for refreshing is
currently 30 s.

Problems with Integrated Services
There are at least two problems with Integrated Services that may prevent its full imple-
mentation in the Internet: scalability and service-type limitation.

Scalability

The Integrated Services model requires that each router keep information for each flow.
As the Internet is growing every day, this is a serious problem.

Service-Type Limitation

The Integrated Services model provides only two types of services, guaranteed and
control-load. Those opposing this model argue that applications may need more than
these two types of services.

25.12 DIFFERENTIATED SERVICES
Differentiated Services (DS or Diffserv) was introduced by the IETF (Internet Engi-
neering Task Force) to handle the shortcomings of Integrated Services. Two fundamen-
tal changes were made:

1. The main processing was moved from the core of the network to the edge of the
network. This solves the scalability problem. The routers do not have to store
information about flows. The applications, or hosts, define the type of service they
need each time they send a packet.

2. The per-flow service is changed to per-class service. The router routes the packet
based on the class of service defined in the packet, not the flow. This solves the
service-type limitation problem. We can define different types of classes based on
the needs of applications.

DS Field
In Diffserv, each packet contains a field called the DS field. The value of this field is set
at the boundary of the network by the host or the first router designated as the boundary

Differentiated Services is a class-based QoS model designed for IP.

for76042_ch25.fm Page 762 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 763

router. IETF proposes to replace the existing TOS (type of service) field in IPv4 or the
class field in IPv6 by the DS field, as shown in Figure 25.39.

The DS field contains two subfields: DSCP and CU. The DSCP (Differentiated
Services Code Point) is a 6-bit subfield that defines the per-hop behavior (PHB). The
2-bit CU (currently unused) subfield is not currently used.

The Diffserv capable node (router) uses the DSCP 6 bits as an index to a table
defining the packet-handling mechanism for the current packet being processed.

Per-Hop Behavior

The Diffserv model defines per-hop behaviors (PHBs) for each node that receives a
packet. So far three PHBs are defined: DE PHB, EF PHB, and AF PHB.

DE PHB The DE PHB (default PHB) is the same as best-effort delivery, which is
compatible with TOS.

EF PHB The EF PHB (expedited forwarding PHB) provides the following services:

❑ Low loss

❑ Low latency

❑ Ensured bandwidth

This is the same as having a virtual connection between the source and destination.

AF PHB The AF PHB (assured forwarding PHB) delivers the packet with a high
assurance as long as the class traffic does not exceed the traffic profile of the node. The
users of the network need to be aware that some packets may be discarded.

Traffic Conditioner

To implement Diffserv, the DS node uses traffic conditioners such as meters, markers,
shapers, and droppers, as shown in Figure 25.40.

Meters The meter checks to see if the incoming flow matches the negotiated traffic
profile. The meter also sends this result to other components. The meter can use several
tools such as a token bucket to check the profile.

Marker A marker can remark a packet that is using best-effort delivery (DSCP:
000000) or down-mark a packet based on information received from the meter. Down-
marking (lowering the class of the flow) occurs if the flow does not match the profile. A
marker does not up-mark a packet (promote the class).

Shaper A shaper uses the information received from the meter to reshape the traffic if
it is not compliant with the negotiated profile.

Figure 25.39 DS field

DSCP CU

for76042_ch25.fm Page 763 Wednesday, February 18, 2009 10:22 AM

764 PART 4 APPLICATION LAYER

Dropper A dropper, which works as a shaper with no buffer, discards packets if the
flow severely violates the negotiated profile.

25.13 RECOMMENDED READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give some coverage of multimedia. [Com 06] discusses voice and audio
over IP. [Kur & Ros 08] and [Tan 03] have a lengthy discussion on multimedia. [Gar &
Vid 04] also give a more detailed discussion about audio and video compression.

RFCs
Several RFCs show different update on topics discussed in this chapter including
RFC 2198, RFC 2250, RFC 2326, RFC 2475, RFC 3246, RFC 3550, and RFC 3551.

25.14 KEY TERMS

Figure 25.40 Traffic conditioner

bidirectional frame (B-frame) H.323
compression Integrated Services (IntServ)
delay interactive audio/video
Differentiated Services (DS or Diffserv) intracoded frame (I-frame)
discrete cosine transform (DCT) jitter
first-in, first-out (FIFO) queuing Joint Photographic Experts Group (JPEG)
frequency masking leaky bucket
gatekeeper media player
gateway media server

Marker

Dropped

OutputInput

Meter

Traffic conditioner

Shaper/
Dropper

Classifier

for76042_ch25.fm Page 764 Wednesday, February 18, 2009 10:22 AM

CHAPTER 25 MULTIMEDIA 765

25.15 SUMMARY
❑ Audio/video files can be downloaded for future use (streaming stored audio/video)

or broadcast to clients over the Internet (streaming live audio/video). The Internet
can also be used for live audio/video interaction. Audio and video need to be digi-
tized before being sent over the Internet.

❑ Audio files are compressed through predictive encoding or perceptual encoding.
Joint Photographic Experts Group (JPEG) is a method to compress pictures and
graphics. Moving Pictures Experts Group (MPEG) is a method to compress
video.

❑ We can use a Web server, or a Web server with a metafile, or a media server, or a
media server and RTSP to download a streaming audio/video file.

❑ Real-time data on a packet-switched network require the preservation of the time
relationship between packets of a session. Gaps between consecutive packets at the
receiver cause a phenomenon called jitter. Jitter can be controlled through the use
of timestamps and a judicious choice of the playback time.

❑ Real-time multimedia traffic requires both UDP and Real-Time Transport Protocol
(RTP). RTP handles timestamping, sequencing, and mixing. Real-Time Transport
Control Protocol (RTCP) provides flow control, quality of data control, and feed-
back to the sources.

❑ Voice over IP is a real-time interactive audio/video application. The Session Initia-
tion Protocol (SIP) is an application layer protocol that establishes, manages, and
terminates multimedia sessions. H.323 is an ITU standard that allows a telephone
connected to a public telephone network to talk to a computer connected to the
Internet.

metafile Real-Time Transport Protocol (RTP)
mixer registrar server
Moving Picture Experts Group (MPEG) reliability
multicasting Resource Reservation Protocol (RSVP)
on-demand audio/video Resv message
open-loop congestion control Session Initiation Protocol (SIP)
Path message spatial compression
perceptual encoding streaming live audio/video
per-hop behavior (PHB) streaming stored audio/video
pixel temporal compression
playback buffer temporal masking
predicted frame (P-frame) timestamp
predictive encoding token bucket
priority queuing traffic shaping
quality of service (QoS) translation
quantization voice over IP
Real-Time Streaming Protocol (RTSP) weighted fair queuing
Real-Time Transport Control Protocol (RTCP)

for76042_ch25.fm Page 765 Wednesday, February 18, 2009 10:22 AM

766 PART 4 APPLICATION LAYER

❑ A flow can be characterized by its reliability, delay, jitter, and bandwidth. Schedul-
ing, traffic shaping, resource reservation, and admission control are techniques to
improve quality of service (QoS).

❑ Integrated Services is a flow-based QoS model designed for IP. The Resource Res-
ervation Protocol (RSVP) is a signaling protocol that helps IP create a flow and
makes a resource reservation. Differential Services is a class-based QoS model
designed for IP.

25.16 PRACTICE SET

Exercises
1. In Figure 25.17 what is the amount of data in the playback buffer at each of the

following times?

a. 00:00:17

b. 00:00:20

c. 00:00:25

d. 00:00:30

2. Compare and contrast TCP with RTP. Are both doing the same thing?

3. Can we say UDP plus RTP is the same as TCP?

4. Why does RTP need the service of another protocol, RTCP, but TCP does not?

5. In Figure 25.12, can the Web server and media server run on different machines?

6. We discuss the use of SIP in this chapter for audio. Is there any drawback to pre-
vent using it for video?

7. Do you think H.323 is actually the same as SIP? What are the differences? Make a
comparison between the two.

8. Can H.323 also be used for video?

9. In a leaky bucket used to control liquid flow, how many gallons of liquid are left in the
bucket if the output rate is 5 gal/min, there is an input burst of 100 gal/min for 12 s,
and there is no input for 48 s?

10. An output interface in a switch is designed using the leaky bucket algorithm to
send 8,000 bytes/s (tick). If the following frames are received in sequence, show
the frames that are sent during each second.

a. Frames 1, 2, 3, 4: 4,000 bytes each

b. Frames 5, 6, 7: 3,200 bytes each

c. Frames 8, 9: 400 bytes each

d. Frames 10, 11, 12: 2,000 bytes each

for76042_ch25.fm Page 766 Wednesday, February 18, 2009 10:22 AM

767

P A R T

5

Next Generation

Chapter 26 IPv6 Addressing 768

Chapter 27 IPv6 Protocol 786

Chapter 28 ICMPv6 800

for76042_ch26.fm Page 767 Thursday, February 19, 2009 9:22 AM

C H A P T E R

26

768

26

IPv6 Addressing

n the first chapter of Part 5 of the book, we introduce addressing in
IPv6. The address depletion of IPv4 protocol was one of the major rea-

son for developing IPv6 protocol. As we see in this chapter, the structure
of IPv6 addresses has some fundamental differences with the structure of
IPv4 addresses. Depletion of address is definitely out of the question.

OBJECTIVES

The chapter has several objectives:

❑

To introduce the IPv6 addressing scheme and different notations used
to represent an address in this version.

❑

To explain the three types of addressing used in IPv6: unicast,
anycast, and multicast.

❑

To show the address space in this version and how it is divided into
several blocks.

❑

To discuss some reserved blocks in the address space and their
applications.

❑

To define the global unicast address block and how it is used for
unicast communication.

❑

To discuss how three levels of hierarchy in addressing are used in
IPv6 deploying the global unicast block.

❑

To discuss autoconfiguration and renumbering of IPv6 addresses.

I

for76042_ch26.fm Page 768 Thursday, February 19, 2009 9:22 AM

769

26.1 INTRODUCTION

An IPv6 address is 128 bits or 16 bytes (octet) long as shown in Figure 26.1. The
address length in IPv6 is four times of the length address in IPv4.

Notations

A computer normally stores the address in binary, but is clear that 128 bits cannot eas-
ily be handled by humans. Several notations have been proposed to represent IPv6
addresses when they are handled by humans:

Dotted-Decimal Notation

To be compatible with IPv4 addresses, we are tempted to use dotted-decimal nota-
tion as shown for IPv4 addresses in Chapter 5. Although this notation is convenient
for 4-byte IPv4 addresses, it seems too long for 16-byte IPv6 addresses as shown
below:

This notation is rarely used except partially as we see shortly.

Colon Hexadecimal Notation

To make addresses more readable, IPv6 specifies

colon hexadecimal notation

(or

colon
hex

for short). In this notation, 128 bits are divided into eight sections, each 2 bytes in
length. Two bytes in hexadecimal notation require four hexadecimal digits. Therefore,
the address consists of 32 hexadecimal digits, with every four digits separated by a
colon. Figure 26.2 shows an IPv6 address in colon hexadecimal notation.

Figure 26.1

IPv6 address

221.14.65.11.105.45.170.34.12.234.18.0.14.0.115.255

Figure 26.2

Colon hexadecimal notation

1111110111101100 1110110110101011

128 bits

FDEC BA98 7654 3210 ADBF BBFF 2922 FFFF

for76042_ch26.fm Page 769 Thursday, February 19, 2009 9:22 AM

770

PART 5 NEXT GENERATION

Although the IP address, even in hexadecimal format, is very long, many of the dig-
its are zeros. In this case, we can abbreviate the address. The leading zeros of a section
can be omitted. Using this form of abbreviation, 0074 can be written as 74, 000F as F,
and 0000 as 0. Note that 3210 cannot be abbreviated.

Further abbreviation, often called

zero compression,

 can be applied to colon hex
notation if there are consecutive sections consisting of zeros only. We can remove all
the zeros altogether and replace them with a double semicolon. Figure 26.3 shows the
concept.

Note that this type of abbreviation is allowed only once per address. If there are
two runs of zero sections, only one of them can be compressed.

Mixed Representation

Sometimes we see a mixed representation of an IPv6 address: colon hex and dotted-
decimal notation. This is appropriate during the transition period in which an IPv4
address is embedded in an IPv6 address (as the rightmost 32 bits). We can use the colon
hex notation for the leftmost six section and four bytes dotted-decimal notation instead
of the rightmost two sections as shown below:

However, this happens when all or most of the rightmost sections of the IPv6
address are 0s. For example, the following is a legitimate address in IPv6, in which the
zero compression shows that all 96 leftmost bits of the address are all zeros:

CIDR Notation

As we see shortly, IPv6 uses hierarchical addressing. For this reason, IPv6 allows class-
less addressing and CIDR notation. For example, Figure 26.4 shows how we can define
a prefix of 60 bits using CIDR. We will later show how an IPv6 is divided into a prefix
and a suffix.

Figure 26.3

Zero compression

FDEC:14AB:2311:BBFE:AAAA:BBBB:130.24.24.18

::130.24.24.18

Figure 26.4

CIDR address

FDEC 0 0 00 BBFF 0 FFFF FDEC BBFF 0 FFFF

Zero compressedOriginal address

FDEC BBFF 0 FFFF/60

for76042_ch26.fm Page 770 Thursday, February 19, 2009 9:22 AM

CHAPTER 26 IPV6 ADDRESSING

771

Example 26.1

Show the unabbreviated colon hex notation for the following IPv6 addresses:

a.

An address with 64 0s followed by 64 1s.

b.

An address with 128 0s.

c.

An address with 128 1s.

d.

An address with 128 alternative 1s and 0s.

Solution

a.

0000:0000:0000:0000:FFFF:FFFF:FFFF:FFFF

b.

0000:0000:0000:0000:0000:0000:0000:0000

c.

FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF

d.

AAAA:AAAA:AAAA:AAAA:AAAA:AAAA:AAAA:AAAA

Example 26.2

The following shows the zero contraction version of addresses in Example 26.1 (part c and d can-
not be abbreviated)

a.

::

FFFF:FFFF:FFFF:FFFF

b.

::

c.

FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF

d.

AAAA:AAAA:AAAA:AAAA:AAAA:AAAA:AAAA:AAAA

Example 26.3

Show abbreviations for the following addresses:

a.

0000:0000:FFFF:0000:0000:0000:0000:0000

b.

1234:2346:0000:0000:0000:0000:0000:1111

c.

0000:0001:0000:0000:0000:0000:1200:1000

d.

0000:0000:0000:0000:0000:FFFF:24.123.12.6

Solution

a.

0:0:FFFF::

b.

1234:2346::1111

c.

0:1::1200:1000

d.

::FFFF:24.123.12.6

Example 26.4

Decompress the following addresses and show the complete unabbreviated IPv6 address:

a.

1111::2222

b.

::

c.

0:1::

d.

AAAA:A:AA::1234

for76042_ch26.fm Page 771 Thursday, February 19, 2009 9:22 AM

772

PART 5 NEXT GENERATION

Solution

a.

1111:0000:0000:0000:0000:0000:0000:2222

b.

0000:0000:0000:0000:0000:0000:0000:0000

c.

0000:0001:0000:0000:0000:0000:0000:0000

d.

AAAA:000A:00AA:0000:0000:0000:0000:1234

Address Space

The address space of IPv6 contains 2

128

 addresses as shown below. This address space
is 2

96

 times of the IPv4 address—definitely no address depletion.

Example 26.5

To give some idea about the number of addresses, let us assume that the number of people on the
planet earth is soon to be 2

34

(more than 16 billion). Each person can have 2

94

 addresses to use.

Example 26.6

If we assign 2

60

 addresses to the users each year (almost one billion each second), it takes
2

68

 years to deplete addresses.

Example 26.7

If we can build a high-rise building over the land and sea to accommodate 2

68

 computers in each
square meter of the earth, still there are enough addresses to connect all computers to the Internet
(the planet earth is approximately 2

60

 square meters).

Three Address Types

In IPv6, a destination address can belong to one of three categories: unicast, anycast,
and multicast.

Unicast Address

A unicast address defines a single interface (computer or router). The packet sent to a
unicast address will be routed to the intended recipient. As we see shortly, IPv6 has des-
ignated a large block from which unicast addresses can be assigned to interfaces.

Anycast Address

An anycast address defines a group of computers that all share a single address. A
packet with an anycast address is delivered to only one member of the group, the most
reachable one. An anycast communication is used, for example, when there are several
servers that can respond to an inquiry. The request is sent to the one that is most reach-
able. The hardware and software generate only one copy of the request; the copy
reaches only one of the servers. IPv6 does not designate a block for anycasting; the
addresses are assigned from the unicast block.

Multicast Address

A multicast address also defines a group of computers. However, there is a difference
between anycasting and multicasting. In multicasting, each member of the group

340,282,366,920,938,463,374,607,431,768,211,456

for76042_ch26.fm Page 772 Thursday, February 19, 2009 9:22 AM

CHAPTER 26 IPV6 ADDRESSING

773

receives a copy. As we will see shortly, IPv6 has designated a block for multicasting
from which the same address is assigned to the members of the group.

Broadcasting and Multicasting

It is interesting that IPv6 does not define broadcasting, even in a limited version, as
IPv4 does. In Chapter 5, we discussed that some addresses in a block can be used for
limited broadcasting. As we will see, IPv6 considers broadcasting as a special case of
multicasting.

26.2 ADDRESS SPACE ALLOCATION

Like the address space of IPv4, the address space of IPv6 is divided into several blocks
of varying size and each block is allocated for special purpose. Most of the blocks are
still unassigned and have been left aside for future use. To better understand the alloca-
tion and the location of each block in address space, we first divide the whole address
space into eight equal ranges. This division does not show the block allocation, but we
believe it shows where each actual block is located (Figure 26.5).

Each section is one-eighth of the whole address space (2

125

 addresses). The first
section contains six variable-size blocks; three of these blocks are reserved and three
unassigned. The second section is considered one single block and is used for global
unicast addresses, which we discuss later in the chapter. The next five sections are unas-
signed addresses. The last section is divided into eight blocks. Some of these blocks are
still unassigned and some are reserved for special purposes. The figure shows that more
than five-eighths of the address space is still unassigned. Only one-eighth of the address
space is used for unicast communication between the users.

Table 26.1 shows the prefix for each type of address. The third column shows
the fraction of each type of address relative to the whole address space. The left-
most column is not part of the standard; it shows only the section described in
Figure 26.5.

Figure 26.5

Address space allocation

Address space = 2128 addresses

1/8 1/8

N: 1/256 Multicast

A: 1/256 IPv4 Compatible G: 1/16 Reserved

M: 1/256 Reserved
H: 1/32 ReservedB: 1/256 Reserverd

D: 1/64 Reserved

J: 1/128 Unique Local Unicast

K: 1/512 Reserved
E: 1/32 Reserved

C: 1/128 Reserved I: 1/64 Reserved
L: 1/1024 Link Local

F: 1/16 Reserved

A B C D E F

1/8 1/8 1/8 1/8 1/8 1/8

ReservedReserved/
Assigned

Reserved/
Assigned

Global
Unicast Reserved Reserved Reserved Reserved

IHG J KL M N

for76042_ch26.fm Page 773 Thursday, February 19, 2009 9:22 AM

774

PART 5 NEXT GENERATION

Example 26.8

Figure 26.5 shows that only a portion of the address space can be used for global unicast commu-
nication. How many addresses are in this block?

Solution

This block occupies only one-eighth of the address spaces. To find the number of addresses, we
can divide the total address space by 8 or 2

3

. The result is (2

128

)/(2

3

) = 2

125

—a huge block.

Algorithm

To show that the prefixes in Table 26.1 unambiguously find the block to which an IPv6
belongs to, we have created the diagram in Figure 26.6. The algorithm can be used to
write a program to find the block when an address is given. The algorithm has to check
only a maximum of 10 bits to find the block of the address. Note that the reserved

Table 26.1

Prefixes for IPv6 Addresses

Block Prefix CIDR Block Assignment Fraction

1 0000 0000 0000::/8 Reserved (IPv4 compatible) 1/256
0000 0001 0100::/8 Reserved 1/256
0000 001 0200::/7 Reserved 1/128
0000 01 0400::/6 Reserved 1/64
0000 1 0800::/5 Reserved 1/32
0001 1000::/4 Reserved 1/16

2 001 2000::/3 Global unicast 1/8

3 010 4000::/3 Reserved 1/8
4 011 6000::/3 Reserved 1/8
5 100 8000::/3 Reserved 1/8
6 101 A000::/3 Reserved 1/8
7 110 C000::/3 Reserved 1/8
8 1110 E000::/4 Reserved 1/16

1111 0 F000::/5 Reserved 1/32
1111 10 F800::/6 Reserved 1/64
1111 110 FC00::/7 Unique local unicast 1/128
1111 1110 0 FE00::/9 Reserved 1/512
1111 1110 10 FE80::/10 Link local addresses 1/1024
1111 1110 11 FEC0::/10 Reserved 1/1024
1111 1111 FF00::/8 Multicast addresses 1/256

Figure 26.6

Algorithm for finding the allocated blocks

0

0

0 0 000000

Start

Legend

Unique local
unicast

1

11111110 1

1

Global
Unicast

Linked
local

Multicast

Check next bit or bits

Assigned

IPv4
compatible

for76042_ch26.fm Page 774 Thursday, February 19, 2009 3:27 PM

CHAPTER 26 IPV6 ADDRESSING 775

blocks (with the exception of IPv4-compatible addresses) are not shown to make the
diagram simpler.

Assigned and Reserved Blocks
In this section, we discuss the characteristics and purposes of assigned and reserved
blocks starting with the first row of Table 26.1.

IPv4 Compatible Addresses

Addresses that use the prefix (00000000) are reserved, but part of it is used to define
some IPv4 compatible addresses. This block occupies 1/256 of the total address space,
which means that there are 2120 addresses in this block. In CIDR notation, this block
can be defined as 0000::/8. This block is further divided into several subblocks that are
discussed later.

Unspecified Address The unspecified address is a subblock containing only one
single address, which is defined by letting all suffix bits to 0s. In other words, the
entire address consists of zeros. The unspecified address is used during bootstrap
when a host does not know its own address and wants to send an inquiry to find it.
Since any IPv6 packet needs a source address, the host uses this address for this pur-
pose. Note that the unspecified address cannot be used as a destination address. The
CIDR notation for this one-address subblock is ::/128. The unspecified address format
is shown in Figure 26.7.

Example 26.9

Comparing the unspecified address in IPv4 to the unspecified addresses in IPv6.

Solution
In both architectures, an unspecified address is an all-zero address. In IPv4 this address is part of
class A address; in IPv6 this address is part of the reserved block.

Loopback Address This subblock also consists of one single address. We discussed
loopback addresses in Chapter 5. This is an address used by a host to test itself without
going into the network. In this case, a message is created in the application layer, sent to
the transport layer, and passed to the network layer. However, instead of going to the
physical network, it returns to the transport layer and then passes to the application layer.

Figure 26.7 Unspecified address

The unspecified address in IPv6 is ::/128.
It should never be used as a destination address.

All 0s00000000

8 bits

Prefix Suffix

120 bits

for76042_ch26.fm Page 775 Thursday, February 19, 2009 9:22 AM

776 PART 5 NEXT GENERATION

This is very useful for testing the functions of software packages in these layers
before even connecting the computer to the network. The loopback address as shown
in Figure 26.8 consists of the prefix 00000000 followed by 119 0s and one 1. The
CIDR notation for this one-address single block is ::1/128.

Example 26.10

Compare the loop addresses in IPv4 to the loopback address in IPv6.

Solution
There are two differences in this case. In classful addressing, a whole block is allocated for loop-
back addresses; in IPv6 only one address is allocated as the loopback address. In addition, the
loopback block in classful addressing is part of the class A block. In IPv6, it is only one single
address in the reserved block.

Embedded IPv4 Addresses As we will see in Chapter 27, during the transition from
IPv4 to IPv6, hosts can use their IPv4 addresses embedded in IPv6 addresses. Two for-
mats have been designed for this purpose: compatible and mapped. A compatible
address is an address of 96 bits of zero followed by 32 bits of IPv4 address. It is used
when a computer using IPv6 wants to send a message to another computer using IPv6.
However, suppose the packet passes through a region where the networks are still using
IPv4. The sender then must use the IPv4-compatible address to facilitate the passage of
the packet through the IPv4 region. For example, the IPv4 address 2.13.17.14 (in dotted
decimal format) becomes 0::2.13.17.14 (in mixed format). The IPv4 address is
prepended with 96 zeros to create a 128-bit IPv6 address (see Figure 26.9). This
subblock is a reservation that can contain up to 232 addresses. The CIDR notation for
this subblock is ::/96. We will discuss more about this address in Chapter 27.

A mapped address comprises 80 bits of zero, followed by 16 bits of one, fol-
lowed by the 32-bit IPv4 address. It is used when a computer that has migrated to IPv6

Figure 26.8 Loopback address

The loopback address in IPv6 is ::1/128.
It should never be used as a destination address.

Figure 26.9 Compatible address

00000000 00................00000000001

8 bits 120 bits

Prefix Suffix

00000000

32 bits96 bits

IPv4 addressAll 0s

for76042_ch26.fm Page 776 Thursday, February 19, 2009 9:22 AM

CHAPTER 26 IPV6 ADDRESSING 777

wants to send a packet to a computer still using IPv4. The packet travels mostly through
IPv6 networks but is finally delivered to a host that uses IPv4. For example, the IPv4
address 2.13.17.14 (in dotted decimal format) becomes 0::FFFF:2.13.17.14 (in hexadeci-
mal colon format). The IPv4 address is prepended with 16 ones and 80 zeros to create a
128-bit IPv6 address (see Section 27.3 on Transition Strategies). Figure 26.10 shows a
mapped address.

A very interesting point about mapped and compatible addresses is that they are
designed such that, when calculating the checksum, one can use either the embedded
address or the total address because extra 0s or 1s in multiples of 16 do not have any
effect in checksum calculation. This is important for UDP and TCP, which use a
pseudoheader to calculate the checksum because the checksum calculation is not
affected if the address of the packet is changed from IPv6 to IPv4 by a router.

Global Unicast Block

This is the main block used for unicast communication between hosts in the Internet.
We will discuss this block later in full detail to show how it will be used in the Internet
to provide hierarchical addressing.

Unique Local Unicast Block

We discussed private addresses in Chapter 4 for IPv4 protocol. We discussed that some
blocks in the IPv4 address space were reserved for private addressing. IPv6 uses two
large blocks for private addressing: one at the site level and one at the link level. We
discuss the first in this section and the second in the next. (See Figure 26.11.)

A subblock in a unique local unicast block can be privately created and used by a
site. The packet carrying this type of address as the destination address is not expected
to be routed. This type of address has the block identifier 1111 110, the next bit can be
0 or 1 to define how the address is selected (locally or by an authority). The next 40 bits
are selected by the site using a randomly generated number of length 40 bits. This
means that the total of 48 bits defines a subblock that looks like a global unicast

Figure 26.10 Mapped address

Figure 26.11 Unique local unicast block

00000000

32 bits80 bits 16 bits

IPv4 addressAll 0s All 1s

64 bits
Interface IDSubnet IDRandom number

40 bits 16 bits
0 or 1

n = 48 bits

1111110

for76042_ch26.fm Page 777 Thursday, February 19, 2009 9:22 AM

778 PART 5 NEXT GENERATION

address. The 40-bit random number makes the probability of duplication of the address
extremely small. Note the similarity between the format of these addresses and the glo-
bal unicast address we discuss later in the chapter.

Link Local Block

The second block designed for private addresses is link local block. A subblock in this
block can be used as a private address in a network. This type of address has the block
identifier 1111111010. The next 54 bits are set to zero. The last 64 bits can be changed
to define the interface for each computer (see Figure 26.12). Note the similarity
between the format of these addresses and the global unicast address we discuss later in
the chapter.

Multicast Block

We discussed multicast addresses of IPv4 in Chapter 4. Multicast addresses are used to
define a group of hosts instead of just one. In IPv6 a large block of addresses are
assigned for multicasting. All these addresses use the prefix 11111111. The second
field is a flag that defines the group address as either permanent or transient. A perma-
nent group address is defined by the Internet authorities and can be accessed at all
times. A transient group address, on the other hand, is used only temporarily. Systems
engaged in a teleconference, for example, can use a transient group address. The third
field defines the scope of the group address. Many different scopes have been defined,
as shown in Figure 26.13.

26.3 GLOBAL UNICAST ADDRESSES
This block in the address space that is used for unicast (one-to-one) communication
between two hosts in the Internet is called global unicast address block. CIDR notation
for the block is 2000::/3, which means that the three leftmost bits are the same for all

Figure 26.12 Link local address

Figure 26.13 Multicast address

64 bits
Interface IDAll 0’sAll 0’s

38 bits 16 bits

n = 48 bits

1111111010

Group ID
112 bits

Values in Hex
Values in Hex

4 4
ScopeFlag

8 bits
11111111

0: Permanent
1: Transient

0: Reserved
1: Node local
2: Link local
4: Admin. local

5: Site local
8: Org. local
E: Global
F: Reserved

for76042_ch26.fm Page 778 Thursday, February 19, 2009 9:22 AM

CHAPTER 26 IPV6 ADDRESSING 779

addresses in this block (001). The size of this block is 2125 bits, which is more than
enough for the Internet expansion in the many years to come.

Three Levels of Hierarchy
An address in this block is divided into three parts: global routing prefix, subnet identi-
fier, and interface identifier, as shown in Figure 26.14.

Recommended length of the different parts are shown in Table 26.2.

Global Routing Prefix

The first 48 bits of a global unicast address are called global routing prefix. These
48 bits are used to route the packet through the Internet to the organization site
such as ISP that owns the block. Since the first three bits in this part is fixed (001), the
rest of the 45 bits can defined up to 245 sites (a private organization or an ISP). The glo-
bal routers in the Internet route a packet to its destination site based on the value of n.

Subnet Identifier

The next 16 bits defines a subnet in an organization. This means that an organization
can have up to 216 = 6553 subnets, which is more than enough.

Interface Identifier

The last 64 bits define the interface identifier. The interface identifier is similar to hostid
in IPv4 addressing although the term interface identifier is a better choice because, as we
discussed in Chapter 5, the host identifier actually defines the interface not the host. If
the host is moved from one interface to another, its IP address needs to be changed.

In IPv4 addressing, there is not a specific relation between the hostid (at the IP
level) and physical or MAC address (at the data link layer) because the physical address
is normally much longer than the hostid. For example, using the Ethernet technology,
the physical address is 48 bits while the hostid is less than 32 bits. The IPv6 addressing
allows this opportunity. A physical address whose length is less than 64 bits can be
embedded as the whole or part of the interface identifier, eliminating the mapping pro-
cess. Two common physical addressing scheme can be considered for this purpose: the
64-bit extended unique identifier (EUI-64) defined by IEEE and the 48-bit physical
address defined by Ethernet.

Figure 26.14 Global unicast address

Table 26.2 Recommended Length of Different Parts in Unicast Addressing

Block Assignment Length
Global routing prefix (n) 48 bits
Subnet identifier (128 − n − m) 16 bits
Interface identifier (m) 64 bits

Interface identifierGlobal routing prefix Subnet identifier

128 _ n _ m bitsn bits m bits

for76042_ch26.fm Page 779 Thursday, February 19, 2009 9:22 AM

780 PART 5 NEXT GENERATION

Mapping EUI-64 To map a 64-bit physical address, the global/local bit of this for-
mat needs to be changed from 0 to 1 (local to global) to define an interface address, as
shown in Figure 26.15.

Mapping Ethernet MAC Address Mapping a 48-bit Ethernet address into a 64-bit
interface identifier is more involved. We need to change the local/global bit to 1 and
insert an additional 16 bits. The additional 16 bits are defined as 15 ones followed by
one zero, or FFFE16. Figure 26.16 shows the mapping.

Example 26.11

Find the interface identifier if the physical address in the EUI is (F5-A9-23-EF-07-14-7A-D2)16
using the format we defined for Ethernet addresses.

Solution
We only need to change the seventh bit of the first octet from 0 to 1 and change the format to
colon hex notation. The result is F7A9:23EF:0714:7AD2.

Example 26.12

Find the interface identifier if the Ethernet physical address is (F5-A9-23-14-7A-D2)16 using the
format we defined for Ethernet addresses.

Solution
We only need to change the seventh bit of the first octet from 0 to 1, insert two octet FFFE16 and
change the format to colon hex notation. The result is F7A9:23FF:FE14:7AD2 in colon hex.

Example 26.13

An organization is assigned the block 2000:1456:2474/48. What is the CIDR notation for the
blocks in the first and second subnets in this organization.

Figure 26.15 Mapping for EUI-64

Figure 26.16 Mapping for Ethernet MAC

8 bits 8 bits 8 bits 8 bits

64 bits

8 bits 8 bits 8 bits 8 bits

0

1

EUI-64

Interface
identifier

Ethernet
MAC address

8 bits 8 bits 8 bits 8 bits

64 bits

48 bits
8 bits 8 bits

Interface
identifier

added bits

0

1 11111111 11111110

for76042_ch26.fm Page 780 Thursday, February 19, 2009 9:22 AM

CHAPTER 26 IPV6 ADDRESSING

781

Solution

Theoretically, the first and second subnets should use the block with subnet identifier 0001

16

 and
0002

16

. This means that the blocks are 2000:1456:2474:0000/64 and 2000:1456:2474:0001/64.

Example 26.14

An organization is assigned the block 2000:1456:2474/48. What is the IPv6 address of an inter-
face in the third subnet if the IEEE physical address of the computer is (

F5-A9-23-14-7A-D2

)

16

.

Solution

The interface identifier for this interface is

F7A9:23FF:FE14:7AD2

 (see Example 26.12). If
we this identifier to the global prefix and the subnet identifier, we get:

26.4 AUTOCONFIGURATION

One of the interesting features of IPv6 addressing is the

autoconfiguration

 of hosts. As
we discussed in IPv4, the host and routers are originally configured manually by the
network manager. However, the Dynamic Host Configuration Protocol, DHCP, can be
used to allocate an IPv4 address to a host that joins the network. In IPv6, DHCP proto-
col can still be used to allocate an IPv6 address to a host, but a host can also configure
itself.

When a host in IPv6 joins a network, it can configure itself using the following
process:

1.

The host first creates a link local address for itself. This is by taking the 10-bit link
local prefix (1111 1110 10), adding 54 zeros, and adding the 64-bit interface iden-
tifier, which any host knows how to generate it from its interface card. The result is
a 128-bit link local address.

2.

The host then tests to see if this link local address is unique and not used by other
hosts. Since the 64-bit interface identifier is supposed to be unique, the link local
address generated is unique with a high probability. However, to be sure, the host
sends a

neighbor solicitation message

(see Chapter 28) and waits for

neighbor
advertisement message.

 If any host in the subnet is using this link local address, the
process fails and the host cannot autoconfigure itself; it needs to use other means
such as DHCP protocol for this purpose.

3.

If the uniqueness of the link local address is passed, the host stores this address as
its link-local address (for private communication), but it still needs a global unicast
address. The host then sends a

router solicitation message

(see Chapter 28) to a
local router. If there is a router running on the network, the host receives a

router
advertisement message

 that includes the global unicast prefix and the subnet prefix
that the host needs to add to its interface identifier to generate its global unicast
address. If the router cannot help the host with the configuration, it informs the
host in the

router advertisement message

(by setting a flag). The host then needs to
use other means for configuration.

2000:1456:2474:0003:F7A9:23FF:FE14:7AD2/128

for76042_ch26.fm Page 781 Monday, February 23, 2009 1:37 PM

782

PART 5 NEXT GENERATION

Example 26.15

Assume a host with Ethernet address (

F5-A9-23-11-9B-E2

)

16

has joined the network. What
would be its global unicast address if the global unicast prefix of the organization is
3A21:1216:2165 and the subnet identifier is A245:1232.

Solution

The host first creates its interface identifier as

F7A9:23FF:FE11:9BE2

using the Ethernet
address read from its card. The host then creates its link-local address as

Assuming that this address is unique, the host sends a router solicitation message and receives the
router advertisement message that announces the combination of global unicast prefix and the
subnet identifier as 3A21:1216:2165:A245:1232. The host then appends its interface identifier to
this prefix to find and store its global unicast address as:

26.5 RENUMBERING

To allow sites to change the service provider,

renumbering

 of the address prefix (

n

)
was built into IPv6 addressing. As we discussed before, each site is given a prefix by
the service provider to which it is connected. If the site changes the provider, the
address prefix needs to be changed. A router to which the site is connected can adver-
tise a new prefix and let the site use the old prefix for a short time before disabling it. In
other words, during the transition period, a site has two prefixes. The main problem in
using the renumbering mechanism is the support of the DNS, which needs to propagate
the new addressing associated with a domain name. A new protocol for DNS, called
Next Generation DNS, is under study to provide support for this mechanism.

26.6 FURTHER READING

For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books

Several books give thorough coverage of IPv6. We recommend [Com 06] and [Los 04].

RFCs

Several RFCs show updates on IPv6 addressing, including RFC 2375, RFC 2526,
RFC 3513, RFC 3587, RFC 3789, and RFC 4291.

FE80::F7A9:23FF:FE11:9BE2

3A21:1216:2165:A245:1232:F7A9:23FF:FE11:9BE2

for76042_ch26.fm Page 782 Monday, February 23, 2009 1:39 PM

CHAPTER 26 IPV6 ADDRESSING

783

26.7 KEY TERMS

26.8 SUMMARY

❑

IPv6, the latest version of the Internet Protocol, has a 128-bit address space. IPv6
uses hexadecimal colon notation with abbreviation methods available. There are
three types of addresses: unicast, anycast, and multicast. The variable-type prefix
field defines the address type or purpose.

❑

To make addresses more readable, IPv6 specifies colon hexadecimal notation. In
this notation, 128 bits are divided into eight sections, each 2 bytes (four hexadeci-
mal digits) in length. To abbreviate an address, the leading zeros of a section can
be omitted. Zero compression, can also be applied. IPv6 also allows CIDR
notation.

❑

In IPv6, a destination address can belong to one of the three categories: unicast,
anycast, and multicast. A unicast address defines a single interface. An anycast
address defines a group of computers only one copy of a packet is sent to one of
the computers in the group. A multicast address also defines a group of computers;
each member of the group receives a copy of the packet.

❑

The address space of IPv6 is divided into several blocks of varying size and each
block is allocated for a special purpose. Most of the blocks are still unassigned and
have been left aside for future use. Some blocks are used for reserved addresses.
The most important block is the one with prefix 001, which is used for global uni-
cast addressing (similar to class A, B, C in IPv4 addressing).

❑

Two interesting features of IPv6 addressing are autoconfiguration and numbering.
In IPv6, a host can be autoconfigured itself in addition to using DHCP. Renumber-
ing allows a site to change its connectivity to another provider and automatically
receive a new prefix.

26.9 PRACTICE SET

Exercises

1.

Show the unabbreviated colon hex notation for the following IPv6 addresses:

a.

An address with 64 0s followed by 32 two-bit (01)s.

b.

An address with 64 0s followed by 32 two-bit (10)s.

anycast address link local block
autoconfiguration mapped address
colon hexadecimal notation renumbering
compatible address unique local unicast block
link local address zero compression

for76042_ch26.fm Page 783 Thursday, February 19, 2009 3:28 PM

784

PART 5 NEXT GENERATION

c.

An address with 64 two-bit (01)s.

d.

An address with 32 four-bit (0111)s.

2.

Show the zero contraction version of addresses in Exercise 1.

3.

Show abbreviations for the following addresses:

a.

0000:FFFF:FFFF:0000:0000:0000:0000:0000

b.

1234:2346:3456:0000:0000:0000:0000:FFFF

c.

0000:0001:0000:0000:0000:FFFF:1200:1000

d.

0000:0000:0000:0000:FFFF:FFFF:24.123.12.6

4.

Decompress the following addresses and show the complete unabbreviated IPv6
address:

a.

::2222

b.

1111::

c.

0:1:2::

d.

B:A:CC::1234:A

5.

Show the original (unabbreviated) form of the following addresses:

a.

0::2

b.

0:23::0

c.

0:A::3

d.

123::12:23

6.

What is the corresponding block or subblock associated with each of the following
addresses based on Table 26.1:

a.

FE80::12

b.

FEC0::24A2

c.

FF02::0

d.

0::01

7.

What is the corresponding block or subblock associated with each of the following
addresses based on Table 26.1:

a.

0::0

b.

0::FFFF:0:0

c.

582F:1234::2222

d.

4821::14:22

8.

Find the interface identifier if the physical address of the EUI is (F5-A9-23-AA-
07-14-7A-23)

16

 using the format we defined for Ethernet addresses.

9.

Find the interface identifier if the Ethernet physical address is (F5-A9-23-12-7A-
B2)

16

 using the format we defined for Ethernet addresses.

10.

An organization is assigned the block 2000:1234:1423/48. What is the CIDR nota-
tion for the blocks in the first and second subnets in this organization?

11.

An organization is assigned the block 2000:1110:1287/48. What is the IPv6
address of an interface in the third subnet if the IEEE physical address of the com-
puter is (F5-A9-23-14-7A-D2)

16

.

12.

Using the CIDR notation, show the IPv6 address compatible to the IPv4 address
129.6.12.34.

for76042_ch26.fm Page 784 Thursday, February 19, 2009 3:28 PM

CHAPTER 26 IPV6 ADDRESSING 785

13. Using the CIDR notation, show the IPv6 address mapped to the IPv4 address
129.6.12.34.

14. Using the CIDR notation, show the IPv6 loopback address.

15. Using the CIDR notation, show the link local address in which the node identifier
is 0::123/48.

16. Using the CIDR notation, show the site local address in which the node identifier is
0::123/48.

for76042_ch26.fm Page 785 Thursday, February 19, 2009 9:22 AM

C H A P T E R

27

786

27

IPv6 Protocol

n Chapter 26, we discussed IPv6 addressing space and showed how this
space can remove the depletion problems we have encountered in IPv4.

The address change requires that the format of the IP datagram to be
changed to accommodate 128-bit addresses. As we will see in this chap-
ter, the new IPv6 protocol has also responded to some problems encoun-
tered during the operation of IPv4 in the last few decades. This chapter is
totally devoted to the format of IPv6 datagram. In the next chapter, we
discuss how ICMPv4 has also been changed to ICMPv6 to respond to
some shortcoming in this protocol.

OBJECTIVES

The chapter has several objectives:

❑

To give the format of an IPv6 datagram composed of a base header
and a payload.

❑

To discuss different fields used in an IPv6 datagram based header and
compare them with the fields in IPv4 datagram.

❑

To show how the options in IPv4 header are implemented using the
extension header in IPv6.

❑

To show how security is implemented in IPv6.

❑

To discuss three strategies used to handle the transition from IPv4 to
IPv6: dual stack, tunneling, and header translation.

I

for76042_ch27.fm Page 786 Thursday, February 19, 2009 9:24 AM

787

27.1 INTRODUCTION

In this introductory section, we discuss two topics: rationale for a new protocol and the
reasons for delayed adoption.

Rationale for Change

We can mention several reasons for the need of a new protocol,

Internet Protocol
version 6 (IPv6)

. The main reason was the address depletion that we discussed in the
previous chapter. Other reasons are related to the slowness of the process due to some
unnecessary processing, the need for new options, support for multimedia, and the des-
perate need for security.

IPv6 protocol responds to the above issues using the following main changes in the
protocol:

❑

Larger address space.

 An IPv6 address is 128 bits long. Compared with the 32-bit
address of IPv4, this is a huge (2

96

 times) increase in the address space.

❑

Better header format.

 IPv6 uses a new header format in which options are sepa-
rated from the base header and inserted, when needed, between the base header
and the upper-layer data. This simplifies and speeds up the routing process because
most of the options do not need to be checked by routers.

❑

New options.

 IPv6 has new options to allow for additional functionalities.

❑

Allowance for extension.

 IPv6 is designed to allow the extension of the protocol if
required by new technologies or applications.

❑

Support for resource allocation.

 In IPv6, the type-of-service field has been
removed, but two new fields,

traffic class

 and

flow label

 have been added to enable
the source to request special handling of the packet. This mechanism can be used
to support traffic such as real-time audio and video.

❑

Support for more security.

 The encryption and authentication options in IPv6
provide confidentiality and integrity of the packet.

Reason for Delay in Adoption

The adoption of IPv6 has been slow. The reason is that the original motivation for its
development, depletion of IPv4 addresses, has been slowed down because of three
short-term remedies: classless addressing, use of DHCP for dynamic address alloca-
tion, and NAT. However, the fast-spreading use of the Internet, and new services, such
as mobile IP, IP telephony, and IP-capable mobile telephony, may require the total
replacement of IPv4 with IPv6. It was predicted that all hosts in the world will be using
IPv6 in 2010, but this looks unlikely at the time the book goes to press.

for76042_ch27.fm Page 787 Thursday, February 19, 2009 9:24 AM

788

PART 5 NEXT GENERATION

27.2 PACKET FORMAT

The IPv6 packet is shown in Figure 27.1. Each packet is composed of a mandatory
base header followed by the payload. The payload consists of two parts: optional
extension headers and data from an upper layer. The base header occupies 40 bytes,
whereas the extension headers and data from the upper layer contain up to 65,535 bytes
of information.

Base Header

Figure 27.2 shows the

base header

 with its eight fields.

These fields are as follows:

❑

Version.

 This 4-bit field defines the version number of the IP. For IPv6, the value
is 6.

❑

Traffic Class.

 This 8-bit field is used to distinguish different payloads with differ-
ent delivery requirements. It replaces the service class field in IPv4.

❑

Flow label.

 The

flow label

 is a 20-bit field that is designed to provide special han-
dling for a particular flow of data. We will discuss this field later.

❑

Payload length.

 The 2-byte payload length field defines the length of the IP data-
gram excluding the base header.

Figure 27.1

IPv6 datagram

Figure 27.2

Format of the base header

Extension headers
(optional) Data packet from upper layer

40 bytes Up to 65,535 bytes

PayloadPayloadBase header

0 4 12 16

32 bits = 4 bytes

24 31

Source address
(128 bits = 16 bytes)

Destination address
(128 bits = 16 bytes)

Flow labelTraffic ClassVER

Hop limitNext headerPayload length

for76042_ch27.fm Page 788 Thursday, February 19, 2009 9:24 AM

CHAPTER 27 IPV6 PROTOCOL

789

❑

Next header.

 The

next header

 is an 8-bit field defining the header that follows the
base header in the datagram. The next header is either one of the optional exten-
sion headers used by IP or the header of an encapsulated packet such as UDP or
TCP. Each extension header also contains this field. Table 27.1 shows the values of
next headers. Note that this field in version 4 is called the

protocol

.

❑

Hop limit.

 This 8-bit

hop limit

 field serves the same purpose as the TTL field in
IPv4.

❑

Source address.

 The source address field is a 16-byte (128-bit) Internet address
that identifies the original source of the datagram.

❑

Destination address.

 The

destination address field is a 16-byte (128-bit) Internet
address that usually identifies the final destination of the datagram. However, if
source routing is used, this field contains the address of the next router.

Flow Label

The IP protocol was originally designed as a connectionless protocol. However, as we
discussed in Chapters 4 and 6, the tendency is to use the IP protocol as a connection-
oriented protocol. The MPLS technology described in Chapter 6 allows us to encapsulate
an IPv4 packet in an MPLS header using a label field. In version 6, the

flow label

 has
been directly added to the format of the IPv6 datagram to allow us to use IPv6 as as
connection-oriented protocol.

To a router, a flow is a sequence of packets that share the same characteristics, such
as traveling the same path, using the same resources, having the same kind of security,
and so on. A router that supports the handling of flow labels has a flow label table. The
table has an entry for each active flow label; each entry defines the services required by
the corresponding flow label. When the router receives a packet, it consults its flow
label table to find the corresponding entry for the flow label value defined in the packet.
It then provides the packet with the services mentioned in the entry. However, note that
the flow label itself does not provide the information for the entries of the flow label
table; the information is provided by other means such as the hop-by-hop options or
other protocols.

In its simplest form, a flow label can be used to speed up the processing of a packet
by a router. When a router receives a packet, instead of consulting the routing table and
going through a routing algorithm to define the address of the next hop, it can easily
look in a flow label table for the next hop.

In its more sophisticated form, a flow label can be used to support the transmission
of real-time audio and video. Real-time audio or video, particularly in digital form,

Table 27.1

Next Header Codes

Code Next Header Code Next Header

0 Hop-by-hop option 44 Fragmentation
2 ICMP 50 Encrypted security payload
6 TCP 51 Authentication

17 UDP 59 Null (No next header)
43 Source routing 60 Destination option

for76042_ch27.fm Page 789 Thursday, February 19, 2009 9:24 AM

790

PART 5 NEXT GENERATION

requires resources such as high bandwidth, large buffers, long processing time, and so
on. A process can make a reservation for these resources beforehand to guarantee that
real-time data will not be delayed due to a lack of resources. The use of real-time data
and the reservation of these resources require other protocols such as Real-Time Protocol
(RTP) and Resource Reservation Protocol (RSVP) in addition to IPv6 (see Chapter 25).

To allow the effective use of flow labels, three rules have been defined:

1.

The flow label is assigned to a packet by the source host. The label is a random
number between 1 and 2

24

– 1. A source must not reuse a flow label for a new flow
while the existing flow is still alive.

2.

If a host does not support the flow label, it sets this field to zero. If a router does not
support the flow label, it simply ignores it.

3.

All packets belonging to the same flow have the same source, same destination,
same priority, and same options.

Comparison between IPv4 and IPv6 Headers

The following shows the comparison between IPv4 and IPv6 headers.

❑

The header length field is eliminated in IPv6 because the length of the header is
fixed in this version.

❑

The service type field is eliminated in IPv6. The traffic class and flow label fields
together take over the function of the service type field.

❑

The total length field is eliminated in IPv6 and replaced by the payload length
field.

❑

The identification, flag, and offset fields are eliminated from the base header in
IPv6. They are included in the fragmentation extension header.

❑

The TTL field is called hop limit in IPv6.

❑

The protocol field is replaced by the next header field.

❑

The header checksum is eliminated because the checksum is provided by upper
layer protocols; it is therefore not needed at this level.

❑

The option fields in IPv4 are implemented as extension headers in IPv6.

Extension Headers

The length of the base header is fixed at 40 bytes. However, to give more functionality
to the IP datagram, the base header can be followed by up to six

extension headers.

Many of these headers are options in IPv4. Figure 27.3 shows the extension header
format.

Six types of extension headers have been defined. These are hop-by-hop option,
source routing, fragmentation, authentication, encrypted security payload, and destina-
tion option (see Figure 27.4).

Hop-by-Hop Option

The

hop-by-hop option

is used when the source needs to pass information to all rout-
ers visited by the datagram. For example, perhaps routers must be informed about

for76042_ch27.fm Page 790 Thursday, February 19, 2009 9:24 AM

CHAPTER 27 IPV6 PROTOCOL

791

certain management, debugging, or control functions. Or, if the length of the datagram
is more than the usual 65,535 bytes, routers must have this information. Figure 27.5
shows the format of the hop-by-hop option header. The first field defines the next
header in the chain of headers. The header length defines the number of bytes in the
header (including the next header field). The rest of the header contains different
options.

 So far, only three hop-by-hop options have been defined:

Pad1, PadN,

and

jumbo
payload.

 Figure 27.6 shows the general format of the option.

❑

Pad1.

 This option is 1 byte long and is designed for alignment purposes. Some
options need to start at a specific bit of the 32-bit word (see the jumbo payload
description to come). If an option falls short of this requirement by exactly one

Figure 27.3

Extension header format

Figure 27.4

Extension header types

Figure 27.5

Hop-by-hop option header format

Flow labelTraffic Class

Extension
Header

Base
Header

VER

Hop limitNext headerPayload length

Destination address

Source address

Next header Header length

Next header Header length

Next header Header length

Extension
headers

Hop-by-hop Source routing Fragmentation Authentication ESPDestination

options
Next header Header length

for76042_ch27.fm Page 791 Thursday, February 19, 2009 9:24 AM

792

PART 5 NEXT GENERATION

byte, Pad1 is added to make up the difference. Pad1 contains neither the option
length field nor the option data field. It consists solely of the option code field with
all bits set to 0 (action is 00, the change bit is 0, and type is 00000). Pad1 can be
inserted anywhere in the hop-by-hop option header (see Figure 27.7).

❑

PadN.

 PadN is similar in concept to Pad1. The difference is that PadN is used
when 2 or more bytes are needed for alignment. This option consists of 1 byte of
option code, 1 byte of the option length, and a variable number of zero padding
bytes. The value of the option code is 1 (action is 00, the change bit is 0, and
type is 00001). The option length contains the number of padding bytes. See
Figure 27.8.

❑

Jumbo payload.

 Recall that the length of the payload in the IP datagram can be a
maximum of 65,535 bytes. However, if for any reason a longer payload is
required, we can use the jumbo payload option to define this longer length. The
jumbo payload option must always start at a multiple of 4 bytes plus 2 from the

Figure 27.6

The format of options in a hop-by-hop option header

Figure 27.7

Pad1

Figure 27.8

PadN

Code
8 bits

Length
8 bits

Data
(Variable length)

C: Change in option value

Type

Action C Type

1 bit2 bits 5 bits 0 Does not change in transit
1 May be changed in transit

Action: if the option not recognized
00 Skip this option
01 Discard datagram, no more action
10 Discard datagram and send ICMP message
11 Discard datagram send ICMP message if not multicast

00000 Pad1
00001 PadN
00010 Jumbo payload

Code
00000000

a. Pad1

b. Used for padding

Pad1
 Options

Rest of the payload

1 byte Variable

Code Length Data

00000001 All 0s

1 byte

for76042_ch27.fm Page 792 Thursday, February 19, 2009 9:24 AM

CHAPTER 27 IPV6 PROTOCOL

793

beginning of the extension headers. The jumbo payload option starts at the (4

n

+

 2)
byte, where

n

is a small integer. See Figure 27.9.

Destination Option

The

destination option

 is used when the source needs to pass information to the desti-
nation only. Intermediate routers are not permitted access to this information. The
format of the destination option is the same as the hop-by-hop option (refer back to
Figure 27.5). So far, only the Pad1 and PadN options have been defined.

Source Routing

The source routing extension header combines the concepts of the strict source route
and the loose source route options of IPv4. The source routing header contains a mini-
mum of seven fields (see Figure 27.10). The first two fields, next header and header
length, are identical to that of the hop-by-hop extension header. The type field defines
loose or strict routing. The addresses left

field indicates the number of hops still needed
to reach the destination. The strict/loose mask field determines the rigidity of routing. If
set to strict, routing must follow exactly as indicated by the source. If, instead, the mask
is loose, other routers may be visited in addition to those in the header.

The destination address in source routing does not conform to our previous defini-
tion (the final destination of the datagram). Instead, it changes from router to router. For
example, in Figure 27.11, Host A wants to send a datagram to Host B using a specific
route: A to R1 to R2 to R3 to B. Notice the destination address in the base headers. It is
not constant as you might expect. Instead, it changes at each router. The addresses in
the extension headers also change from router to router.

Fragmentation

The concept of

fragmentation

 is the same as that in IPv4. However, the place where
fragmentation occurs differs. In IPv4, the source or a router is required to fragment if

Figure 27.9

Jumbo payload

Figure 27.10

Source routing

Code Length

11000010 00000100

Length of jumbo payload
4 bytes

Next header Header length Type Addresses left
Strict/loose mask

First address
Reserved

Second address

Last address

for76042_ch27.fm Page 793 Thursday, February 19, 2009 9:24 AM

794

PART 5 NEXT GENERATION

the size of the datagram is larger than the MTU of the network over which the datagram
travels. In IPv6, only the original source can fragment. A source must use a

Path MTU
Discovery technique

 to find the smallest MTU supported by any network on the path.
The source then fragments using this knowledge.

If the source does not use a Path MTU Discovery technique, it fragments the data-
gram to a size of 1,280 bytes or smaller. This is the minimum size of MTU required for
each network connected to the Internet. Figure 27.12 shows the format of the fragmen-
tation extension header.

Authentication

The

authentication

 extension header has a dual purpose: it validates the message
sender and ensures the integrity of data. The former is needed so the receiver can be
sure that a message is from the genuine sender and not from an imposter. The latter is
needed to check that the data is not altered in transition by some hacker.

The format of the authentication extension header is shown in Figure 27.13. The
security parameter index field defines the algorithm used for authentication. The
authentication data field contains the actual data generated by the algorithm. We will
discuss authentication in Chapter 29.

Many different algorithms can be used for authentication. Figure 27.14 outlines the
method for calculating the authentication data field. The sender passes a 128-bit security
key, the entire IP datagram, and the 128-bit security key again to the algorithm. Those
fields in the datagram with values that change during transmission (for example, hop count)

Figure 27.11

Source routing example

Figure 27.12

Fragmentation

Source: A
Destination: R1

Left: 3
R2
R3
B

Source: A
Destination: R2

Left: 2
R1
R3
B

Source: A
Destination: R3

Left: 1
R1
R2
B

Source: A
Destination: B

Left: 0
R1
R2
R3

A

R1 R3R2

B

Network Network Network Network

Next header Header length Fragmentation offset
Fragment identification

0 M

for76042_ch27.fm Page 794 Thursday, February 19, 2009 9:24 AM

CHAPTER 27 IPV6 PROTOCOL

795

are set to zero. The datagram passed to the algorithm includes the authentication header
extension, with the authentication data field set to zero. The algorithm creates authentica-
tion data which is inserted into the extension header prior to datagram transmission.

The receiver functions in a similar manner. It takes the secret key and the received
datagram (again, with changeable fields set to zero) and passes them to the authentication
algorithm. If the result matches that in the authentication data field, the IP datagram is
authentic; otherwise, the datagram is discarded.

Encrypted Security Payload

The encrypted security payload (ESP) is an extension that provides confidentiality
and guards against eavesdropping. Figure 27.15 shows the format. The security
parameter index field is a 32-bit word that defines the type of encryption/decryption
used. The other field contains the encrypted data along with any extra parameters
needed by the algorithm. Encryption can be implemented in two ways: transport
mode or tunnel mode, which we discuss when we discuss IPSec in Chapter 30.

Comparison between IPv4 and IPv6
The following shows a quick comparison between the options used in IPv4 and the
options used in IPv6 (as extension headers).

Figure 27.13 Authentication

Figure 27.14 Calculation of authentication data

Figure 27.15 Encrypted security payload

Security parameter index

Authentication data

128-bit security key

128-bit authentication dataAuthentication
algorithm

128-bit security key

 IP datagram with
changeable and

authentication fields
set to zero

Security parameter index

Encrypted data

for76042_ch27.fm Page 795 Thursday, February 19, 2009 9:24 AM

796 PART 5 NEXT GENERATION

❑ The no-operation and end-of-option options in IPv4 are replaced by Pad1 and
PadN options in IPv6.

❑ The record route option is not implemented in IPv6 because it was not used.

❑ The timestamp option is not implemented because it was not used.

❑ The source route option is called the source route extension header in IPv6.

❑ The fragmentation fields in the base header section of IPv4 have moved to the frag-
mentation extension header in IPv6.

❑ The authentication extension header is new in IPv6.

❑ The encrypted security payload extension header is new in IPv6.

27.3 TRANSITION FROM IPv4 TO IPv6
Because of the huge number of systems on the Internet, the transition from IPv4
to IPv6 cannot happen suddenly. It will take a considerable amount of time before
every system in the Internet can move from IPv4 to IPv6. The transition must be
smooth to prevent any problems between IPv4 and IPv6 systems. Three strategies have
been devised by the IETF to help the transition (see Figure 27.16).

Dual Stack
It is recommended that all hosts, before migrating completely to version 6, have a dual
stack of protocols. In other words, a station must run IPv4 and IPv6 simultaneously until
all the Internet uses IPv6. See Figure 27.17 for the layout of a dual-stack configuration.

Figure 27.16 Three transition strategies

Figure 27.17 Dual stack

Transition
strategies

Tunneling Header translationDual stack

IPv4 IPv6

Underlying
LAN or WAN

technology

Transport and
application layers

To IPv4 system To IPv6 system

for76042_ch27.fm Page 796 Thursday, February 19, 2009 9:24 AM

CHAPTER 27 IPV6 PROTOCOL 797

To determine which version to use when sending a packet to a destination, the
source host queries the DNS. If the DNS returns an IPv4 address, the source host sends
an IPv4 packet. If the DNS returns an IPv6 address, the source host sends an IPv6 packet.

Tunneling
Tunneling is a strategy used when two computers using IPv6 want to communicate
with each other and the packet must pass through a region that uses IPv4. To pass
through this region, the packet must have an IPv4 address. So the IPv6 packet is encap-
sulated in an IPv4 packet when it enters the region, and it leaves its capsule when it
exits the region. It seems as if the IPv6 packet goes through a tunnel at one end and
emerges at the other end. To make it clear that the IPv4 packet is carrying an IPv6
packet as data, the protocol value is set to 41. Tunneling is shown in Figure 27.18.

Header Translation
Header translation is necessary when the majority of the Internet has moved to IPv6
but some systems still use IPv4. The sender wants to use IPv6, but the receiver does not
understand IPv6. Tunneling does not work in this situation because the packet must be
in the IPv4 format to be understood by the receiver. In this case, the header format must
be totally changed through header translation. The header of the IPv6 packet is con-
verted to an IPv4 header (see Figure 27.19).

Header translation uses the mapped address to translate an IPv6 address to an IPv4
address. The following lists some rules used in transforming an IPv6 packet header to
an IPv4 packet header.

Figure 27.18 Tunneling strategy

Figure 27.19 Header translation strategy

IPv6
host

IPv4 region

IPv6
host Payload

IPv6 header

Payload

IPv6 header
Payload

IPv6 header

IPv4 header

Tunnel

IPv4
host

IPv6 region IPv4 region

Header
translation
done here

IPv6
host

Payload

IPv6 header

Payload

IPv4 header

for76042_ch27.fm Page 797 Thursday, February 19, 2009 9:24 AM

798 PART 5 NEXT GENERATION

❑ The IPv6 mapped address is changed to an IPv4 address by extracting the right-
most 32 bits.

❑ The value of the IPv6 priority field is discarded.

❑ The type of service field in IPv4 is set to zero.

❑ The checksum for IPv4 is calculated and inserted in the corresponding field.

❑ The IPv6 flow label is ignored.

❑ Compatible extension headers are converted to options and inserted in the IPv4
header. Some may have to be dropped.

❑ The length of IPv4 header is calculated and inserted into the corresponding field.

❑ The total length of the IPv4 packet is calculated and inserted in the corresponding
field.

27.4 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give thorough coverage of IPv6. We recommend [Com 06], [Los 04],
and [Tan 03].

RFCs
Several RFCs show updates on IPv6, including RFC 2460, RFC 2461, and RFC 2462.

27.5 KEY TERMS
attended bulk data traffic header translation
authentication hop limit
background data hop-by-hop option
base header Internet Protocol version 6 (IPv6)
destination option jumbo payload
dual stack next header
encrypted security payload (ESP) Pad1
encryption PadN
extension header Path MTU Discovery technique
flow label tunneling
fragmentation unattended data traffic

for76042_ch27.fm Page 798 Thursday, February 19, 2009 9:24 AM

CHAPTER 27 IPV6 PROTOCOL 799

27.6 SUMMARY
❑ An IPv6 datagram is composed of a base header and a payload. The 40-byte base

header consists of the version, priority, flow label, payload length, next header, hop
limit, source address, and destination address fields. The priority field is a measure
of the importance of a datagram. The flow label identifies the special-handling
needs of a sequence of packets.

❑ A payload consists of optional extension headers and data from an upper layer.
Extension headers add functionality to the IPv6 datagram. The hop-by-hop option
is used to pass information to all routers in the path. The source routing extension
is used when the source wants to specify the transmission path. The fragmentation
extension is used if the payload is a fragment of a message. The authentication
extension validates the sender of the message and protects the data from hackers.
The encrypted security payload extension provides confidentiality between sender
and receiver. The destination extension passes information from the source to the
destination exclusively.

❑ Three strategies used to handle the transition from version 4 to version 6 are dual
stack, tunneling, and header translation.

27.7 PRACTICE SET

Exercises
1. An IPv6 packet consists of the base header and a TCP segment. The length of data

is 320 bytes. Show the packet and enter a value for each field.

2. An IPv6 packet consists of a base header and a TCP segment. The length of data is
128,000 bytes (jumbo payload). Show the packet and enter a value for each field.

Research Activity
3. Find out why there are two security protocols (AH and ESP) in IPv6.

for76042_ch27.fm Page 799 Thursday, February 19, 2009 9:24 AM

C H A P T E R

28

800

28

ICMPv6

his is the last chapter in Part V of the book. After discussing the IPv6
addresses in Chapter 26 and the IPv6 datagrams in Chapter 27, we

discuss the ICMPv6 protocol in this chapter. ICMPv6 is a combination of
three protocols discussed for IPv4: ICMP, IGMP, and ARP. We first intro-
duce ICMPv6 and divide its messages into four broad categories. We then
briefly discuss the messages in each category.

OBJECTIVES

The chapter has several objectives:

❑

To introduce ICMPv6 and compare and contrast it with ICMPv4.

❑

To discuss error messages in ICMPv6 and compare and contrast
them with the error messages in ICMPv4.

❑

To discuss informational messages in ICMPv6 and compare and
contrast them with the informational messages in ICMPv4.

❑

To discuss neighbor discovery messages as part of the ND and IND
protocol.

❑

To discuss group membership messages as part of the MLDv2
protocol.

T

for76042_ch28.fm Page 800 Monday, February 23, 2009 8:41 PM

801

28.1 INTRODUCTION

Another protocol that has been modified in version 6 of the TCP/IP protocol suite is
ICMP. This new version,

Internet Control Message Protocol version 6

 (

ICMPv6

)

,

follows the same strategy and purposes of version 4. ICMPv6, however, is more
complicated than ICMPv4: some protocols that were independent in version 4 are now
part of ICMPv6 and some new messages have been added to make it more useful.
Figure 28.1 compares the network layer of version 4 to that of version 6. The ICMP,
ARP, and IGMP protocols in version 4 are combined into one single protocol, ICMPv6.

ICMPv6, like ICMPv4, is message-oriented; it uses messages to report errors, to get
information, probe a neighbor, or manage multicast communication. However, a few other
protocols are added to ICMPv6 to define the functionality and interpretation of the mes-
sages. Literature and RFCs use different strategies to group ICMPv6 messages. They
define some of these messages as ICMPv6 messages and some as ND messages or MLD
messages. We mention all of these messages as ICMPv6 messages, but we categorize them
according to their functions and the roles they play. In each category, we also mention and
describe the corresponding protocol that has been added for functionality and interpreta-
tion of the messages. Our reason for this taxonomy is that all messages have the same type
of format and the message types are handled by ICMPv6 protocols. We believe that other
protocols such as ND and MLD operate under the ICMPv6 protocol. With this justification
in mind, we define the taxonomy of ICMPv6 messages as shown in Figure 28.2.

Figure 28.1

Comparison of network layer in version 4 and version 6

Figure 28.2

Taxonomy of ICMPv6 messages

Network layer in version 4 Network layer in version 6

IPv4

ICMPIGMP

ARP

IPv6

ICMPv6

Informational
messages

Group
membership

messages

ND Protocol MLD Protocol

Neighbor
discovery
messages

Error
messages

ICMPv6
Messages

for76042_ch28.fm Page 801 Monday, February 23, 2009 8:41 PM

802

PART 5 NEXT GENERATION

 The figure shows that two groups of messages are sent and received under the con-
trol of ND protocol or MLD protocol.

28.2 ERROR MESSAGES

As we saw in our discussion of version 4, one of the main responsibilities of ICMP is to
report errors. Four types of errors are handled: destination unreachable, packet too big,
time exceeded, and parameter problems (see Figure 28.3). Note that the source-quenched
message, which is used to control congestion in version 4, is eliminated in this version
because the priority and flow label fields in IPv6 are supposed to take care of congestion.
The redirection message has moved from the error-reporting category to the neighbor-
discovery category, so we discuss it as part of the neighbor-discovery messages.

ICMPv6 forms an error packet, which is then encapsulated in an IPv6 datagram.
This is delivered to the original source of the failed datagram.

Destination-Unreachable Message

The concept of the destination unreachable message is the same as described for
ICMPv4. When a router cannot forward a datagram or a host cannot deliver the con-
tent of the datagram to the upper layer protocol, the router or the host discards the
datagram and sends a

destination-unreachable

 error message to the source host.
Figure 28.4 shows the format of the destination-unreachable message.

The code field for this type specifies the reason for discarding the datagram and
explains exactly what has failed:

❑

Code 0.

 No path to destination.

❑

Code 1.

 Communication with the destination is administratively prohibited.

Figure 28.3

Error-reporting messages

Figure 28.4

Destination-unreachable message

Packet too
big

Parameter
problems

Time
exceeded

Destination
unreachable

Error
messages

As much of received datagram as possible without exceeding
the maximum IPv6 MTU

Code: 0 to 6 ChecksumType: 1
Unused (All 0s)

0 8 16 31

for76042_ch28.fm Page 802 Monday, February 23, 2009 8:41 PM

CHAPTER 28 ICMPV6

803

❑

Code 2.

 Beyond the scope of source address.

❑

Code 3.

 Destination address is unreachable.

❑

Code 4.

 Port unreachable.

❑

Code 5.

 Source address failed (filtering policy).

❑

Code 6.

 Reject route to destination.

Packet-Too-Big Message

This is a new type of message added to version 6. Since IPv6 does not fragment at the
router, if a router receives a datagram that is larger than the maximum transmission unit
(MTU) size of the network through which the datagram should pass, two things hap-
pen. First, the router discards the datagram. Second, an ICMP error packet—a

packet-
too-big message

—is sent to the source. Figure 28.5 shows the format of the packet.
Note that there is only one code (0) and that the MTU field informs the sender of the
maximum size packet accepted by the network.

Time-Exceeded Message

As we discussed in Chapter 9, a

time-exceeded

error

message is generated in two cases:
when the

time to live

 value becomes zero and when not all fragments of a datagram
have arrived in the time limit. The format of the

time-exceeded

 message in version 6 is
similar to the one in version 4. The only difference is that the type value has changed
to 3. Figure 28.6 shows the format of the time-exceeded message.

As in version 4, code 0 is used when the datagram is discarded by the router due to
a hop-limit field value of zero. Code 1 is used when fragments of a datagram are dis-
carded because other fragments have not arrived within the time limit.

Figure 28.5

Packet-too-big message

Figure 28.6

Time-exceeded message

Code: 0 ChecksumType: 2

MTU

As much of received datagram as possible without exceeding
the maximum IPv6 MTU

0 8 16 31

Code: 0 or 1 ChecksumType: 3
Unused (All 0s)

As much of received datagram as possible without exceeding
the maximum IPv6 MTU

0 8 16 31

for76042_ch28.fm Page 803 Monday, February 23, 2009 8:41 PM

804

PART 5 NEXT GENERATION

Parameter-Problem Message

As discussed in Chapter 9, any ambiguity in the header of the datagram can create seri-
ous problems as the datagram travels through the Internet. If a router or the destination
host discovers any ambiguous or missing value in any field, it discards the datagram and
sends a parameter-problem message to the source. The message in ICMPv6 is similar to
its version 4 counterpart. However, the type value has been changed to 4 and the size of
the offset pointer field has been increased to 4 bytes. There are also three different codes
instead of two. Figure 28.7 shows the format of the parameter problem message.

The code field specifies the reason for discarding the datagram and the cause of
failure:

❑

Code 0.

 Erroneous header field.

❑

Code 1.

 Unrecognized next header type.

❑

Code 2.

 Unrecognized IPv6 option.

28.3 INFORMATIONAL MESSAGES

Two of the ICMPv6 messages can be categorized as informational messages: echo
request and echo reply messages. As discussed in Chapter 9, the echo request and echo
response messages are designed to check if two devices in the Internet can communi-
cate with each other. A host or router can send an echo request message to another host;
the receiving computer or router can reply using the echo response message.

Echo-Request Message

The idea and format of the echo-request message is the same as the one in version 4.
The only difference is the value for the type as shown in Figure 28.8.

Figure 28.7

 Parameter-problem message

Figure 28.8

Echo-request message

Code: 0, 1, 2 ChecksumType: 4

Offset pointer

As much of received datagram as possible without exceeding
the maximum IPv6 MTU

0 8 16 31

Optional data
Sent by the request message; repeated by the reply message

Code: 0 ChecksumType: 128
Identifier Sequence number

0 8 16 31

for76042_ch28.fm Page 804 Monday, February 23, 2009 8:41 PM

CHAPTER 28 ICMPV6

805

Echo-Reply Message

The idea and format of the echo-reply message is the same as the one in version 4. The
only difference is the value for the type as shown in Figure 28.9.

28.4 NEIGHBOR-DISCOVERY MESSAGES

Several messages in the ICMPv6 have been redefined in ICMPv6 to handle the issue of
neighbor discovery. Some new messages have also been added to provide extension.
The most important issue is the definition of two new protocols that clearly define the
functionality of these group messages: the

Neighbor-Discovery (ND)

protocol

 and the

Inverse-Neighbor-Discovery (IND) protocol.

These two protocols are used by nodes
(hosts or routers) on the same link (network) for three main purposes:

1.

Hosts use the ND protocol to find routers in the neighborhood that will forward
packets for them.

2.

Nodes use the ND protocol to find the link layer addresses of neighbors (nodes
attached to the same network).

3.

Nodes use the IND protocol to find the IPv6 addresses of the neighbor.

Router-Solicitation Message

The idea behind the

router-solicitation

message is the same as in version 4. A host uses
the router-solicitation message to find a router in the network that can forward an IPv6
datagram for the host. The only option that is so far defined for this message is the
inclusion of physical (data link layer) address of the host to make the response easier
for the router. The format of the message is shown in Figure 28.10. The type of this
message is 133.

Figure 28.9

Echo-reply messages

Figure 28.10

Router-solicitation message

Optional data
Sent by the request message; repeated by the reply message

Code: 0 ChecksumType: 129
Identifier Sequence number

0 8 16 31

0 8 16 31

Code: 0 ChecksumType: 133

Options

Unused (All 0s)

for76042_ch28.fm Page 805 Monday, February 23, 2009 8:41 PM

806

PART 5 NEXT GENERATION

Router-Advertisement Message

The

router-advertisement

message is sent by a router in response to a router solicitation
message. Figure 28.11 shows the format of the router-advertisement message.

The fields are explained below:

❑

Hop Limit.

 This 8-bit field limits the number of hops that the requestor should use
as the hop limit in its IPv6 datagram.

❑

M.

 This 1-bit field is the “manage address configuration” field. When this bit is set
to 1, the host needs to use the administration configuration.

❑

O.

 This 1-bit field is the “other address configuration” field. When this bit is set
to 1, the host needs to use the appropriate protocol for configuration.

❑

Router Lifetime.

 This 16-bit field defines the lifetime (in units of seconds) of the
router as the default router. When the value of this field is 0, it means that the
router is not a default router.

❑

Reachable Time.

This 32-bit field defines the time (in units of seconds) that the
router is reachable.

❑

Retransmission Interval.

 This 32-bit field defines the retransmission interval (in
units of seconds).

❑

Option.

 Some possible options are the link layer address of the link from which
the message is sent, the MTU of the link, and address prefix information.

Neighbor-Solicitation Message

Figure 28.12 shows the format of

neighbor-solicitation message.

 As previously men-
tioned, the network layer in version 4 contains an independent protocol called Address
Resolution Protocol (ARP). In version 6, this protocol is eliminated, and its duties are
included in ICMPv6. The neighbor solicitation message has the same duty as the ARP
request message. This message is sent when a host or router has a message to send to a
neighbor. The sender knows the IP address of the receiver, but needs the data link
address of the receiver. The data link address is needed for the IP datagram to be encap-
sulated in a frame. The only option announces the sender data link address for the con-
venience of the receiver. The receiver can use the sender data link address to use a
unicast response.

Figure 28.11

Router-advertisement message

Reachable time

Retransmission interval

Options

Code: 0 Checksum

Router lifetime

Type: 134

Unused(All 0s)Hop limit OM

0 8 16 31

for76042_ch28.fm Page 806 Monday, February 23, 2009 8:41 PM

CHAPTER 28 ICMPV6

807

Neighbor-Advertisement Message

The

neighbor-advertisement message

is sent in response to the neighbor-solicitation
message. This is equivalent to the ARP reply message in IPv4. Figure 28.13 shows the
format of this message.

The fields are explained below:

❑

R.

 This 1-bit field is the “router” flag. When it is set to 1, it means the sender of
this message is a router.

❑

S.

 This 1-bit field is the “solicitation” flag. When it is set to 1, it means that the
sender is sending this advertisement in response to a neighbor solicitation. An
advertisement can be sent by a host or router without solicitation.

❑

O.

 This 1-bit field is the “override” flag. When it is set, it means that the advertise-
ment should override existing information in the cache.

❑

Option.

 The only possible option is the link layer address of the advertiser.

Figure 28.12

Neighbor-solicitation message

Figure 28.13

Neighbor-advertisement message

Code: 0 ChecksumType: 135

Unused (All 0s)

Target IP address

Options

0 8 16 31

Code: 0 ChecksumType: 136

Unused (All 0s)

Target IP address

Options

R S O

0 8 16 31

for76042_ch28.fm Page 807 Monday, February 23, 2009 8:41 PM

808

PART 5 NEXT GENERATION

Redirection Message

The purpose of the redirection message is the same as described for version 4. However,
the format of the packet now accommodates the size of the IP address in version 6.
Also, an option is added to let the host know the physical address of the target router
(see Figure 28.14).

The possible option is the inclusion of the sender data link address and the part of the
redirected IP header as long as the total size of the message does not exceed the MTU.

Inverse-Neighbor-Solicitation Message

The

inverse-neighbor-solicitation

message

 is sent by a node that knows the link layer
address of a neighbor, but not the neighbor’s IP address. The message is encapsulated
in an IPv6 datagram using an all-node multicast address. The sender must send the fol-
lowing two pieces of information in the option field: its link-layer address and the link-
layer address of the target node. The sender can also include its IP address and the
MTU value for the link. Figure 28.15 shows the format of this message.

Inverse-Neighbor-Advertisement Message

The

inverse-neighbor-advertisement message

 is sent in response to the inverse-
neighbor-discovery message. The sender of this message must include the link layer

Figure 28.14

Redirection message

Figure 28.15

Inverse-neighbor-solicitation message

Target (router) IP address

Destination IP address

Options

Code: 0 ChecksumType: 137
Reserved

0 8 16 31

Code: 0 ChecksumType: 141

Unused (All 0s)

Options

0 8 16 31

for76042_ch28.fm Page 808 Monday, February 23, 2009 8:41 PM

CHAPTER 28 ICMPV6

809

address of the sender and the link layer address of the target node in the option section.
Figure 28.16 shows the format of this message.

28.5 GROUP MEMBERSHIP MESSAGES

As we discuss in Chapter 12, the management of multicast delivery handling in IPv4 is
given to the IGMPv3 protocol. In IPv6, this responsibility is given to the Multicast
Listener Delivery protocol. MLDv1 is the counterpart to IGMPv2; MLDv2 is the
counterpart to IGMPv3. The material discussed in this section is taken from RFC 3810.
The idea is the same as we discussed in IGMPv3, but the sizes and formats of the mes-
sages have been changed to fit the larger multicast address size in IPv6. Like IGMPv3,
MLDv2 has two types of messages: membership-query message and membership-
report message. The first type can be divided into three subtypes: general, group-
specific, and group-and-source specific.

Membership-Query Message
A membership-query message is sent by a router to find active group members in the
network. Figure 28.17 shows the format of this message.

Figure 28.16 Inverse-neighbor-advertisement message

Figure 28.17 Membership-query message format

Code: 0 ChecksumType: 142

Unused (All 0s)

Options

0 8 16 31

Type: 130

QQIC Resv QRV S

Code = 0

Group address

Number or sources (N)

Source Address (1)

Source Address (N)

Checksum

Reserved

0 8 16 31

Maximum Response Code

for76042_ch28.fm Page 809 Monday, February 23, 2009 8:41 PM

810 PART 5 NEXT GENERATION

The fields are almost the same as the ones in IGMPv3 except that the size of the
multicast address and the source address has been changed from 32 bits to 128 bits.
Another noticeable change in the field size is in the maximum response code field, in
which the size has been changed from 8 bits to 16 bits. We will discuss this field
shortly. Also note that the format of the first 8 bytes matches the format for other
ICMPv6 packets because MLDv2 is considered to be part of ICMPv6.

Membership-Report Message
Figure 28.18 shows the format of a membership report message format.

Note that the format of the membership report in MLDv2 is exactly the same as
the one in IGMPv3 except that the sizes of the fields are changed because of the
address size. In particular, the record type is the same as the one defined for IGMPv3
(types 1 to 6).

Functionality
MDLv2 protocol behaves in the same way as IGMPv3. However, there are a few differ-
ences that we discuss here.

Figure 28.18 Membership-report message format

Number or group records (M)

Type = 143

Reserved

Reserved

Group Record (1)

Group Record (M)

Checksum
0 8 16 31

Record type Aux Data Len

Multicast address

Number or sources (N)

Source Address (1)

Source Address (N)

E
ac

h
gr

ou
p

re
co

rd

Auxiliary Data

for76042_ch28.fm Page 810 Monday, February 23, 2009 8:41 PM

CHAPTER 28 ICMPV6 811

Calculation of Maximum Response Time

As we mentioned, the size of the Max Resp Code in MLV2 is twice the size of the same
field in IGMPv3. For this reason, the calculation of maximum response time is slightly
different in this protocol as shown in Figure 28.19.

Calculation of Query Interval

The calculation of query interval follows the same process as the calculation of maxi-
mum response delay; it is calculated from the value of the QQIC field as shown in
Figure 28.20.

Figure 28.19 Calculation of maximum response time

Figure 28.20 Calculation of maximum response time

Integer Value

MRD = 1/10 of value in seconds

MRD = 1/10 of value in seconds

Legend

Max Resp Code � 32768 Max Resp Code � 32768

MRD: maxixmum respons delay
Exp: Exponent
| : bit-wise OR operation
<< : bit-wise shift-left operation

0 1

Floating-point value

16-bit Max Resp code 16-bit Max Resp code

Mantissa

1

Exp

Mantissa | 0x10000 << (Exp + 3)

Legend

If QQIC � 128 If QQIC � 128

QQI: Querier’s query interval
Exp: Exponent
| : bit-wise OR operation
<< : bit-wise shift-left operation

Integer Value

QQI = value in seconds

0

8-bit QQIC 8-bit QQIC

QQI = Value in seconds

1

Floating-point value

Mantissa Exp

Mantissa | 0x10 << (Exp + 3)

for76042_ch28.fm Page 811 Monday, February 23, 2009 8:41 PM

812 PART 5 NEXT GENERATION

28.6 FURTHER READING
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give some coverage of ICMPv6. We recommend [Com 06], [Los 04], and
[Koz 05].

RFCs
Several RFCs show various updates of ICMPv6, including RFC 2461, RFC 2894,
RFC 3122, RFC 3810, RFC 4443, and RFC 4620.

28.7 KEY TERMS

28.8 SUMMARY
❑ ICMPv6, like ICMPv4, is message-oriented; it uses messages to report errors, to

get information, probe a neighbor, or manage multicast communication. However,
a few other protocols are added to ICMPv6 to define the functionality and interpre-
tation of the messages.

❑ We have divided all messages in the ICMPv6 into four categories: error messages,
informational messages, neighbor-discovery messages, and group-membership
messages.

❑ Four types of error messages have been discussed: destination-unreachable,
packet-too-big, time-exceeded, and parameter-problems.

❑ Two types of informational messages have been discussed: echo-request and echo-
response.

❑ We discussed seven neighbor-discovery messages. The first five, router-solicitation,
router-advertisment, neighbor-solicitation, neighbor-advertisment, and redirect are
under the control of the ND protocol. The last two messages, inverse-neighbor-
solicitation and inverse-neighbor-advertisment are under the control of the IND
protocol.

❑ We discussed two group management messages: membership-query and membership-
report. They are under the control of MDLv2 protocol.

Internetworking Control Message Protocol,
version 6 (ICMPv6)

Multicast Listening Delivery protocol
Neighbor-Discovery (ND) protocol
neighbor-advertisement message
neighbor-solicitation message
packet-too-big message

Inverse-Neighbor-Discovery (IND) protocol
inverse-neighbor-advertisement message
inverse-neighbor-solicitation message

for76042_ch28.fm Page 812 Monday, February 23, 2009 8:41 PM

CHAPTER 28 ICMPV6 813

28.9 PRACTICE SET

Exercises
1. Which ICMP messages contain part of the IP datagram? Why is this needed?

2. Make a table to compare and contrast error-reporting messages in ICMPv6 with
error-reporting messages ICMPv4.

3. Make a table to compare and contrast informational messages in ICMPv6 with
informational messages in ICMPv4.

4. Make a table to compare and contrast neighbor-discovery messages in ICMPv6
with the corresponding messages in version 4.

5. Make a table to compare and contrast inverse neighbor-discovery messages in
ICMPv6 with the corresponding messages in version 4.

6. Make a table to compare and contrast group-membership messages in ICMPv6
with the corresponding messages in version 4.

7. Calculate the value of maximum response delay (in seconds) for each of the
following maximum response code values (see Figure 28.19).

a. 22000

b. 43000

8. Calculate the value of QQI for each of the following QQIC values (see Figure 28.20).

a. 78

b. 202

Research Activities
9. Use RFCs 3810 and 4604 to learn more about MLDv2.

10. Use RFC 2461 to learn more about the role of ND protocol.

11. Use RFC 3122 to learn more about the role of IND protocol.

12. Use RFC 2894 to learn more about router renumbering for IPv6.

for76042_ch28.fm Page 813 Monday, February 23, 2009 8:41 PM

for76042_ch28.fm Page 814 Monday, February 23, 2009 8:41 PM

815

P A R T

6

Security

Chapter 29 Cryptography and Network Security 816

Chapter 30 Internet Security 858

for76042_ch29.fm Page 815 Thursday, February 19, 2009 10:49 AM

C H A P T E R

29

816

29

Cryptography and
Network Security

he topic of

cryptography

and

network security

 is very broad and
involves some specific areas of mathematics such as number theory.

In this chapter, we try to give a very simple introduction to this topic to
prepare the background for the next chapter, in which we discuss Internet
security. Our goal is to briefly discuss the general issues related to cryp-
tography and network security without being involved in the mathemati-
cal details behind each issue.

OBJECTIVES

The chapter has several objectives:

❑

To introduce security goals and to discuss the types of attacks that
threaten these goals.

❑

To introduce traditional ciphers as symmetric-key ciphers to create
the background for understanding modern symmetric-key ciphers.

❑

To introduce the elements of modern block ciphers and show an
example of a modern block cipher in which these elements are used.

❑

To discuss the general idea behind asymmetric-key ciphers and intro-
duce one common cipher in this category.

❑

To discuss message integrity and show how to use a cryptographic
hash function to create a message digest.

❑

To introduce the idea of message authentication and show how a
message digest combined with a secret can authenticate the sender.

❑

To show how the idea of digital signatures can be used to authenti-
cate a message using a pair of private-public keys.

❑

To introduce the idea of entity authentication and show some simple
schemes using either a secret key or a pair of private-public keys.

❑

To show how secret keys in symmetric-key cryptography and how
public keys in asymmetric-key cryptography can be distributed and
managed using KDCs or certificate authorities (CAs).

T

for76042_ch29.fm Page 816 Thursday, February 19, 2009 10:49 AM

817

29.1 INTRODUCTION

We are living in the information age. We need to keep information about every aspect of
our lives. In other words, information is an asset that has a value like any other asset. As
an asset, information needs to be secured from attacks. To be secured, information needs
to be hidden from unauthorized access (

confidentiality

), protected from unauthorized
change (

integrity

), and available to an authorized entity when it is needed (

availability

).
During the last three decades, computer networks created a revolution in the use of

information. Information is now distributed. Authorized people can send and retrieve
information from a distance using computer networks. Although the three above-
mentioned requirements



confidentiality, integrity, and availability



have not changed,
they now have some new dimensions. Not only should information be confidential
when it is stored; there should also be a way to maintain its confidentiality when it is
transmitted from one computer to another.

In this section, we first discuss the three major goals of information security. We
then see how attacks can threaten these three goals. We then discuss the security ser-
vices in relation to these security goals. Finally we define two techniques to implement
the security goals and prevent attacks.

Security Goals

Let us first discuss three security goals: confidentiality, integrity, and availability.

Confidentiality

Confidentiality

 is probably the most common aspect of information security. We need to
protect our confidential information. An organization needs to guard against those malicious
actions that endanger the confidentiality of its information. Confidentiality not only applies
to the storage of the information, it also applies to the transmission of information. When
we send a piece of information to be stored in a remote computer or when we retrieve a
piece of information from a remote computer, we need to conceal it during transmission.

Integrity

Information needs to be changed constantly. In a bank, when a customer deposits or
withdraws money, the balance of her account needs to be changed.

Integrity

 means that
changes need to be done only by authorized entities and through authorized mechanisms.
Integrity violation is not necessarily the result of a malicious act; an interruption in the
system, such as a power surge, may also create unwanted changes in some information.

Availability

The third component of information security is

availability.

The information created and
stored by an organization needs to be available to authorized

entities. Information is

for76042_ch29.fm Page 817 Thursday, February 19, 2009 10:49 AM

818

PART 6 SECURITY

useless if it is not available. Information needs to be constantly changed, which means it
must be accessible to authorized entities. The unavailability of information is just as
harmful for an organization as the lack of confidentiality or integrity. Imagine what would
happen to a bank if the customers could not access their accounts for transactions.

Attacks

Our three goals of security



confidentiality, integrity, and availability



can be threat-
ened by security

attacks.

 Although the literature uses different approaches to catego-
rizing the attacks, we divide them into three groups related to the security goals.
Figure 29.1 shows the taxonomy.

Attacks Threatening Confidentiality

In general, two types of attacks threaten the confidentiality of information:

snooping

and

traffic analysis.

Snooping

Snooping refers to unauthorized access to or interception of data. For
example, a file transferred through the Internet may contain confidential information. An
unauthorized entity may intercept the transmission and use the contents for her own ben-
efit. To prevent snooping, the data can be made nonintelligible to the intercepter by using
encryption techniques discussed in this book.

Traffic Analysis

Although encipherment of data may make it nonintelligible for the
intercepter, she can obtain some other type information by monitoring online traffic.
For example, she can find the electronic address (such as the e-mail address) of the
sender or the receiver. She can collect pairs of requests and responses to help her guess
the nature of the transaction.

Attacks Threatening Integrity

The integrity of data can be threatened by several kinds of attacks:

modification,

mas-
querading,

replaying,

 and

repudiation.

Figure 29.1

Taxonomy of attacks with relation to security goals

Security Attacks

Threat to
confidentiality

Threat to integrity

Snooping

Traffic
analysis

Masquerading

Replaying

Repudiation

Modification
Denial of
service

Threat to
availability

for76042_ch29.fm Page 818 Thursday, February 19, 2009 10:59 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY

819

Modification

After intercepting or accessing information, the attacker modifies the
information to make it beneficial to herself. For example, a customer sends a message
to a bank to do some transaction. The attacker intercepts the message and changes the
type of transaction to benefit herself. Note that sometimes the attacker simply deletes or
delays the message to harm the system or to benefit from it.

Masquerading

Masquerading, or spoofing, happens when the attacker impersonates
somebody else. For example, an attacker might steal the bank card and PIN of a bank
customer and pretend that she is that customer. Sometimes the attacker pretends to be
the receiver entity. For example, a user tries to contact a bank, but another site pretends
that it is the bank and obtains some information from the user.

Replaying

Replaying is another attack. The attacker obtains a copy of a message sent
by a user and later tries to replay it. For example, a person sends a request to her bank
to ask for payment to the attacker, who has done a job for her. The attacker intercepts
the message and sends it again to receive another payment from the bank.

Repudiation

This type of attack is different from others because it is performed by
one of the two parties in the communication: the sender or the receiver. The sender of
the message might later deny that she has sent the message; the receiver of the message
might later deny that he has received the message. An example of denial by the sender
would be a bank customer asking her bank to send some money to a third party but later
denying that she has made such a request. An example of denial by the receiver could
occur when a person buys a product from a manufacturer and pays for it electronically,
but the manufacturer later denies having received the payment and asks to be paid.

Attacks Threatening Availability

We mention only one attack threatening availability:

denial of service.

Denial of Service

Denial of service (DoS) is a very common attack. It may slow
down or totally interrupt the service of a system. The attacker can use several strategies
to achieve this. She might send so many bogus requests to a server that the server
crashes because of the heavy load. The attacker might intercept and delete a server’s
response to a client, making the client believe that the server is not responding. The
attacker may also intercept requests from the clients, causing the clients to send
requests many times and overload the system.

Services

ITU-T defines some security services to achieve security goals and prevent attacks. Each of
these services is designed to protect one or more attacks while maintaining security goals.

Techniques

The actual implementation of security goals needs some techniques. Two techniques are
prevalent today: one is very general (cryptography) and one is specific (steganography).

Cryptography

Some security services can be implemented using cryptography.

Cryptography,

a word
with Greek origins, means “secret writing.” However, we use the term to refer to the

for76042_ch29.fm Page 819 Thursday, February 19, 2009 10:49 AM

820

PART 6 SECURITY

science and art of transforming messages to make them secure and immune to attacks.
Although in the past

cryptography

 referred only to the

encryption

 and

decryption

 of
messages using secret keys, today it is defined as involving three distinct mechanisms:
symmetric-key encipherment, asymmetric-key encipherment, and hashing. We will dis-
cuss all these techniques later in the chapter.

Steganography

Although this chapter and the next are based on cryptography as a technique for imple-
menting security services, another technique that was used for secret communication in the
past is being revived at the present time: steganography. The word

steganography,

 with
origin in Greek, means “covered writing,” in contrast with cryptography, which means
“secret writing.” Cryptography means concealing the contents of a message by encipher-
ing; steganography means concealing the message itself by covering it with something
else. We leave the discussion of steganography to some books dedicated to this topic.

29.2 TRADITIONAL CIPHERS

We now look at the first goal of security, confidentiality. Confidentiality can be
achieved using ciphers. Traditional ciphers are called

symmetric-key ciphers

(or
secret-key ciphers)

because the same key is used for encryption and decryption and the
key can be used for bidirectional communication. Figure 29.2 shows the general idea
behind a symmetric-key cipher.

 In Figure 29.2, an entity, Alice, can send a message to another entity, Bob, over an
insecure channel with the assumption that an adversary, Eve, cannot understand the
contents of the message by simply eavesdropping over the channel.

The original message from Alice to Bob is called

plaintext;

 the message that is
sent through the channel is called the

ciphertext.

 To create the ciphertext from the
plaintext, Alice uses an

encryption algorithm

 and a

shared secret key.

 To create the
plaintext from ciphertext, Bob uses a

decryption algorithm

 and the same secret key.

Figure 29.2

 General idea of a traditional cipher

Symmetric-key ciphers are also called secret-key ciphers.

Alice

Plaintext

Ciphertext

Shared
secret key

Encryption
algorithm

................

................

................

................

................

................

................

................

................

................

Bob

Plaintext

Ciphertext

Insecure channel

Secure key-exchange channel

Shared
secret key

Decryption
algorithm

................

................

................

................

................

................

................

................

................

................

for76042_ch29.fm Page 820 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY

821

We refer to encryption and decryption algorithms as

ciphers.

A

key

 is a set of values
(numbers) that the cipher, as an algorithm, operates on.

Note that the symmetric-key encipherment uses a single key (the key itself may be
a set of values) for both encryption and decryption. In addition, the encryption and
decryption algorithms are inverses of each other. If P is the plaintext, C is the cipher-
text, and K is the key, the encryption algorithm E

k

(

x

) creates the ciphertext from the
plaintext; the decryption algorithm D

k

(

x

) creates the plaintext from the ciphertext. We
assume that E

k

(

x

) and D

k

(

x

) are inverses of each other: they cancel the effect of each
other if they are applied one after the other on the same input. We have

in which, D

k

(E

k

(

x

)) = E

k

(D

k

(

x

)) =

x

. We need to emphasize that it is better to make the
encryption and decryption public but keep the shared key secret. This means that Alice
and Bob need another channel, a secured one, to exchange the secret key. Alice and
Bob can meet once and exchange the key personally. The secured channel here is the
face-to-face exchange of the key. They can also trust a third party to give them the same
key. They can create a temporary secret key using another kind of cipher



asymmetric-
key ciphers



which will be described later.

Key

Encryption can be thought of as locking the message in a box; decryption can be
thought of as unlocking the box. In symmetric-key encipherment, the same key locks
and unlocks as shown in Figure 29.3. Later chapters show that the

asymmetric-key

 enci-
pherment needs two keys, one for locking and one for unlocking.

Substitution Ciphers

We can divide traditional symmetric-key ciphers into two broad categories: substitution
ciphers and transposition ciphers. A

substitution cipher

 replaces one symbol with
another. If the symbols in the plaintext are alphabetic characters, we replace one char-
acter with another. For example, we can replace letter A with letter D, and letter T with
letter Z. If the symbols are digits (0 to 9), we can replace 3 with 7, and 2 with 6.

Substitution ciphers can be categorized as either monoalphabetic ciphers or polyal-
phabetic ciphers.

Encryption: C = E

k

(P) Decryption: P = D

k

(C)

Figure 29.3

Symmetric-key encipherment as locking and unlocking with the same key

A substitution cipher replaces one symbol with another.

Encryption
algorithm

Decryption
algorithm

for76042_ch29.fm Page 821 Thursday, February 19, 2009 10:49 AM

822

PART 6 SECURITY

Monoalphabetic Ciphers

In a monoalphabetic cipher, a character (or a symbol) in the plaintext is always
changed to the same character (or symbol) in the ciphertext regardless of its position in
the text. For example, if the algorithm says that letter A in the plaintext is changed to
letter D, every letter A is changed to letter D. In other words, the relationship between
letters in the plaintext and the ciphertext is one-to-one.

The simplest monoalphabetic cipher is the additive cipher (or shift cipher).
Assume that the plaintext consists of lowercase letters (a to z), and that the ciphertext
consists of uppercase letters (A to Z). To be able to apply mathematical operations on the
plaintext and ciphertext, we assign numerical values to each letter (lower- or uppercase),
as shown in Figure 29.4.

In Figure 29.4 each character (lowercase or uppercase) is assigned an integer in
modulo 26. The secret key between Alice and Bob is also an integer in modulo 26. The
encryption algorithm adds the key to the plaintext character; the decryption algorithm
subtracts the key from the ciphertext character. All operations are done in modulo 26.

Historically, additive ciphers are called shift ciphers because encryption algorithm
can be interpreted as “shift key characters down” and the encryption algorithm can be
interpreted as “shift key characters up”. Julius Caesar used an additive cipher, with a
key of 3 to communicate with his officers. For this reason, additive ciphers are some-
times referred to as the Caesar cipher.

Example 29.1

Use the additive cipher with key = 15 to encrypt the message “hello”.

Solution
We apply the encryption algorithm to the plaintext, character by character:

Figure 29.4 Representation of plaintext and ciphertext characters in modulo 26

In additive cipher, the plaintext, ciphertext, and key are integers in modulo 26.

Plaintext: h → 07 Encryption: (07 + 15) mod 26 Ciphertext: 22 → W
Plaintext: e → 04 Encryption: (04 + 15) mod 26 Ciphertext: 19 → T
Plaintext: l → 11 Encryption: (11 + 15) mod 26 Ciphertext: 00 → A
Plaintext: l → 11 Encryption: (11 + 15) mod 26 Ciphertext: 00 → A
Plaintext: o → 14 Encryption: (14 + 15) mod 26 Ciphertext: 03 → D

Plaintext

Value 01 05 06 07 09 10 11 12 13 14 15 16 1708 18 19 2000 21 22 23 24 25

A B C D E F G H J K L M N O P Q RI S T U V W X Y Z

a b c d e f g h j k l m n o p q ri s t u v w x y z

Ciphertext

02 0403

for76042_ch29.fm Page 822 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 823

The result is “WTAAD”. Note that the cipher is monoalphabetic because two instances of the
same plaintext character (ls) are encrypted as the same character (A).

Example 29.2

Use the additive cipher with key = 15 to decrypt the message “WTAAD”.

Solution
We apply the decryption algorithm to the plaintext character by character:

The result is “hello”. Note that the operation is in modulo 26, which means that we need to add
26 to a negative result (for example -15 becomes 11).

Additive ciphers are vulnerable to attacks using exhaustive key searches (brute-force attacks).
The key domain of the additive cipher is very small; there are only 26 keys. However, one of the
keys, zero, is useless (the ciphertext is the same as the plaintext). This leaves only 25 possible keys.
Eve can easily launch a brute-force attack on the ciphertext.

Because additive ciphers have small key domains, they are very vulnerable to attack. A bet-
ter solution is to create a mapping between each plaintext character and the corresponding
ciphertext character. Alice and Bob can agree on a table showing the mapping for each character.
Figure 29.5 shows an example of such a mapping.

Example 29.3

We can use the key in Figure 29.5 to encrypt the message

The ciphertext is

Polyalphabetic Ciphers

In polyalphabetic substitution, each occurrence of a character may have a different
substitute. The relationship between a character in the plaintext to a character in the

Ciphertext: W → 22 Decryption: (22 − 15) mod 26 Plaintext: 07 → h
Ciphertext: T → 19 Decryption: (19 − 15) mod 26 Plaintext: 04 → e
Ciphertext: A → 00 Decryption: (00 − 15) mod 26 Plaintext: 11 → l
Ciphertext: A → 00 Decryption: (00 − 15) mod 26 Plaintext: 11 → l
Ciphertext: D → 03 Decryption: (03 − 15) mod 26 Plaintext: 14 → o

Figure 29.5 An example key for monoalphabetic substitution cipher

this message is easy to encrypt but hard to find the key

ICFVQRVVNEFVRNVSIYRGAHSLIOJICNHTIYBFGTICRXRS

Plaintext

Ciphertext

a b

A

c

O

d

RT

e

B

f

E

g

C

h

U

j

X

k

D

l

Q

m

G

n

Y

o

L

p

K

q

H

r

F

i

V

s

I

t

J

u

N M

v

P

w

Z

x

S

y

W

z

for76042_ch29.fm Page 823 Thursday, February 19, 2009 10:49 AM

824 PART 6 SECURITY

ciphertext is one-to-many. For example, “a” could be enciphered as “D” in the begin-
ning of the text, but as “N” at the middle. Polyalphabetic ciphers have the advantage of
hiding the letter frequency of the underlying language. Eve cannot use single-letter fre-
quency statistic to break the ciphertext.

To create a polyalphabetic cipher, we need to make each ciphertext character
dependent on both the corresponding plaintext character and the position of the plain-
text character in the message. This implies that our key should be a stream of subkeys,
in which each subkey depends somehow on the position of the plaintext character that
uses that subkey for encipherment. In other words, we need to have a key stream k =
(k1, k2, k3, …) in which ki is used to encipher the ith character in the plaintext to create
the ith character in the ciphertext.

To see the position dependency of the key, let us discuss a simple polyalphabetic
cipher called the autokey cipher. In this cipher, the key is a stream of subkeys, in
which each subkey is used to encrypt the corresponding character in the plaintext. The
first subkey is a predetermined value secretly agreed upon by Alice and Bob. The sec-
ond subkey is the value of the first plaintext character (between 0 and 25). The third
subkey is the value of the second plaintext. And so on.

The name of the cipher, autokey, implies that the subkeys are automatically created
from the plaintext cipher characters during the encryption process.

Transposition Ciphers
A transposition cipher does not substitute one symbol for another, instead it changes
the location of the symbols. A symbol in the first position of the plaintext may appear
in the tenth position of the ciphertext. A symbol in the eighth position in the plaintext
may appear in the first position of the ciphertext. In other words, a transposition cipher
reorders (transposes) the symbols.

Suppose Alice wants to secretly send the message “Enemy attacks tonight” to Bob.
The encryption and decryption is shown in Figure 29.6.

The first table is created by Alice writing the plaintext row by row. The columns
are permuted using a key. The ciphertext is created by reading the second table column
by column. Bob does the same three steps in the reverse order. He writes the ciphertext
column by column into the first table, permutes the columns, and then reads the second
table row by row. Note that the same key is used for encryption and decryption, but the
algorithm uses the key in reverse order.

P = P1P2P3 … C = C1C2C3… k = (k1, P1, P2, …)
Encryption: Ci = (Pi + ki) mod 26 Decryption: Pi = (Ci − ki) mod 26

A transposition cipher reorders symbols.

for76042_ch29.fm Page 824 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 825

Stream and Block Ciphers
The literature divides the symmetric ciphers into two broad categories: stream ciphers
and block ciphers.

Stream Cipher

In a stream cipher, encryption and decryption are done one symbol (such as a charac-
ter or a bit) at a time. We have a plaintext stream, a ciphertext stream, and a key stream.
Call the plaintext stream P, the ciphertext stream C, and the key stream K.

Block Ciphers

In a block cipher, a group of plaintext symbols of size m (m > 1) are encrypted together,
creating a group of ciphertext of the same size. Based on the definition, in a block
cipher, a single key is used to encrypt the whole block even if the key is made of multi-
ple values. In a block cipher, a ciphertext block depends on the whole plaintext block.

Combination

In practice, blocks of plaintext are encrypted individually, but they use a stream of keys
to encrypt the whole message block by block. In other words, the cipher is a block

Figure 29.6 Transposition cipher

 P = P1P2P3, … C = C1C2C3, … K = (k1, k2, k3, …)
C1 = Ek1(P1) C2 = Ek2(P2) C3 = Ek3(P3) …

Transmission

3 1 4 5 2

1 2 3 4 5

Key

E
nc

ry
pt

D
ec

ry
pt

e

h

t
t

m

t

a
o

y

z

c
n

e

i

a
k

n

g

t
s

E

H

T

T

M

T

A

O

Y

Z

C

N

E

I

A

K

N

G

T

S

E HT T M TA O Y ZC NE IA K N GT S

Write row by row

e ht tm ta oy zc ne ia kn gt s

Plaintext

Alice

Ciphertext

Read column by column

e

h

t
t

m

t

a
o

y

z

c
n

e

i

a
k

n

g

t
s

E

H

T

T

M

T

A

O

Y

Z

C

N

E

I

A

K

N

G

T

S

E HT T M TA O Y ZC NE IA K N GT S

Read row by row

Ciphertext

Write column by column

Plaintext

Bob

e ht tm ta oy zc ne ia kn gt s

for76042_ch29.fm Page 825 Thursday, February 19, 2009 10:49 AM

826 PART 6 SECURITY

cipher when looking at the individual blocks, but it is a stream cipher when looking at
the whole message considering each block as a single unit. Each block uses a different
key that may be generated before or during the encryption process. Examples of this
will appear in later chapters.

29.3 MODERN CIPHERS
The traditional symmetric-key ciphers that we have studied so far are character-oriented
ciphers. With the advent of the computer, we need bit-oriented ciphers. This is
because the information to be encrypted is not just text; it can also consist of numbers,
graphics, audio, and video data. It is convenient to convert these types of data into a
stream of bits, to encrypt the stream, and then to send the encrypted stream. In addition,
when text is treated at the bit level, each character is replaced by 8 (or 16) bits, which
means that the number of symbols becomes 8 (or 16) times larger. Mixing a larger num-
ber of symbols increases security. A modern block cipher can be either a block cipher
or a stream cipher.

Modern Block Ciphers
A symmetric-key modern block cipher encrypts an n-bit block of plaintext or decrypts
an n-bit block of ciphertext. The encryption or decryption algorithm uses a k-bit key.
The decryption algorithm must be the inverse of the encryption algorithm, and both
operations must use the same secret key so that Bob can retrieve the message sent by
Alice. Figure 29.7 shows the general idea of encryption and decryption in a modern
block cipher.

If the message has fewer than n bits, padding must be added to make it an n-bit
block; if the message has more than n bits, it should be divided into n-bit blocks and the
appropriate padding must be added to the last block if necessary. The common values
for n are 64, 128, 256, and 512 bits.

Components of a Modern Block Cipher

Modern block ciphers are substitution ciphers when seen as a whole block. However,
modern block ciphers are not designed as a single unit. To provide an attack-resistant

Figure 29.7 A modern block cipher

Encryption Decryption

n-bit plaintext

k-bit key

n-bit plaintext

n-bit ciphertext n-bit ciphertext

for76042_ch29.fm Page 826 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 827

cipher, a modern block cipher is made of a combination of transposition units (sometimes
called P-boxes), substitution units (sometimes called S-boxes), and exclusive-or opera-
tions, shifting elements, swapping elements, splitting elements, and combining ele-
ments. Figure 29.8 shows the components of a modern block cipher.

A P-box (permutation box) parallels the traditional transposition cipher for charac-
ters, but it transposes bits. We can find three types of P-boxes in modern block ciphers:
straight P-boxes, expansion P-boxes, and compression P-boxes. An S-box (substitution
box) can be thought of as a miniature substitution cipher, but it substitutes bits. Unlike
the traditional substitution cipher, an S-box can have a different number of inputs and
outputs. An important component in most block ciphers is the exclusive-or operation, in
which the output is 0 if the two inputs are the same, and the output is 1 if the two inputs
are different. In modern block ciphers, we use n exclusive-or operations to combine an
n-bit data piece with an n-bit key. An exclusive-or operation is normally the only unit
where the key is applied.

Another component found in some modern block ciphers is the circular shift
operation. Shifting can be to the left or to the right. The circular left-shift operation
shifts each bit in an n-bit word k positions to the left; the leftmost k bits are removed
from the left and become the rightmost bits. The swap operation is a special case of
the circular shift operation where the number of shifted bits k = n/2.

Two other operations found in some block ciphers are split and combine. The split
operation splits an n-bit word in the middle, creating two equal-length words. The
combine operation normally concatenates two equal-length words to create an n-bit
word.

Figure 29.8 Components of a modern block cipher

 Straight permutation

1 2 4 53

1 2 4 53

 Compression permutation Expansion permutaion

1 32

1 2 4 53

1 2 4 53

1 32

Shift left (3 bits)

b7 b6 b5 b4 b3 b2 b1 b0

b4 b3 b2 b1 b0 b7 b6 b5

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4b3 b2 b1 b0

SplitSwap

b7

b7 b6 b5 b4

b7 b6 b5 b4 b3 b2 b1 b0

b3 b2 b1 b0

Combine

ShiftExclusive-OrSubstitution

Transposition

b6 b5 b4

Decryptionb7 b6 b5 b4 b3 b2 b1 b0

b3 b2 b1 b0

n bits

m bits

A pre-defined
function

Key
(n bits)

n bits

n bits

for76042_ch29.fm Page 827 Thursday, February 19, 2009 10:49 AM

828 PART 6 SECURITY

Data Encryption Standard (DES)
As an example of a modern block cipher, let us discuss the Data Encryption Standard
(DES). Figure 29.9 shows the elements of DES cipher at the encryption site.

At the encryption site, DES takes a 64-bit plaintext and creates a 64-bit ciphertext;
at the decryption site, DES takes a 64-bit ciphertext and creates a 64-bit block of plain-
text. The same 56-bit cipher key is used for both encryption and decryption.

The initial permutations takes a 64-bit input and permutes them according to a pre-
defined rule. The final permutation is the inverse of the initial permutation. These two
permutations cancel the effect of each other. In other words, if the rounds are elimi-
nated from the structures, the ciphertext is the same as the plaintext.

Rounds

DES uses 16 rounds. Each round of DES is an invertible transformation, as shown in
Figure 29.9. The round takes LI−1 and RI−1 from the previous round (or the initial per-
mutation box) and creates LI and RI, which go to the next round (or final permutation
box). Each round can have up to two cipher elements (mixer and swapper). Each of
these elements is invertible. The swapper is obviously invertible. It swaps the left half
of the text with the right half. The mixer is invertible because of the XOR operation. All
noninvertible elements are collected inside the function f (RI−1, KI).

DES Function

The heart of DES is the DES function. The DES function applies a 48-bit key to the
rightmost 32 bits (RI−1) to produce a 32-bit output. This function is made up of four
sections: an expansion P-box, an exclusive-OR component (that adds key), a group of
S-boxes, and a straight P-box, as shown in Figure 29.10.

Figure 29.9 General structure of DES

56-bit
cipher key

48-bit

48-bit

48-bit

64-bit plaintext
DES

64-bit ciphertext
Each round

K1

K2

K16

 Initial permutation

Round 1

 Final permutation

Round 2

Round 16 R
ou

nd
-k

ey
 g

en
er

at
or

S
w

ap
pe

r
M

ix
er KI

LI–1

LI

RI–1

RI

32 bits

32 bits 32 bits

32 bits

f (RI–1, KI)

for76042_ch29.fm Page 828 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY

829

Since R

I

−

1

 is a 32-bit input and K

I

 is a 48-bit key, we first need to expand R

I

−

1

 to
48 bits. This expansion permutation follows a predetermined rule.

After the expansion permutation, DES uses the XOR operation on the expanded
right section and the round key. The S-boxes do the real mixing. DES uses 8 S-boxes,
each with a 6-bit input and a 4-bit output.The last operation in the DES function is a
straight permutation with a 32-bit input and a 32-bit output.

Key Generation

The round-key generator creates sixteen 48-bit keys out of a 56-bit cipher key. However,
the cipher key is normally given as a 64-bit key in which 8 extra bits are the parity bits,
which are dropped before the actual key-generation process, as shown in Figure 29.11.

Example 29.4

We choose a random plaintext block, a random key, and a computer program to determine what
the ciphertext block would be (all in hexadecimal):

Figure 29.10

DES function

Figure 29.11

Key generation

Plaintext:

123456ABCD132536

Key:
AABB09182736CCDD

CipherText:

C0B7A8D05F3A829C

KI (48 bits)

f (RI–1, KI)

Out

S S S S S S S S

Straight P-box

Expansion P-box

S-Boxes

XOR

 32 bits

In

48 bits

48 bits

 32 bits

32 bits

 Key with
parity bits

Cipher
key

 56 bits (64 bits)

Pa
ri

ty
 d

ro
p 48 bits

Round key 01

 48 bits
Round key 02

 48 bits
Round key 16

Round-Key
Generator

A complex combination
of shifting, spliting,
and combining units

for76042_ch29.fm Page 829 Monday, February 23, 2009 7:13 PM

830 PART 6 SECURITY

Example 29.5

To check the effectiveness of DES, when a single bit is changed in the input, let us use two differ-
ent plaintexts with only one single bit difference. The two ciphertexts are completely different
without even changing the key:

Although the two plaintext blocks differ only in the rightmost bit, the ciphertext blocks dif-
fer in 29 bits.

Modern Stream Ciphers
In addition to modern block ciphers, we can also use modern stream ciphers. Similar
differences exist between modern stream ciphers and modern block ciphers. In a
modern stream cipher, encryption and decryption are done r bits at a time. We have
a plaintext bit stream P = pn p2p1, a ciphertext bit stream C = cn c2c1, and a key
bit stream K = kn k2k1, in which pi , ci , and ki are r-bit words. Encryption is ci = E (ki,
pi), and decryption is pi = D (ki, ci). Stream ciphers are faster than block ciphers. The
hardware implementation of a stream cipher is also easier. When we need to encrypt
binary streams and transmit them at a constant rate, a stream cipher is the better
choice to use. Stream ciphers are also more immune to the corruption of bits during
transmission.

The simplest and the most secure type of synchronous stream cipher is called the
one-time pad, which was invented and patented by Gilbert Vernam. A one-time pad
cipher uses a key stream that is randomly chosen for each encipherment. The encryp-
tion and decryption algorithms each use a single exclusive-or operation. Based on prop-
erties of the exclusive-or operation, the encryption and decryption algorithms are
inverses of each other. It is important to note that in this cipher the exclusive-or opera-
tion is used one bit at a time. Note also that there must be a secure channel so that Alice
can send the key stream sequence to Bob (Figure 29.12).

The one-time pad is an ideal cipher. It is perfect. There is no way that an adversary
can guess the key or the plaintext and ciphertext statistics. There is no relationship
between the plaintext and ciphertext, either. In other words, the ciphertext is a true

Plaintext:

0000000000000000
Key:

22234512987ABB23
Ciphertext:

4789FD476E82A5F1

Plaintext:

0000000000000001
Key:

22234512987ABB23
Ciphertext:

0A4ED5C15A63FEA3

Figure 29.12 One-time pad

… …
…

Encryption Decryption

1 bit

1 bit 1 bit 1 bit 1 bit

1 bit

pipi

ki kici

Random sequence
bit generator

Insecure channel

Secure key-exchange channel

for76042_ch29.fm Page 830 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 831

random stream of bits even if the plaintext contains some patterns. Eve cannot break the
cipher unless she tries all possible random key streams, which would be 2n if the size of
the plaintext is n bits. However, there is an issue here. How can the sender and the
receiver share a one-time pad key each time they want to communicate? They need to
somehow agree on the random key. So this perfect and ideal cipher is very difficult to
achieve. However, there are some feasible, less secured, versions. One of the common
alternatives is called a feedback shift register (FSR), but we leave the discussion of this
interesting cipher to the books dedicated to the security topic.

29.4 ASYMMETRIC-KEY CIPHERS
In previous sections we discussed symmetric-key ciphers. In this chapter, we start the
discussion of asymmetric-key ciphers. Symmetric- and asymmetric-key ciphers will
exist in parallel and continue to serve the community. We actually believe that they are
complements of each other; the advantages of one can compensate for the disadvan-
tages of the other.

The conceptual differences between the two systems are based on how these sys-
tems keep a secret. In symmetric-key cryptography, the secret must be shared between
two persons. In asymmetric-key cryptography, the secret is personal (unshared); each
person creates and keeps his or her own secret.

In a community of n people, n(n − 1)/2 shared secrets are needed for symmetric-
key cryptography; only n personal secrets are needed in asymmetric-key cryptography.
For a community with a population of 1 million, symmetric-key cryptography would
require half a billion shared secrets; asymmetric-key cryptography would require
1 million personal secrets.

There are some other aspects of security besides encipherment that need
asymmetric-key cryptography. These include authentication and digital signatures.
Whenever an application is based on a personal secret, we need to use asymmetric-key
cryptography.

Whereas symmetric-key cryptography is based on substitution and permutation of
symbols (characters or bits), asymmetric-key cryptography is based on applying mathe-
matical functions to numbers. In symmetric-key cryptography, the plaintext and cipher-
text are thought of as a combination of symbols. Encryption and decryption permute
these symbols or substitute a symbol for another. In asymmetric-key cryptography, the
plaintext and ciphertext are numbers; encryption and decryption are mathematical func-
tions that are applied to numbers to create other numbers.

Symmetric-key cryptography is based on sharing secrecy;
asymmetric-key cryptography is based on personal secrecy.

In symmetric-key cryptography, symbols are permuted or substituted;
in asymmetric-key cryptography, numbers are manipulated.

for76042_ch29.fm Page 831 Thursday, February 19, 2009 10:49 AM

832 PART 6 SECURITY

Keys
Asymmetric key cryptography uses two separate keys: one private and one public. If
encryption and decryption are thought of as locking and unlocking padlocks with keys,
then the padlock that is locked with a public key can be unlocked only with the corre-
sponding private key. Figure 29.13 shows that if Alice locks the padlock with Bob’s pub-
lic key, then only Bob’s private key can unlock it.

 The figure shows that, unlike symmetric-key cryptography, there are distinctive
keys in asymmetric-key cryptography: a private key and a public key. Although some
books use the term secret key instead of private key, we use the term secret key only for
symmetric-key cryptography and the terms private key and public key for asymmetric-
key cryptography. We even use different symbols to show the three keys. In other
words, we want to show that a secret key is not exchangeable with a private key; there
are two different types of secrets.

General Idea
Figure 29.14 shows the general idea of asymmetric-key cryptography as used for
encipherment.

Figure 29.13 Locking and unlocking in asymmetric-key cryptosystem

Asymmetric-key ciphers are sometimes called public-key ciphers.

Figure 29.14 General idea of asymmetric-key cryptosystem

Encryption
algorithm

Bob’s
public key

Communication direction

Alice Bob

The public key locks; the private key unlocks.

Bob’s
private key

Decryption
algorithm

Alice

BobTo public

Insecure channel

Public-key distribution
channel

Plaintext PlaintextCiphertextCiphertext

Public key

Encryption

Private key

Decryption

Key-generation
procedure

for76042_ch29.fm Page 832 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 833

Figure 29.14 shows several important facts. First, it emphasizes the asymmetric
nature of the cryptosystem. The burden of providing security is mostly on the shoul-
ders of the receiver (Bob, in this case). Bob needs to create two keys: one private and
one public. Bob is responsible for distributing the public key to the community. This
can be done through a public-key distribution channel. Although this channel is not
required to provide secrecy, it must provide authentication and integrity. Eve should
not be able to advertise her public key to the community pretending that it is Bob’s
public key.

Second, asymmetric-key cryptography means that Bob and Alice cannot use the
same set of keys for two-way communication. Each entity in the community should
create its own private and public keys. Figure 29.14 shows how Alice can use Bob’s
public key to send encrypted messages to Bob. If Bob wants to respond, he needs to use
Alice’s public key.

Third, asymmetric-key cryptography means that Bob needs only one private key to
receive all correspondence from anyone in the community, but Alice needs n public
keys to communicate with n entities in the community, one public key for each entity.
In other words, Alice needs a ring of public keys.

Plaintext/Ciphertext

Unlike in symmetric-key cryptography, plaintext and ciphertext are treated as integers
in asymmetric-key cryptography. The message must be encoded as an integer (or a set
of integers) before encryption; the integer (or the set of integers) must be decoded into
the message after decryption. Asymmetric-key cryptography is normally used to
encrypt or decrypt small pieces of information, such as the cipher key for a symmetric-
key cryptography. In other words, asymmetric-key cryptography normally is used for
ancillary goals instead of message encipherment. However, these ancillary goals play a
very important role in cryptography today.

Encryption/Decryption

Encryption and decryption in asymmetric-key cryptography are mathematical functions
applied over the numbers representing the plaintext and ciphertext. The ciphertext can be
thought of as C = f (Kpublic, P); the plaintext can be thought of as P = g(Kprivate, C). The
decryption function f is used only for encryption; the decryption function g is used only
for decryption.

Need for Both

There is a very important fact that is sometimes misunderstood: the advent of asymmetric-
key (public-key) cryptography does not eliminate the need for symmetric-key (secret-
key) cryptography. The reason is that asymmetric-key cryptography, which uses
mathematical functions for encryption and decryption, is much slower than symmetric-
key cryptography. For encipherment of large messages, symmetric-key cryptography is
still needed. On the other hand, the speed of symmetric-key cryptography does not
eliminate the need for asymmetric-key cryptography. Asymmetric-key cryptography is
still needed for authentication, digital signatures, and secret-key exchanges. This means
that, to be able to use all services of security today, we need both symmetric-key and
asymmetric-key cryptography. One complements the other.

for76042_ch29.fm Page 833 Thursday, February 19, 2009 10:49 AM

834 PART 6 SECURITY

RSA Cryptosystem
Although there are several asymmetric-key cryptosystems, one of the common public-
key algorithms is the RSA cryptosystem, named for its inventors (Rivest, Shamir,
and Adleman). RSA uses two exponents, e and d, where e is public and d is private.
Suppose P is the plaintext and C is the ciphertext. Alice uses C = Pe mod n to create
ciphertext C from plaintext P; Bob uses P = Cd mod n to retrieve the plaintext sent
by Alice. The modulus n, a very large number, is created during the key generation
process.

Procedure

 Figure 29.15 shows the general idea behind the procedure used in RSA.

Bob choose two large numbers, p and q and calculates n = p × q and φ = (p − 1) ×
(q − 1). Bob then selects e and d such as (e × d) mod φ = 1. Bob advertises e and n to
the community as the public key; Bob keeps d as the secret key. Anyone, including
Alice, can encrypt a message and send the ciphertext to Bob using C = Pe; Only Bob
can decrypt the message using P = Cd. An intruder such as Eve cannot decrypt the
message if p and q are very large numbers (she does not know d).

Example 29.6

For the sake of demonstration, let Bob choose 7 and 11 as p and q and calculate n = 7 × 11 = 77.
The value of φ(n) = (7 − 1)(11 − 1), or 60. If he chooses e to be 13, then d is 37. Note that e × d
mod 60 = 1. Now imagine that Alice wants to send the plaintext 5 to Bob. She uses the public
exponent 13 to encrypt 5. This system is not safe because p and q are small.

Figure 29.15 Encryption, decryption, and key generation in RSA

Plaintext: 5 Ciphertext: 26

C = 513 = 26 mod 77 P = 2637 = 5 mod 77

Ciphertext: 26 Plaintext: 5

Key calculation

C: Ciphertext

To public

Private

Encryption Decryption

(d)

(e, n)

(e, n)

C = Pe mod nP
Plaintext

P
Plaintext

Select p, q
n = p × q
Select e and d

P = Cd mod n

Alice

Bob

for76042_ch29.fm Page 834 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 835

Example 29.7

Here is a more realistic example calculated with a computer. We choose a 512-bit p and q, calcu-
late n and φ(n), We then choose e and calculate d. Finally, we show the results of encryption and
decryption. The integer p is a 159-digit number.

The integer q is a 160-digit number.

The modulus n = p × q. It has 309 digits.

 φ(n) = (p − 1)(q − 1) has 309 digits.

Bob chooses e = 35535 (the ideal is 65537). He then finds d.

p = 961303453135835045741915812806154279093098455949962158225831508796
479404550564706384912571601803475031209866660649242019180878066742
1096063354219926661209

q = 120601919572314469182767942044508960015559250546370339360617983217
314821484837646592153894532091752252732268301071206956046025138871
45524969000359660045617

n = 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656772727460097082714127730434960500556347274566
628060099924037102991424472292215772798531727033839381334692684137
327622000966676671831831088373420823444370953

φ(n) = 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656751054233608492916752034482627988117554787657
013923444405716989581728196098226361075467211864612171359107358640
614008885170265377277264467341066243857664128

e = 35535

d = 580083028600377639360936612896779175946690620896509621804228661113
805938528223587317062869100300217108590443384021707298690876006115
306202524959884448047568240966247081485817130463240644077704833134
010850947385295645071936774061197326557424237217617674620776371642
0760033708533328853214470885955136670294831

for76042_ch29.fm Page 835 Thursday, February 19, 2009 10:49 AM

836 PART 6 SECURITY

Alice wants to send the message “THIS IS A TEST”, which can be changed to a numeric
value using the 00−26 encoding scheme (26 is the space character).

The ciphertext calculated by Alice is C = Pe, which is

Bob can recover the plaintext from the ciphertext using P = Cd, which is

The recovered plaintext is “THIS IS A TEST” after decoding.

Applications
Although RSA can be used to encrypt and decrypt actual messages, it is very slow if the
message is long. RSA, therefore, is useful for short messages. In particular, we will see
that RSA is used in digital signatures and other cryptosystems that often need to
encrypt a small message without having access to a symmetric key. RSA is also used
for authentication, as we will see later in the chapter.

29.5 MESSAGE INTEGRITY
The cryptography systems that we have studied so far provide secrecy, or confidentiality,
but not integrity. However, there are occasions where we may not even need secrecy but
instead must have integrity. For example, Alice may write a will to distribute her estate
upon her death. The will does not need to be encrypted. After her death, anyone can
examine the will. The integrity of the will, however, needs to be preserved. Alice does
not want the contents of the will to be changed.

Message and Message Digest
One way to preserve the integrity of a document is through the use of a fingerprint. If
Alice needs to be sure that the contents of her document will not be changed, she can
put her fingerprint at the bottom of the document. Eve cannot modify the contents of
this document or create a false document because she cannot forge Alice’s fingerprint. To
ensure that the document has not been changed, Alice’s fingerprint on the document can be
compared to Alice’s fingerprint on file. If they are not the same, the document is not from
Alice.The electronic equivalent of the document and fingerprint pair is the message and

P = 1907081826081826002619041819

C = 475309123646226827206365550610545180942371796070491716523239243054
452960613199328566617843418359114151197411252005682979794571736036
101278218847892741566090480023507190715277185914975188465888632101
148354103361657898467968386763733765777465625079280521148141844048
14184430812773059004692874248559166462108656

P = 1907081826081826002619041819

for76042_ch29.fm Page 836 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 837

digest pair. To preserve the integrity of a message, the message is passed through an
algorithm called a cryptographic hash function. The function creates a compressed
image of the message, called a digest, that can be used like a fingerprint. To check the
integrity of a message, or document, Bob runs the cryptographic hash function again
and compares the new digest with the previous one. If both are the same, Bob is sure
that the original message has not been changed. Figure 29.16 shows the idea.

The two pairs (document/fingerprint) and (message/message digest) are similar,
with some differences. The document and fingerprint are physically linked together.
The message and message digest can be unlinked (or sent separately), and, most impor-
tantly, the message digest needs to be safe from change.

Hash Functions
A cryptographic hash function takes a message of arbitrary length and creates a mes-
sage digest of fixed length. All cryptographic hash functions need to create a fixed-size
digest out of a variable-size message. Creating such a function is best accomplished
using iteration. Instead of using a hash function with variable-size input, a function
with fixed-size input is created and is used a necessary number of times. The fixed-size
input function is referred to as a compression function. It compresses an n-bit string to
create an m-bit string where n is normally greater than m. The scheme is referred to as
an iterated cryptographic hash function.

Several hash algorithms were designed by Ron Rivest. These are referred to as
MD2, MD4, and MD5, where MD stands for Message Digest. The last version, MD5,
is a strengthened version of MD4 that divides the message into blocks of 512 bits and
creates a 128-bit digest. It turns out that a message digest of size 128 bits is too small to
resist attack.

The Secure Hash Algorithm (SHA) is a standard that was developed by the
National Institute of Standards and Technology (NIST). SHA has gone through several
versions.

Figure 29.16 Message and digest

The message digest needs to be safe from change.

Alice Bob

Hash
function

Digest

Keep
the message

Discard
Sent Received

Created
Hash

function

Digest

Digest

Channel immune to change

Message Message

M
Insecure channel

[Yes] [No]

Same?

for76042_ch29.fm Page 837 Thursday, February 19, 2009 10:49 AM

838 PART 6 SECURITY

29.6 MESSAGE AUTHENTICATION
A digest can be used to check the integrity of a message: that the message has not been
changed. To ensure the integrity of the message and the data origin authentication—
that Alice is the originator of the message, not somebody else—we need to include a
secret held by Alice (that Eve does not possess) in the process; we need to create a mes-
sage authentication code (MAC). Figure 29.17 shows the idea.

Alice uses a hash function to create a MAC from the concatenation of the key and
the message, h(K + M). She sends the message and the MAC to Bob over the insecure
channel. Bob separates the message from the MAC. He then makes a new MAC from
the concatenation of the message and the secret key. Bob then compares the newly cre-
ated MAC with the one received. If the two MACs match, the message is authentic and
has not been modified by an adversary.

Note that there is no need to use two channels in this case. Both message and the
MAC can be sent on the same insecure channel. Eve can see the message, but she can-
not forge a new message to replace it because Eve does not possess the secret key
between Alice and Bob. She is unable to create the same MAC as Alice did.

HMAC
NIST has issued a standard for a nested MAC that is often referred to as HMAC
(hashed MAC). The implementation of HMAC is much more complex than the simpli-
fied MAC.

Figure 29.17 Message authentication code

A MAC provides message integrity and message authentication using a combination of
a hash function and a secret key.

 M + MAC

Insecure channel

K: A shared secret key
M: Message

MAC: Message authentication
 code

K K

Alice Bob

Hash
MAC

Keep
the message

Discard

M

[Yes]

[No]

Same?

Hash
MAC

M

 M + MAC M + MAC

for76042_ch29.fm Page 838 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 839

29.7 DIGITAL SIGNATURE
Another way to provide message integrity and message authentication (and some more
security services as we see shortly) is a digital signature. A MAC uses a secret key to
protect the digest; a digital signature uses a pair of private-public keys.

We are all familiar with the concept of a signature. A person signs a document to
show that it originated from her or was approved by her. The signature is proof to the
recipient that the document comes from the correct entity. When a customer signs a check,
the bank needs to be sure that the check is issued by that customer and nobody else. In
other words, a signature on a document, when verified, is a sign of authenticationthe
document is authentic. Consider a painting signed by an artist. The signature on the art,
if authentic, means that the painting is probably authentic.

When Alice sends a message to Bob, Bob needs to check the authenticity of the
sender; he needs to be sure that the message comes from Alice and not Eve. Bob can
ask Alice to sign the message electronically. In other words, an electronic signature can
prove the authenticity of Alice as the sender of the message. We refer to this type of sig-
nature as a digital signature.

Comparison
Let us begin by looking at the differences between conventional signatures and digital
signatures.

Inclusion

A conventional signature is included in the document; it is part of the document. When
we write a check, the signature is on the check; it is not a separate document. But when
we sign a document digitally, we send the signature as a separate document.

Verification Method

The second difference between the two types of signatures is the method of verifying
the signature. For a conventional signature, when the recipient receives a document, she
compares the signature on the document with the signature on file. If they are the same,
the document is authentic. The recipient needs to have a copy of this signature on file
for comparison. For a digital signature, the recipient receives the message and the sig-
nature. A copy of the signature is not stored anywhere. The recipient needs to apply a
verification technique to the combination of the message and the signature to verify the
authenticity.

A digital signature uses a pair of private-public keys.

for76042_ch29.fm Page 839 Thursday, February 19, 2009 10:49 AM

840 PART 6 SECURITY

Relationship

For a conventional signature, there is normally a one-to-many relationship between a signa-
ture and documents. A person uses the same signature to sign many documents. For a digi-
tal signature, there is a one-to-one relationship between a signature and a message. Each
message has its own signature. The signature of one message cannot be used in another
message. If Bob receives two messages, one after another, from Alice, he cannot use the
signature of the first message to verify the second. Each message needs a new signature.

Duplicity

Another difference between the two types of signatures is a quality called duplicity.
With a conventional signature, a copy of the signed document can be distinguished
from the original one on file. In digital signature, there is no such distinction unless
there is a factor of time (such as a timestamp) on the document. For example, suppose
Alice sends a document instructing Bob to pay Eve. If Eve intercepts the document and
the signature, she can replay it later to get money again from Bob.

Process
Figure 29.18 shows the digital signature process. The sender uses a signing algorithm
to sign the message. The message and the signature are sent to the receiver. The
receiver receives the message and the signature and applies the verifying algorithm
to the combination. If the result is true, the message is accepted; otherwise, it is
rejected.

A conventional signature is like a private “key” belonging to the signer of the doc-
ument. The signer uses it to sign documents; no one else has this signature. The copy of
the signature on file is like a public key; anyone can use it to verify a document, to com-
pare it to the original signature.

In a digital signature, the signer uses her private key, applied to a signing algo-
rithm, to sign the document. The verifier, on the other hand, uses the public key of the
signer, applied to the verifying algorithm, to verify the document.

Note that when a document is signed, anyone, including Bob, can verify it because
everyone has access to Alice’s public key. Alice must not use her public key to sign the
document because then anyone could forge her signature.

Can we use a secret (symmetric) key to both sign and verify a signature? The
answer is negative for several reasons. First, a secret key is known by only two entities
(Alice and Bob, for example). So if Alice needs to sign another document and send it to

Figure 29.18 Digital signature process

M

(M, S)

MM: Message
S: Signature

Verifying
algorithm

Signing
algorithm

BobAlice

Alice’s
public key

Alice’s
private key

for76042_ch29.fm Page 840 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 841

Ted, she needs to use another secret key. Second, as we will see, creating a secret key
for a session involves authentication, which uses a digital signature. We have a vicious
cycle. Third, Bob could use the secret key between himself and Alice, sign a document,
send it to Ted, and pretend that it came from Alice.

We should make a distinction between private and public keys as used in digital
signatures and public and private keys as used in a cryptosystem for confidentiality. In
the latter, the private and public keys of the receiver are used in the process. The sender
uses the public key of the receiver to encrypt; the receiver uses his own private key to
decrypt. In a digital signature, the private and public keys of the sender are used. The
sender uses her private key; the receiver uses the sender’s public key.

Signing the Digest
We said before that the asymmetric-key cryptosystems are very inefficient when deal-
ing with long messages. In a digital signature system, the messages are normally long,
but we have to use asymmetric-key schemes. The solution is to sign a digest of the
message, which is much shorter than the message. A carefully selected message digest
has a one-to-one relationship with the message. The sender can sign the message digest
and the receiver can verify the message digest. The effect is the same. Figure 29.19
shows signing a digest in a digital signature system.

A digest is made out of the message at Alice’s site. The digest then goes through
the signing process using Alice’s private key. Alice then sends the message and the sig-
nature to Bob.

A digital signature needs a public-key system.
The signer signs with her private key; the verifier verifies with the signer’s public key.

A cryptosystem uses the private and public keys of the receiver:
a digital signature uses the private and public keys of the sender.

Figure 29.19 Signing the digest

M M

M

S
Hash HashSign Verify

M: Message
S: Signature

Alice’s
public key

Alice’s
private key

Alice

for76042_ch29.fm Page 841 Thursday, February 19, 2009 10:49 AM

842 PART 6 SECURITY

At Bob’s site, using the same public hash function, a digest is first created out of
the received message. The verifying process is applied. If authentic, the message is
accepted; otherwise, it is rejected.

Services
We discussed several security services in the beginning of the chapter including mes-
sage confidentiality, message authentication, message integrity, and nonrepudiation. A
digital signature can directly provide the last three; for message confidentiality we still
need encryption/decryption.

Message Authentication

A secure digital signature scheme, like a secure conventional signature (one that cannot
be easily copied) can provide message authentication (also referred to as data-origin
authentication). Bob can verify that the message is sent by Alice because Alice’s public
key is used in verification. Alice’s public key cannot verify the signature signed by
Eve’s private key.

Message Integrity

The integrity of the message is preserved even if we sign the whole message because
we cannot get the same signature if the message is changed. The digital signature
schemes today use a hash function in the signing and verifying algorithms that pre-
serves the integrity of the message.

Nonrepudiation

If Alice signs a message and then denies it, can Bob later prove that Alice actually
signed it? For example, if Alice sends a message to a bank (Bob) and asks to transfer
$10,000 from her account to Ted’s account, can Alice later deny that she sent this mes-
sage? With the scheme we have presented so far, Bob might have a problem. Bob must
keep the signature on file and later use Alice’s public key to create the original message
to prove the message in the file and the newly created message are the same. This is not
feasible because Alice may have changed her private or public key during this time; she
may also claim that the file containing the signature is not authentic.

One solution is a trusted third party. People can create an established trusted party
among themselves. Later in the chapter, we will see that a trusted party can solve many
other problems concerning security services and key exchange. Figure 29.20 shows
how a trusted party can prevent Alice from denying that she sent the message.

 Alice creates a signature from her message (SA) and sends the message, her iden-
tity, Bob’s identity, and the signature to the center. The center, after checking that
Alice’s public key is valid, verifies through Alice’s public key that the message came
from Alice. The center then saves a copy of the message with the sender identity, recip-
ient identity, and a timestamp in its archive. The center uses its private key to create
another signature (ST) from the message. The center then sends the message, the new
signature, Alice’s identity, and Bob’s identity to Bob. Bob verifies the message using
the public key of the trusted center.

for76042_ch29.fm Page 842 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 843

If in the future Alice denies that she sent the message, the center can show a copy
of the saved message. If Bob’s message is a duplicate of the message saved at the cen-
ter, Alice will lose the dispute. To make everything confidential, a level of encryption/
decryption can be added to the scheme, as discussed in the next section.

Confidentiality

A digital signature does not provide confidential communication. If confidentiality is
required, the message and the signature must be encrypted using either a secret-key or
public-key cryptosystem.

RSA Digital Signature Scheme
Several digital signature schemes have evolved during the last few decades. Some of
them have been implemented. In this section, we briefly show one of them, RSA. In a
previous section, we discussed how to use RSA cryptosystem to provide privacy. The
RSA idea can also be used for signing and verifying a message. In this case, it is called
the RSA digital signature scheme. The digital signature scheme changes the roles of
the private and public keys. First, the private and public keys of the sender, not the
receiver, are used. Second, the sender uses her own private key to sign the document;
the receiver uses the sender’s public key to verify it. If we compare the scheme with the
conventional way of signing, we see that the private key plays the role of the sender’s
own signature and the sender’s public key plays the role of the copy of the signature
that is available to the public. Obviously Alice cannot use Bob’s public key to sign the
message because then any other person could do the same. The signing and verifying
sites use the same function, but with different parameters. The verifier compares the
message and the output of the function for equality in modulo arithmetic. If the result is
true, the message is accepted. Figure 29.21 shows the scheme in which the signing and
verifying is done on the digest of the message instead of the message itself because the
public-key cryptography is not very efficient to be used with long messages; the digest
is much smaller than the message itself.

Figure 29.20 Using a trusted center for nonrepudiation

M

Verifying
algorithm

M

Signing
algorithm

Alice’s
private key

(M, SA) (M, ST)

M: Message
SA: Alice’s signature
ST: Signature of trusted center

Public key of
trusted center

Signing
algorithm

Trusted center

Private key of
trusted center

Alice’s
public key

M

M
Verifying
algorithm

BobAlice

for76042_ch29.fm Page 843 Thursday, February 19, 2009 10:49 AM

844 PART 6 SECURITY

Alice, the signer, first uses an agreed-upon hash function to create a digest from the
message, D = h(M). She then signs the digest, S = Dd mod n. The message and the sig-
nature are sent to Bob. Bob, the verifier, receives the message and the signature. He first
uses Alice’s public exponent to retrieve the digest, D′ = Se mod n. He then applies the
hash algorithm to the message received to obtain D = h(M). Bob now compares the two
digests, D and D′. If they are equal (in modulo arithmetic), he accepts the message.

Digital Signature Standard (DSS)
The Digital Signature Standard (DSS) was adopted by the National Institute of Stan-
dards and Technology (NIST) in 1994. DSS is a complicated, and more secure, digital
signature scheme.

29.8 ENTITY AUTHENTICATION
Entity authentication is a technique designed to let one party prove the identity of
another party. An entity can be a person, a process, a client, or a server. The entity
whose identity needs to be proven is called the claimant; the party that tries to prove
the identity of the claimant is called the verifier.

Entity versus Message Authentication
There are two differences between entity authentication and message authentication
(data-origin authentication).

1. Message authentication (or data-origin authentication) might not happen in real
time; entity authentication does. In the former, Alice sends a message to Bob.
When Bob authenticates the message, Alice may or may not be present in
the communication process. On the other hand, when Alice requests entity authen-
tication, there is no real message communication involved until Alice
is authenticated by Bob. Alice needs to be online and to take part in the process.
Only after she is authenticated can messages be communicated between Alice
and Bob. Data-origin authentication is required when an e-mail is sent from Alice

Figure 29.21 The RSA signature on the message digest

Alice
(signer)

Signing Verifying

Bob
(verifier)

M

M

S
D�

M: Message
S: Signature
D: Digest

Se mod n

D

d (e, n)

Alice’s
private key

Alice’s
public key

h(M)

AcceptS

M

M

Dd mod n
D

h(M)
[Yes]

Same?

for76042_ch29.fm Page 844 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 845

to Bob. Entity authentication is required when Alice gets cash from an automatic
teller machine.

2. Second, message authentication simply authenticates one message; the process
needs to be repeated for each new message. Entity authentication authenticates the
claimant for the entire duration of a session.

Verification Categories
In entity authentication, the claimant must identify herself to the verifier. This can be
done with one of three kinds of witnesses: something known, something possessed, or
something inherent.

❑ Something known. This is a secret known only by the claimant that can be checked
by the verifier. Examples are a password, a PIN, a secret key, and a private key.

❑ Something possessed. This is something that can prove the claimant’s identity.
Examples are a passport, a driver’s license, an identification card, a credit card, and
a smart card.

❑ Something inherent. This is an inherent characteristic of the claimant. Examples
are conventional signatures, fingerprints, voice, facial characteristics, retinal pat-
tern, and handwriting.

In this section, we only discuss the first type of witness, something known, which is
normally used for remote (online) entity authentication. The other two categories are
normally used when the claimant is personally present.

Passwords
The simplest and oldest method of entity authentication is the use of a password,
which is something that the claimant knows. A password is used when a user needs to
access a system for using the system’s resources (login). Each user has a user identifi-
cation that is public, and a password that is private. Passwords, however, are very prone
to attack. A password can be stolen, intercepted, guessed, and so on.

Challenge-Response
In password authentication, the claimant proves her identity by demonstrating that she
knows a secret, the password. However, because the claimant sends this secret, it is sus-
ceptible to interception by the adversary. In challenge-response authentication, the
claimant proves that she knows a secret without sending it. In other words, the claimant
does not send the secret to the verifier; the verifier either has it or finds it.

The challenge is a time-varying value such as a random number or a timestamp
that is sent by the verifier. The claimant applies a function to the challenge and sends
the result, called a response, to the verifier. The response shows that the claimant
knows the secret.

In challenge-response authentication, the claimant proves
that she knows a secret without sending it to the verifier.

for76042_ch29.fm Page 845 Thursday, February 19, 2009 10:49 AM

846 PART 6 SECURITY

Using a Symmetric-Key Cipher

Several approaches to challenge-response authentication use symmetric-key encryption.
The secret here is the shared secret key, known by both the claimant and the verifier. The
function is the encrypting algorithm applied on the challenge. Although there are several
approaches to this method, we just show the simplest one to give an idea. Figure 29.22
shows this first approach.

The first message is not part of challenge-response, it only informs the verifier that
the claimant wants to be challenged. The second message is the challenge. RB is the
nonce (abbreviation for number once) randomly chosen by the verifier (Bob) to chal-
lenge the claimant. The claimant encrypts the nonce using the shared secret key known
only to the claimant and the verifier and sends the result to the verifier. The verifier
decrypts the message. If the nonce obtained from decryption is the same as the one sent
by the verifier, Alice is authenticated.

Note that in this process, the claimant and the verifier need to keep the symmetric
key used in the process secret. The verifier must also keep the value of the nonce for
claimant identification until the response is returned.

Using an Asymmetric-Key Cipher

Figure 29.23 shows this approach.

Figure 29.22 Unidirectional, symmetric-key authentication

Figure 29.23 Unidirectional, asymmetric-key authentication

Alice

RB

RB

1

Alice
(claimant)

Bob
(verifier)

2

3

Encrypted with Alice-Bob secret key

A nonce sent by BobRB

Alice

RB

Bob, RB

Alice
(claimant)

Bob
(verifier)

Encrypted with Alice’s public key

A nonce sent by BobRB

1

2

3

for76042_ch29.fm Page 846 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY

847

Instead of a symmetric-key cipher, we can use an asymmetric-key cipher for entity
authentication. Here the secret must be the private key of the claimant. The claimant
must show that she owns the private key related to the public key that is available to
everyone. This means that the verifier must encrypt the challenge using the public key
of the claimant; the claimant then decrypts the message using her private key. The
response to the challenge is the decrypted challenge. If the R

B

 received in the third
message is the same sent in the second message, Alice is authenticated.

Using Digital Signature

Entity authentication can also be achieved using a digital signature. When a digital
signature is used for entity authentication, the claimant uses her private key for signing.
In the first approach, shown in Figure 29.24, Bob uses a plaintext challenge and Alice
signs the response. If the R

B

 received in the third message is the same sent in the sec-
ond message, Alice is authenticated.

29.9 KEY MANAGEMENT

We discussed symmetric-key and asymmetric-key cryptography in the previous sec-
tions. However, we have not yet discussed how secret keys in symmetric-key cryptog-
raphy, and public keys in asymmetric-key cryptography, are distributed and maintained.
This section touches on these two issues.

Symmetric-Key Distribution

Symmetric-key cryptography is more efficient than asymmetric-key cryptography for
enciphering large messages. Symmetric-key cryptography, however, needs a shared
secret key between two parties.

If Alice needs to exchange confidential messages with

N

 people, she needs

N

 differ-
ent keys. What if

N

 people need to communicate with each other? A total of

N

(

N

−

1)
keys is needed if we require that Alice and Bob use two keys for bidirectional commu-
nication; only

N

(

N

−

1)/2 keys are needed if we allow a key to be used for both direc-
tions. This means that if one million people need to communicate with each other, each
person has almost one million different keys; in total, almost one billion keys are
needed. This is normally referred to as the

N

2

 problem because the number of required
keys for

N

 entities is close to

N

2

.

Figure 29.24

Digital signature, unidirectional authentication

Alice

RB

Bob, Sig (RB, Bob)

Signed with
Alice’s private key

Alice
(claimant)

Bob
(verifier)A nonce sent by BobRB

1

2

3

for76042_ch29.fm Page 847 Thursday, February 19, 2009 4:39 PM

848 PART 6 SECURITY

The number of keys is not the only problem; the distribution of keys is another. If
Alice and Bob want to communicate, they need a way to exchange a secret key; if Alice
wants to communicate with one million people, how can she exchange one million keys
with one million people? Using the Internet is definitely not a secure method. It is obvi-
ous that we need an efficient way to maintain and distribute secret keys.

Key-Distribution Center: KDC

A practical solution is the use of a trusted third party, referred to as a key-distribution
center (KDC). To reduce the number of keys, each person establishes a shared secret
key with the KDC. A secret key is established between the KDC and each member.
Now the question is how Alice can send a confidential message to Bob. The process is
as follows:

1. Alice sends a request to the KDC stating that she needs a session (temporary)
secret key between herself and Bob.

2. The KDC informs Bob about Alice’s request.

3. If Bob agrees, a session key is created between the two.

The secret key between Alice and Bob that is established with the KDC is used to
authenticate Alice and Bob to the KDC and to prevent Eve from impersonating either
of them.

Multiple KDCs When the number of people using a KDC increases, the system
becomes unmanageable and a bottleneck can result. To solve the problem, we need to
have multiple KDCs. We can divide the world into domains. Each domain can have
one or more KDCs (for redundancy in case of failure). Now if Alice wants to send a
confidential message to Bob, who belongs to another domain, Alice contacts her
KDC, which in turn contacts the KDC in Bob’s domain. The two KDCs can create a
secret key between Alice and Bob. There can be local KDCs, national KDCs, and
international KDCs. When Alice needs to communicate with Bob, who lives in
another country, she sends her request to a local KDC; the local KDC relays the
request to the national KDC; the national KDC relays the request to an international
KDC. The request is then relayed all the way down to the local KDC where Bob lives.
Figure 29.25 shows a configuration of hierarchical multiple KDCs.

Figure 29.25 Multiple KDCs

Local KDCs Local KDCs

National KDCs National KDCs

International KDC

Bob
Alice

for76042_ch29.fm Page 848 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 849

Session Keys A KDC creates a secret key for each member. This secret key can be
used only between the member and the KDC, not between two members. If Alice needs
to communicate secretly with Bob, she needs a secret key between herself and Bob. A
KDC can create a session key between Alice and Bob, using their keys with the center.
The keys of Alice and Bob are used to authenticate Alice and Bob to the center and to
each other before the session key is established. After communication is terminated, the
session key is no longer useful.

Several different approaches have been proposed to create the session key using
ideas discussed in the previous sections. We show the simplest approach in Figure 29.26.
Although this approach is very rudimentary, it helps to understand more sophisticated
approaches in the literature.

1. Alice sends a plaintext message to the KDC to obtain a symmetric session key
between Bob and herself. The message contains her registered identity (the word
Alice in the figure) and the identity of Bob (the word Bob in the figure). This mes-
sage is not encrypted, it is public.The KDC does not care.

2. The KDC receives the message and creates what is called a ticket. The ticket is
encrypted using Bob’s key (KB). The ticket contains the identities of Alice and Bob
and the session key (KAB). The ticket with a copy of the session key is sent to
Alice. Alice receives the message, decrypts it, and extracts the session key. She
cannot decrypt Bob’s ticket; the ticket is for Bob, not for Alice. Note that this mes-
sage contains a double encryption; the ticket is encrypted, and the entire message
is also encrypted. In the second message, Alice is actually authenticated to the
KDC, because only Alice can open the whole message using her secret key with
KDC.

A session symmetric key between two parties is used only once.

Figure 29.26 Creating a session key using KDC

Alice KDC
Bob

Alice, Bob

KA

1

2

3

Encrypted with Alice-KDC secret key

KB Encrypted with Bob-KDC secret key

Session key between Alice and Bob

Alice, Bob,

KB

,

KA

Alice, Bob,

KB

for76042_ch29.fm Page 849 Thursday, February 19, 2009 10:49 AM

850 PART 6 SECURITY

3. Alice sends the ticket to Bob. Bob opens the ticket and knows that Alice needs to
send messages to him using KAB as the session key. Note that in this message, Bob
is authenticated to the KDC because only Bob can open the ticket. Because Bob is
authenticated to the KDC, he is also authenticated to Alice, who trusts the KDC. In
the same way, Alice is also authenticated to Bob, because Bob trusts the KDC and
the KDC has sent Bob the ticket that includes the identity of Alice.

Symmetric-Key Agreement
Alice and Bob can create a session key between themselves without using a KDC. This
method of session-key creation is referred to as the symmetric-key agreement.
Although there are several ways to accomplish this, we discuss only one method,
Diffie-Hellman, which shows the basic idea used in more sophisticated (less prone to
attacks) methods.

Diffie-Hellman Key Agreement

In the Diffie-Hellman protocol two parties create a symmetric session key without the
need of a KDC. Before establishing a symmetric key, the two parties need to choose two
numbers p and g. These two numbers have some properties discussed in number theory,
but beyond the scope of this book. These two numbers do not need to be confidential. They
can be sent through the Internet; they can be public. Figure 29.27 shows the procedure.

The steps are as follows:

1. Alice chooses a large random number x such that 0 ≤ x ≤ p − 1 and calculates
R1 = gx mod p.

2. Alice sends R1 to Bob. Note that Alice does not send the value of x; she sends only
R1.

3. Bob chooses another large random number y such that 0 ≤ y ≤ p − 1 and calculates
R2 = gy mod p.

4. Bob sends R2 to Alice. Again, note that Bob does not send the value of y, he sends
only R2.

Figure 29.27 Diffie-Hellman method

R1 = gx mod p

K = (R1)y mod pK = (R2)x mod p

K = gxy mod p

R2

1

2

3

4

5 5

The values of
p and g are public.

Shared secret key

R1

R2 = gy mod p

Bob
Alice

for76042_ch29.fm Page 850 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY

851

5.

Alice calculates K = (R

2

)

x

 mod

p

. Bob also calculates K = (R

1

)

y

 mod

p

.

K is the symmetric key for the session.

Bob has calculated K = (R

1

)

y

 mod

p

 = (

g

x

 mod

p

)

y

 mod

p

 =

g

xy

mod

p

. Alice has
calculated K = (R

2

)

x

 mod

p

 = (

g

y

 mod

p

)

x

 mod =

g

xy

 mod

p

. Both have reached
the same value without Bob knowing the value of

x

 and without Alice knowing the
value of

y

.

Example 29.8

Let us give a trivial example to make the procedure clear. Our example uses small numbers, but
note that in a real situation, the numbers are very large. Assume that

 g

 = 7 and

p

 = 23. The steps
are as follows:

1.

Alice chooses

x

 = 3 and calculates R

1

 = 7

3

 mod 23 = 21.

2.

Alice sends the number 21 to Bob.

3.

Bob chooses

y

 = 6 and calculates R

2

 = 7

6

 mod 23 = 4.

4.

Bob sends the number 4 to Alice.

5.

Alice calculates the symmetric key K = 4

3

 mod 23 = 18. Bob calculates the symmetric key
K = 21

6

 mod 23 = 18.

The value of K is the same for both Alice and Bob;

g

xy

 mod

p

 = 7

18

 mod 35 = 18.

Public-Key Distribution

In asymmetric-key cryptography, people do not need to know a symmetric shared key.
If Alice wants to send a message to Bob, she only needs to know Bob’s public key,
which is open to the public and available to everyone. If Bob needs to send a message
to Alice, he only needs to know Alice’s public key, which is also known to everyone. In
public-key cryptography, everyone shields a private key and advertises a public key.

Public keys, like secret keys, need to be distributed to be useful. Let us briefly dis-
cuss the way public keys can be distributed.

Public Announcement

The naive approach is to announce public keys publicly. Bob can put his public key on
his website or announce it in a local or national newspaper. When Alice needs to send a
confidential message to Bob, she can obtain Bob’s public key from his site or from the
newspaper, or even send a message to ask for it. This approach, however, is not secure;

 K = (

g

x

 mod

p

)

y

 mod

p

 = (

g

y

 mod

p

)

x

mod

p

 =

g

xy

 mod

p

The symmetric (shared) key in the Diffie-Hellman method is K =

g

xy

 mod

p

.

In public-key cryptography, everyone has access to everyone’s public key;
public keys are available to the public.

for76042_ch29.fm Page 851 Thursday, February 19, 2009 4:41 PM

852 PART 6 SECURITY

it is subject to forgery. For example, Eve could make such a public announcement.
Before Bob can react, damage could be done. Eve can fool Alice into sending her a
message that is intended for Bob. Eve could also sign a document with a corresponding
forged private key and make everyone believe it was signed by Bob. The approach is
also vulnerable if Alice directly requests Bob’s public key. Eve can intercept Bob’s
response and substitute her own forged public key for Bob’s public key.

Certification Authority

The common approach to distributing public key is to create public-key certificates.
Bob wants two things; he wants people to know his public key, and he wants no one to
accept a forged public key as his. Bob can go to a certification authority (CA), a fed-
eral or state organization that binds a public key to an entity and issues a certificate.
Figure 29.28 shows the concept.

The CA has a well-known public key itself that cannot be forged. The CA checks
Bob’s identification (using a picture ID along with other proof). It then asks for Bob’s
public key and writes it on the certificate. To prevent the certificate itself from being
forged, the CA signs the certificate with its private key. Now Bob can upload the signed
certificate. Anyone who wants Bob’s public key downloads the signed certificate and
uses the center’s public key to extract Bob’s public key.

X.509

Although the use of a CA has solved the problem of public-key fraud, it has created a side
effect. Each certificate may have a different format. If Alice wants to use a program to
automatically download different certificates and digests belonging to different people,
the program may not be able to do this. One certificate may have the public key in one
format and another in a different format. The public key may be on the first line in one
certificate, and on the third line in another. Anything that needs to be used universally
must have a universal format. To remove this side effect, the ITU has designed X.509, a

Figure 29.28 Certification authority

BobCertification
authority Bob’s

public key
Applying

Distributing
to public

Recording

Issuing

Signed with
CA’s private key

Bob’s certificate

Directory
Alice KA

Bob KB

1

3

2

for76042_ch29.fm Page 852 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 853

recommendation that has been accepted by the Internet with some changes. X.509 is a
way to describe the certificate in a structured way. It uses a well-known protocol called
ASN.1 (Abstract Syntax Notation 1) that defines fields familiar to computer programmers.

29.10 FURTHER READING
Several books give through coverage of cryptography and network security. In particu-
lar, we recommend [For 08], [Sta 06], [Bis 05], [Mao 04], and [Sti 06].

29.11 KEY TERMS
additive cipher MD4
asymmetric-key cipher MD5
attacks message authentication code (MAC)
autokey cipher modern block cipher
availability modern stream cipher
bit-oriented ciphers modification
block cipher monoalphabetic cipher
Caesar cipher one-time pad
certification authority (CA) password
challenge-response authentication P-box
character-oriented ciphers plaintext
cipher polyalphabetic cipher
ciphertext polyalphabetic substitution
circular shift operation private key
combine operation public key
compression function public-key certificate
confidentiality replaying
cryptography repudiation
cryptographic hash function RSA cryptosystem
Data Encryption Standard (DES) RSA digital signature scheme
decryption S-box
decryption algorithm Secure Hash Algorithm (SHA)
denial of service session key
Diffie-Hellman protocol shared secret key
digest shift cipher
digital signature signing algorithm
digital signature scheme snooping
Digital Signature Standard (DSS) split operation
encryption steganography
encryption algorithm stream cipher
entity authentication substitution cipher
HMAC swap operation
integrity symmetric-key cipher
iterated cryptographic hash function ticket
key traffic analysis
key-distribution center (KDC) transposition cipher
masquerading verifying algorithm
MD2 X.509

for76042_ch29.fm Page 853 Thursday, February 19, 2009 10:49 AM

854 PART 6 SECURITY

29.12 SUMMARY
❑ Information is an asset that has a value that needs to be secured; information needs

to be hidden from unauthorized access (confidentiality), protected from unautho-
rized change (integrity), and available to an authorized entity when it is needed
(availability). Our three goals of security can be threatened by security attacks.
Two techniques have been devised to protect information against attacks: cryptogra-
phy and steganography.

❑ Traditional ciphers are called symmetric-key ciphers because the same key is
used for encryption and decryption, and the key can be used for bidirectional
communication. We can divide traditional symmetric-key ciphers into two
broad categories: substitution ciphers and transposition ciphers. A substitution
cipher substitutes a character by another; a transposition cipher reorders the
characters.

❑ Modern ciphers are bit-oriented ciphers. A modern cipher can be either a block
cipher or a stream cipher. A modern block cipher uses several rounds of a combi-
nation of substitution, transposition, exclusive-or, and other elements to mix a
block of bits. One of the common block ciphers used today is DES. A modern
stream cipher encrypts and decrypts a stream of bits one bit at a time.

❑ Asymmetric key cryptography uses two separate keys: one private and one public.
Asymmetric-key cryptography means that Bob and Alice cannot use the same set
of keys for two-way communication. Bob needs only one private key to receive all
correspondence from anyone in the community, but Alice needs n public keys to
communicate with n entities in the community.

❑ One way to preserve the integrity of a document is through the use of a message
digest. The message is passed through an algorithm called a cryptographic hash
function. The function creates a compressed image of the message, called a digest,
that can be used like a fingerprint.

❑ To ensure the integrity of the message and the data origin authentication we
need to create a message authentication code (MAC), which includes the secret-
key between Alice and Bob in the hash function. Another way to provide mes-
sage integrity and message authentication is to use a digital signature. A MAC
uses a secret key to protect the digest; a digital signature uses a pair of private-
public keys to do so.

❑ Entity authentication is a technique designed to let one party prove the identity of
another party. An entity can be a person, a process, a client, or a server. The entity
whose identity needs to be proved is called the claimant; the party that tries to
prove the identity of the claimant is called the verifier.

❑ To use symmetric-key and asymmetric-key cryptography, we need to manage
keys. In symmetric-key cryptography, we can use the services of a KDC for cre-
ation of session keys between two entities. In asymmetric-key cryptography, we
can use the service of a certification authority (CA) to issue certified public
keys.

for76042_ch29.fm Page 854 Thursday, February 19, 2009 10:49 AM

CHAPTER 29 CRYPTOGRAPHY AND NETWORK SECURITY 855

29.13 PRACTICE SET

Exercises
1. Define the type of the attack in each of the following cases:

a. A student breaks into a professor’s office to obtain a copy of the next test.
b. A student gives a check for $10 to buy a used book. Later the student finds out

that the check was cashed for $100.
c. A student sends hundreds of e-mails per day to the school using a phony return

e-mail address.

2. A small private club has only 100 members. Answer the following questions:
a. How many secret keys are needed if all members of the club need to send secret

messages to each other?
b. How many secret keys are needed if everyone trusts the president of the club? If

a member needs to send a message to another member, she first sends it to the
president; the president then sends the message to the other member.

c. How many secret keys are needed if the president decides that the two members
who need to communicate should contact him first. The president then creates a
temporary key to be used between the two. The temporary key is encrypted and
sent to both members.

3. Alice can use only the additive cipher on her computer to send a message to a
friend. She thinks that the message is more secure if she encrypts the message two
times, each time with a different key. Is she right? Defend your answer.

4. Encrypt the message “this is an exercise” using additive cipher with key = 20.
Ignore the space between words. Decrypt the message to get the original plaintext.

5. a. Show the result of 3-bit circular left shift on the word (10011011)2.
b. Show the result of 3-bit circular right shift on the word resulting from part a.
c. Compare the result of part b with the original word in part a.

6. a. Swap the word (10011011)2.
b. Swap the word resulting from part a.
c. Compare the result of part a and part b to show that swapping is a self-invertible

operation.

7. Find the result of the following operations:
a. (01001101) ⊕ (01001101)
b. (01001101) ⊕ (10110010)

8. The leftmost bit of a 4 × 3 S-box rotates the other three bits. If the leftmost bit is 0,
the three other bits are rotated to the right 1 bit (circular right shift). If the leftmost
bit is 1, the three other bits are rotated to the left one bit (circular left shift). If the
input is 1011, what is the output? If the input is 0110, what is the output?

9. In RSA, given n = 12091, e = 13, and d = 3653 encrypt the message “THIS IS
TOUGH” using the 00 to 26 encoding scheme. Decrypt the ciphertext to find the
original message. Use 4-digit plaintext or ciphertext blocks.

for76042_ch29.fm Page 855 Thursday, February 19, 2009 10:49 AM

856 PART 6 SECURITY

10. In RSA, why can’t Bob choose 1 as the public key e?
11. Explain why private-public keys cannot be used in creating a MAC.
12. Assume we have a very simple message digest. Our unrealistic message digest is

just one number between 0 and 25. The digest is initially set to 0. The crypto-
graphic hash function adds the current value of the digest to the value of the cur-
rent character (between 0 and 25). Addition is in modulo 26. What is the value of
the digest if the message is “HELLO”? Why is this digest not secure?

13. Modify Figure 29.22 so that both Alice and Bob can be authenticated to each other.
14. Modify Figure 29.23 so that both Alice and Bob can be authenticated to each other.
15. Modify Figure 29.24 so that both Alice and Bob can be authenticated to each other.

Research Activities
16. Use the literature to find about the historical polyalphabetic cipher Vigenere.
17. One of the interesting traditional ciphers is the Hill cipher. Use the literature to find

out about this cipher.
18. We often hear about Feistel and non-Feistel ciphers. Use the literature or the Inter-

net to find out about the main difference between these two types of ciphers. To
which category does DES belong?

19. Since the size of the cipher key in DES is small (only 56 bits), one uses triple DES
block cipher today. Use the literature and find out how we can change DES to tri-
ple DES with only two keys. What is the size of the key in the triple DES?

20. Advanced Encryption Standard (AES) is a new modern block cipher. Use the liter-
ature to learn about it and compare and contrast it with DES. Is AES a Feistel or a
non-Feistel cipher?

21. Another asymmetric-key cipher is called ElGamal. Use the literature to find out
about it and compare it with RSA.

22. Use the literature to find the outline of the HMAC (similar to the one for MAC in
Figure 29.17).

23. A very promising cryptographic hash function is Whirlpool. Use the literature and
find some facts about this function. What is the relationship between this function
and AES block cipher.

24. Use the literature to find out more about DSS.
25. A very interesting idea in using password in UNIX is to salt the password. Use the

literature to find out about salted passwords.
26. Use the literature to find out about Lamport one-time passwords.
27. A hot issue in entity authentication today is the topic of zero knowledge. Use the

literature to find out about this issue. How it is used in entity authentication?
28. A very common interesting KDC is a protocol referred to as Kerberos. Use the

Internet to find out about it. Compare it with the simple KDS scheme we discussed
in this chapter.

29. The key agreement protocol, Diffie-Hellman, we used in this chapter is not very
secure. It is prone to the man-in-the-middle attack. Another protocol called station-
to-station protocol has been defined to improve the security of Diffie-Hellman.
Find out about this protocol and compare it with Diffie-Hellman.

for76042_ch29.fm Page 856 Thursday, February 19, 2009 10:49 AM

for76042_ch29.fm Page 857 Thursday, February 19, 2009 1:37 PM

C H A P T E R

30

858

30

Internet Security

he security techniques we discussed in Chapter 29 are combined to
provide security services in the Internet at the network layer, trans-

port layer, and application layer. The discussion and application of these
techniques are very complicated, with several protocols involved and tens
of different packets. Although the study of these protocols and details of
these packets are very interesting, they need several hundred pages, if not
thousands. In this last chapter of the book, we give a glance at these
protocols to prepare the reader for more advanced books on this topic.

OBJECTIVES

The chapter has several objectives:

❑

To introduce the idea of Internet security at the network layer and the
IPSec protocol that implements that idea in two modes: transport and
tunnel.

❑

To discuss two protocols in IPSec, AH and ESP, and explain the
security services each provide.

❑

To introduce security association and its implementation in IPSec.

❑

To introduce virtual private networks (VPN) as an application of
IPSec in the tunnel mode.

❑

To introduce the idea of Internet security at the transport layer and
the SSL protocol that implements that idea.

❑

To show how SSL creates six cryptographic secrets to be used by the
client and the server.

❑

To discuss four protocols used in SSL and how they are related to
each other.

❑

To introduce Internet security at the application level and two
protocols, PGP and S/MIME, that implement that idea.

❑

To show how PGP and S/MIME can provide confidentiality and
message authentication.

❑

To discuss firewalls and their applications in protecting a site from
intruders.

T

for76042_ch30.fm Page 858 Thursday, February 19, 2009 9:29 AM

859

30.1 NETWORK LAYER SECURITY

We start this chapter with the discussion of security at the network layer. Although in
the next two sections we discuss security at the transport and application layers, we
also need security at the network layer for three reasons. First, not all client/server pro-
grams are protected at the application layer. Second, not all client/server programs at
the application layer use the services of TCP to be protected by the transport layer secu-
rity that we discuss for the transport layer; some programs use the service of UDP.
Third, many applications, such as routing protocols, directly use the service of IP; they
need security services at the IP layer.

IP Security (IPSec)

 is a collection of protocols designed by the Internet Engineer-
ing Task Force (IETF) to provide security for a packet at the network level. IPSec helps
create authenticated and confidential packets for the IP layer.

Two Modes

IPSec operates in one of two different modes: transport mode or tunnel mode.

Transport Mode

In

transport mode,

 IPSec protects what is delivered from the transport layer to the net-
work layer. In other words, transport mode protects the payload to be encapsulated in
the network layer, as shown in Figure 30.1.

Note that transport mode does not protect the IP header. In other words, transport
mode does not protect the whole IP packet; it protects only the packet from the trans-
port layer (the IP layer payload). In this mode, the IPSec header (and trailer) are added
to the information coming from the transport layer. The IP header is added later.

Figure 30.1

IPSec in transport mode

IPSec in transport mode does not protect the IP header;
it only protects the information coming from the transport layer.

Transport layer

Network layer

H: header
T: trailer

IPSec layer

Transport layer payload

IPSec-H IPSec-T

IP payloadIP-H

for76042_ch30.fm Page 859 Thursday, February 19, 2009 9:29 AM

860

PART 6 SECURITY

Transport mode is normally used when we need host-to-host (end-to-end) protection
of data. The sending host uses IPSec to authenticate and/or encrypt the payload delivered
from the transport layer. The receiving host uses IPSec to check the authentication and/or
decrypt the IP packet and deliver it to the transport layer. Figure 30.2 shows this concept.

Tunnel Mode

In

tunnel mode,

 IPSec protects the entire IP packet. It takes an IP packet, including the
header, applies IPSec security methods to the entire packet, and then adds a new IP
header, as shown in Figure 30.3.

The new IP header, as we will see shortly, has different information than the origi-
nal IP header. Tunnel mode is normally used between two routers, between a host and a
router, or between a router and a host, as shown in Figure 30.4. The entire original
packet is protected from intrusion between the sender and the receiver, as if the whole
packet goes through an imaginary tunnel.

Figure 30.2

Transport mode in action

Figure 30.3

IPSec in tunnel mode

Figure 30.4

Tunnel mode in action

Host A Host B

Transport layer

Network layer

IPSec layer
Virtual communication

at the network layer

Network-layer
packet Transport layer

Network layer

IPSec layer

Network layer

IPSec layer IPSec-H IPSec-T

Network layer

New header

New IP payloadIP-H

IP-H IP payload

H: header
T: trailer

Tunnel

Virtual communication
at the network layer

Network-layer
packet

Network layer

New Network
layer

IPSec layer

Network layer

New Network
layer

IPSec layer

Router A Router B

for76042_ch30.fm Page 860 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY

861

Comparison

In transport mode, the IPSec layer comes between the transport layer and the network
layer. In tunnel mode, the flow is from the network layer to the IPSec layer and then
back to the network layer again. Figure 30.5 compares the two modes.

Two Security Protocols

IPSec defines two protocols



the Authentication Header (AH) Protocol and the Encap-
sulating Security Payload (ESP) Protocol



to provide authentication and/or encryption
for packets at the IP level.

Authentication Header (AH)

The

Authentication Header (AH)

Protocol

 is designed to authenticate the source host
and to ensure the integrity of the payload carried in the IP packet. The protocol uses a
hash function and a symmetric (secret) key to create a message digest; the digest is
inserted in the authentication header (see MAC in Chapter 29). The AH is then placed
in the appropriate location, based on the mode (transport or tunnel). Figure 30.6 shows
the fields and the position of the authentication header in transport mode.

IPSec in tunnel mode protects the original IP header.

Figure 30.5

Transport mode versus tunnel mode

Figure 30.6

Authentication Header (AH) protocol

Application layer

Transport layer

Network layer

Transport Mode

IPSec layer

Application layer

Transport layer

Network layer

 New network layer

Tunnel Mode

IPSec layer

16 bits

AH Rest of the original packet Padding

Next header ReservedPayload length

Security parameter index

Sequence number

Authentication data (digest)
(variable length)

Data used in calculation of authentication data
(except those fields in IP header changing during transmission)

IP header

8 bits 8 bits

for76042_ch30.fm Page 861 Thursday, February 19, 2009 9:29 AM

862

PART 6 SECURITY

When an IP datagram carries an authentication header, the original value in the
protocol field of the IP header is replaced by the value 51. A field inside the authentica-
tion header (the next header field) holds the original value of the protocol field (the type
of payload being carried by the IP datagram). The addition of an authentication header
follows these steps:

1.

An authentication header is added to the payload with the authentication data field
set to 0.

2.

Padding may be added to make the total length even for a particular hashing
algorithm.

3.

Hashing is based on the total packet. However, only those fields of the IP header
that do not change during transmission are included in the calculation of the mes-
sage digest (authentication data).

4.

The authentication data are inserted in the authentication header.

5.

The IP header is added after changing the value of the protocol field to 51.

A brief description of each field follows:

❑

Next header.

The 8-bit next header field defines the

type of

payload carried by the
IP datagram (such as TCP, UDP, ICMP, or OSPF).

❑

Payload length.

The name of this 8-bit field is misleading. It does not define the
length of the payload; it defines the length of the authentication header in 4-byte
multiples, but it does not include the first 8 bytes.

❑

Security parameter index.

The 32-bit security parameter index (SPI) field plays
the role of a virtual circuit identifier and is the same for all packets sent during a
connection called a Security Association (discussed later).

❑

Sequence number.

A 32-bit sequence number provides ordering information for
a sequence of datagrams. The sequence numbers prevent a playback. Note that the
sequence number is not repeated even if a packet is retransmitted. A sequence num-
ber does not wrap around after it reaches 2

32

; a new connection must be established.

❑

Authentication data.

Finally, the authentication data field is the result of apply-
ing a hash function to the entire IP datagram except for the fields that are changed
during transit (e.g., time-to-live).

Encapsulating Security Payload (ESP)

The AH protocol does not provide confidentiality, only source authentication and data
integrity. IPSec later defined an alternative protocol,

Encapsulating Security Payload
(ESP),

 that provides source authentication, integrity, and confidentiality. ESP adds a
header and trailer. Note that ESP’s authentication data are added at the end of the
packet, which makes its calculation easier. Figure 30.7 shows the location of the ESP
header and trailer.

When an IP datagram carries an ESP header and trailer, the value of the protocol
field in the IP header is 50. A field inside the ESP trailer (the next-header field) holds

The AH protocol provides source authentication and data integrity, but not privacy.

for76042_ch30.fm Page 862 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY

863

the original value of the protocol field (the type of payload being carried by the IP data-
gram, such as TCP or UDP). The ESP procedure follows these steps:

1.

An ESP trailer is added to the payload.

2.

The payload and the trailer are encrypted.

3.

The ESP header is added.

4.

The ESP header, payload, and ESP trailer are used to create the authentication
data.

5.

The authentication data are added to the end of the ESP trailer.

6.

The IP header is added after changing the protocol value to 50.

The fields for the header and trailer are as follows:

❑

Security parameter index.

The 32-bit security parameter index field is similar to
the one defined for the AH protocol.

❑

Sequence number.

The 32-bit sequence number field is similar to the one defined
for the AH protocol.

❑

Padding.

This variable-length field (0 to 255 bytes) of 0s serves as padding.

❑

Pad length.

The 8-bit pad-length field defines the number of padding bytes. The
value is between 0 and 255; the maximum value is rare.

❑

Next header.

The 8-bit next-header field is similar to that defined in the AH
protocol. It serves the same purpose as the protocol field in the IP header before
encapsulation.

❑

Authentication data.

Finally, the authentication data field is the result of applying
an authentication scheme to parts of the datagram. Note the difference between the
authentication data in AH and ESP. In AH, part of the IP header is included in the
calculation of the authentication data; in ESP, it is not.

IPv4 and IPv6

IPSec supports both IPv4 and IPv6. In IPv6, however, AH and ESP are part of the
extension header.

Figure 30.7

Encapsulating Security Payload (ESP)

ESP provides source authentication, data integrity, and privacy.

Authenticated

Encrypted

ESP header ESP trailerThe rest of the payload

Security parameter index

Sequence number

32 bits 32 bits

Authentication data
(variable length)

Pad length
Padding 8 bits 8 bits

Next header

IP header

for76042_ch30.fm Page 863 Thursday, February 19, 2009 9:29 AM

864

PART 6 SECURITY

AH versus ESP

The ESP protocol was designed after the AH protocol was already in use. ESP does
whatever AH does with additional functionality (confidentiality). The question is, why
do we need AH? The answer is that we don’t. However, the implementation of AH is
already included in some commercial products, which means that AH will remain part
of the Internet until these products are phased out.

Services Provided by IPSec

The two protocols, AH and ESP, can provide several security services for packets at the
network layer. Table 30.1 shows the list of services available for each protocol.

Access Control

IPSec provides access control indirectly using a Security Association Database (SAD),
as we will see in the next section. When a packet arrives at a destination, and there is no
Security Association already established for this packet, the packet is discarded.

Message Integrity

Message integrity is preserved in both AH and ESP. A digest of data is created and sent
by the sender to be checked by the receiver.

Entity Authentication

The Security Association and the keyed-hash digest of the data sent by the sender
authenticate the sender of the data in both AH and ESP.

Confidentiality

The encryption of the message in ESP provides confidentiality. AH, however, does not
provide confidentiality. If confidentiality is needed, one should use ESP instead of AH.

Replay Attack Protection

In both protocols, the replay attack is prevented by using sequence numbers and a slid-
ing receiver window. Each IPSec header contains a unique sequence number when the
Security Association is established. The number starts from 0 and increases until the
value reaches 2

32

−

 1. When the sequence number reaches the maximum, it is reset to 0
and, at the same time, the old Security Association (see the next section) is deleted and
a new one is established. To prevent processing duplicate packets, IPSec mandates the
use of a fixed-size window at the receiver. The size of the window is determined by the
receiver with a default value of 64.

Table 30.1

IPSec services

Services AH ESP

Access control Yes Yes
Message authentication (message integrity) Yes Yes
Entity authentication (data source authentication) Yes Yes
Confidentiality No Yes
Replay attack protection Yes Yes

for76042_ch30.fm Page 864 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY

865

Security Association

Security Association is a very important aspect of IPSec. IPSec requires a logical rela-
tionship, called a

Security Association (SA),

 between two hosts. This section first
discusses the idea and then shows how it is used in IPSec.

Idea of Security Association

A Security Association is a contract between two parties; it creates a secure channel
between them. Let us assume that Alice needs to unidirectionally communicate with
Bob. If Alice and Bob are interested only in the confidentiality aspect of security, they
can create a shared secret key between themselves. We can say that there are two Secu-
rity Associations (SAs) between Alice and Bob; one outbound SA and one inbound SA.
Each of them stores the value of the key in a variable and the name of the encryption/
decryption algorithm in another. Alice uses the algorithm and the key to encrypt a mes-
sage to Bob; Bob uses the algorithm and the key when he needs to decrypt the message
received from Alice. Figure 30.8 shows a simple SA.

The Security Associations can be more involved if the two parties need message
integrity and authentication. Each association needs other data such as the algorithm
for message integrity, the key, and other parameters. It can be much more complex if
the parties need to use specific algorithms and specific parameters for different proto-
cols, such as IPSec AH or IPSec ESP.

Security Association Database (SAD)

A Security Association can be very complex. This is particularly true if Alice wants to
send messages to many people and Bob needs to receive messages from many people.
In addition, each site needs to have both inbound and outbound SAs to allow bidirec-
tional communication. In other words, we need a set of SAs that can be collected into a
database. This database is called the

Security Association Database

 (

SAD).

 The data-
base can be thought of as a two-dimensional table with each row defining a single SA.
Normally, there are two SADs, one inbound and one outbound. Figure 30.9 shows the
concept of outbound or inbound SADs for one entity.

When a host needs to send a packet that must carry an IPSec header, the host needs
to find the corresponding entry in the outbound SAD to find the information for apply-
ing security to the packet. Similarly, when a host receives a packet that carries an IPSec
header, the host needs to find the corresponding entry in the inbound SAD to find the
information for checking the security of the packet. This searching must be specific in
the sense that the receiving host needs to be sure that correct information is used for

Figure 30.8

Simple SA

Outbound
SA

Algorithm Algorithm

Key Key
Message

Alice Bob

DES
12...67

Inbound
SA

DES
12...67

for76042_ch30.fm Page 865 Thursday, February 19, 2009 9:29 AM

866

PART 6 SECURITY

processing the packet. Each entry in an inbound SAD is selected using a triple index:
security parameter index (a 32-bit number that defines the SA at the destination), desti-
nation address, and protocol (AH or ESP).

Security Policy

Another important aspect of IPSec is the

Security Policy (SP),

 which defines the type
of security applied to a packet when it is to be sent or when it has arrived. Before using
the SAD, discussed in the previous section, a host must determine the predefined policy
for the packet.

Security Policy Database

Each host that is using the IPSec protocol needs to keep a

Security Policy Database
(SPD).

 Again, there is a need for an inbound SPD and an outbound SPD. Each entry in
the SPD can be accessed using a sextuple index: source address, destination address,
name, protocol, source port, and destination port, as shown in Figure 30.10.

Source and destination addresses can be unicast, multicast, or wildcard addresses.
The name usually defines a DNS entity. The protocol is either AH or ESP. The source
and destination ports are the port addresses for the process running at the source and
destination hosts.

Outbound SPD

When a packet is to be sent out, the outbound SPD is consulted.
Figure 30.11 shows the processing of a packet by a sender.

Figure 30.9

SAD

Figure 30.10

SPD

Security Association Database

SN OF ARW AH/ESP LT Mode MTU
< SPI, DA, P >

< SPI, DA, P >

< SPI, DA, P >

< SPI, DA, P >

Index

Legend:

SN: Sequence Number
OF: Overflow Flag
ARW: Anti-Replay Window
LT: Lifetime
MTU: Path MTU

SPI: Security Parameter Index
DA: Destination Address
AH/ESP: Information for either one
P: Protocol
Mode: IPSec Mode Flag

Legend:
SA: Source Address
DA: Destination Address
P: Protocol

SPort: Source Port
DPort: Destination Port

< SA, DA, Name, P, SPort, DPort >
PolicyIndex

< SA, DA, Name, P, SPort, DPort >
< SA, DA, Name, P, SPort, DPort >
< SA, DA, Name, P, SPort, DPort >

for76042_ch30.fm Page 866 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY

867

The input to the outbound SPD is the sextuple index; the output is one of the three fol-
lowing cases: drop (packet cannot be sent), bypass (bypassing security header), and
apply (apply the security according to the SAD; if no SAD, create one).

Inbound SPD

When a packet arrives, the inbound SPD is consulted. Each entry in
the inbound SPD is also accessed using the same sextuple index. Figure 30.12 shows
the processing of a packet by a receiver. The input to the inbound SPD is the sextuple
index; the output is one of the three following cases: discard (drop the packet), bypass
(bypass the security and deliver the packet to the transport layer), and apply (apply the
policy using the SAD).

Figure 30.11

Outbound processing

Figure 30.12 Inbound processing

Drop

Bypass

Yes

No

Apply
Outbound SAD

Outbound SPD

Index Policy

Index Parameters

Transport layer

IP layer

IPSec layer

Policy?

SA? IKE

IP datagram to be sent

Received IP datagram

Yes

Inbound SPD

Discard

Discard
Bypass

Apply
Policy?

No
SA?

IPSec layer

Inbound SAD

Index Parameters

Index Policy

IP layer

Transport layer

for76042_ch30.fm Page 867 Thursday, February 19, 2009 9:29 AM

868 PART 6 SECURITY

Internet Key Exchange (IKE)
The Internet Key Exchange (IKE) is a protocol designed to create both inbound and
outbound Security Associations. As we discussed in the previous section, when a peer
needs to send an IP packet, it consults the Security Policy Database (SPD) to see if
there is an SA for that type of traffic. If there is no SA, IKE is called to establish one.

IKE is a complex protocol based on three other protocols: Oakley, SKEME, and
ISAKMP, as shown in Figure 30.13.

The Oakley protocol was developed by Hilarie Orman. It is a key creation proto-
col. SKEME, designed by Hugo Krawcyzk, is another protocol for key exchange. It
uses public-key encryption for entity authentication in a key-exchange protocol.

The Internet Security Association and Key Management Protocol (ISAKMP) is
a protocol designed by the National Security Agency (NSA) that actually implements the
exchanges defined in IKE. It defines several packets, protocols, and parameters that allow
the IKE exchanges to take place in standardized, formatted messages to create SAs. We
leave the discussion of these three protocol for books dedicated to security.

Virtual Private Network (VPN)
One of the applications of IPsec is in virtual private networks. A virtual private network
(VPN) is a technology that is gaining popularity among large organizations that use the
global Internet for both intra- and inter-organization communication, but require privacy
in their intra-organization communication. VPN is a network that is private but virtual. It
is private because it guarantees privacy inside the organization. It is virtual because it
does not use real private WANs; the network is physically public but virtually private.
Figure 30.14 shows the idea of a virtual private network. Routers R1 and R2 use VPN
technology to guarantee privacy for the organization. VPN technology uses ESP protocol
of IPSec in the tunnel mode. A private datagram, including the header, is encapsulated in
an ESP packet. The router at the border of the sending site uses its own IP address and
the address of the router at the destination site in the new datagram. The public network
(Internet) is responsible for carrying the packet from R1 to R2. Outsiders cannot deci-
pher the contents of the packet or the source and destination addresses. Deciphering
takes place at R2, which finds the destination address of the packet and delivers it.

IKE creates SAs for IPSec.

Figure 30.13 IKE components

Internet Key Exchange (IKE)

Internet Security Association
and Key Management Protocol

(ISAKMP)

Oakley SKEME

for76042_ch30.fm Page 868 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 869

30.2 TRANSPORT LAYER SECURITY
Two protocols are dominant today for providing security at the transport layer: the Secure
Sockets Layer (SSL) protocol and the Transport Layer Security (TLS) protocol. The
latter is actually an IETF version of the former. We discuss SSL in this section; TLS is
very similar. Figure 30.15 shows the position of SSL and TLS in the Internet model.

One of the goals of these protocols is to provide server and client authentication,
data confidentiality, and data integrity. Application-layer client/server programs, such
as HTTP (see Chapter 22), that use the services of TCP can encapsulate their data in
SSL packets. If the server and client are capable of running SSL (or TLS) programs,
then the client can use the URL https://... instead of http://... to allow HTTP mes-
sages to be encapsulated in SSL (or TLS) packets. For example, credit card numbers
can be safely transferred via the Internet for online shoppers.

SSL Architecture
SSL is designed to provide security and compression services to data generated from
the application layer. Typically, SSL can receive data from any application layer protocol,
but usually the protocol is HTTP. The data received from the application is compressed
(optional), signed, and encrypted. The data is then passed to a reliable transport layer
protocol such as TCP. Netscape developed SSL in 1994. Versions 2 and 3 were released
in 1995. In this section, we discuss SSLv3.

Figure 30.14 Virtual private network

Figure 30.15 Location of SSL and TLS in the Internet model

R1 R2

Site A Site B

Station 100

From
100 to 200

Internet

Station 200

From
100 to 200

From
R1 to R2

From
R1 to R2

Application layer

TCP

IP

SSL or TLS

for76042_ch30.fm Page 869 Thursday, February 19, 2009 9:29 AM

870 PART 6 SECURITY

Services

SSL provides several services on data received from the application layer.

❑ Fragmentation. First, SSL divides the data into blocks of 214 bytes or less.

❑ Compression. Each fragment of data is compressed using one of the lossless com-
pression methods negotiated between the client and server. This service is optional.

❑ Message Integrity. To preserve the integrity of data, SSL uses a keyed-hash func-
tion to create a MAC (see Chapter 29).

❑ Confidentiality. To provide confidentiality, the original data and the MAC are
encrypted using symmetric-key cryptography.

❑ Framing. A header is added to the encrypted payload. The payload is then passed
to a reliable transport layer protocol.

Key Exchange Algorithms

To exchange an authenticated and confidential message, the client and the server each
need a set of cryptographic secrets. However, to create these secrets, one pre-master
secret must be established between the two parties. SSL defines several key-exchange
methods to establish this pre-master secret.

Encryption/Decryption Algorithms

The client and server also need to agree to a set of encryption and decryption
algorithms.

Hash Algorithms

SSL uses hash algorithms to provide message integrity (message authentication).
Several hash algorithms have also been defined for this purpose.

Cipher Suite

The combination of key exchange, hash, and encryption algorithms defines a cipher
suite for each SSL session.

Compression Algorithms

Compression is optional in SSL. No specific compression algorithm is defined. There-
fore a system can use whatever compression algorithm it desires.

Cryptographic Parameter Generation

To achieve message integrity and confidentiality, SSL needs six cryptographic secrets,
four keys and two IVs (initialization vectors). The client needs one key for message
authentication, one key for encryption, and one IV as original block in calculation. The
server needs the same. SSL requires that the keys for one direction be different from
those for the other direction. If there is an attack in one direction, the other direction is
not affected. The parameters are generated using the following procedure:

1. The client and server exchange two random numbers; one is created by the client
and the other by the server.

for76042_ch30.fm Page 870 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 871

2. The client and server exchange one pre-master secret using one of the predefined
key- exchange algorithms.

3. A 48-byte master secret is created from the pre-master secret by applying two
hash functions (SHA-1 and MD5), as shown in Figure 30.16.

4. The master secret is used to create variable-length key material by applying the
same set of hash functions and prepending with different constants, as shown in
Figure 30.17. The module is repeated until key material of adequate size is created.

Note that the length of the key material block depends on the cipher suite selected
and the size of keys needed for this suite.

5. Six different secrets are extracted from the key material, as shown in Figure 30.18.

Figure 30.16 Calculation of master secret from pre-master secret

Figure 30.17 Calculation of key material from master secret

 Master secret
(48 bytes)

CR SR“BB” CR SR“CCC”CR SR“A”

SHA-1 SHA-1 SHA-1

MD5 MD5 MD5

PM: Pre-master Secret
SR: Server Random Number
CR: Client Random Number

PM

PM

PMPM

hash PM hash PM hash

hash hash hash

Key Material

CR SR“BB” CR SR“. . .”CR SR“A”

SHA-1 SHA-1 SHA-1

MD5 MD5 MD5

M: Master Secret
SR: Server Random Number
CR: Client Random Number

M

M

MM

hash M hash M hash

hash hash hash

for76042_ch30.fm Page 871 Thursday, February 19, 2009 9:29 AM

872 PART 6 SECURITY

Sessions and Connections

SSL differentiates a connection from a session. A session is an association between a
client and a server. After a session is established, the two parties have common infor-
mation such as the session identifier, the certificate authenticating each of them (if
necessary), the compression method (if needed), the cipher suite, and a master secret
that is used to create keys for message authentication encryption.

For two entities to exchange data, the establishment of a session is necessary, but
not sufficient; they need to create a connection between themselves. The two entities
exchange two random numbers and create, using the master secret, the keys and param-
eters needed for exchanging messages involving authentication and privacy.

A session can consist of many connections. A connection between two parties can
be terminated and reestablished within the same session. When a connection is termi-
nated, the two parties can also terminate the session, but it is not mandatory. A session
can be suspended and resumed again.

Four Protocols
We have discussed the idea of SSL without showing how SSL accomplishes its tasks.
SSL defines four protocols in two layers, as shown in Figure 30.19.

The Record Protocol is the carrier. It carries messages from three other protocols as
well as the data coming from the application layer. Messages from the Record Protocol
are payloads to the transport layer, normally TCP. The Handshake Protocol provides
security parameters for the Record Protocol. It establishes a cipher set and provides
keys and security parameters. It also authenticates the server to the client and the client

Figure 30.18 Extractions of cryptographic secrets from key material

Figure 30.19 Four SSL protocols

Key Material

hash hash hash hash hash hash

Client
Auth. Key

Client
 Enc. Key

Client
IV

Server
IV

Auth. Key: Authentication Key
Enc. Key: Encryption Key
IV: Initialization Vector

Server
 Auth. Key

Server
 Enc. Key

Application layer

SSL

Transport layer

Handshake
Protocol

ChangeCipherSpec
Protocol

Alert
Protocol

Record Protocol

for76042_ch30.fm Page 872 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 873

to the server if needed. The ChangeCipherSpec Protocol is used for signaling the readi-
ness of cryptographic secrets. The Alert Protocol is used to report abnormal conditions.
We will briefly discuss these protocols in this section.

Handshake Protocol

The Handshake Protocol uses messages to negotiate the cipher suite, to authenticate
the server to the client and the client to the server if needed, and to exchange informa-
tion for building the cryptographic secrets. The handshaking is done in four phases, as
shown in Figure 30.20.

Phase I: Establishing Security Capability In Phase I, the client and the server
announce their security capabilities and choose those that are convenient for both. In this
phase, a session ID is established and the cipher suite is chosen. The parties agree upon a
particular compression method. Finally, two random numbers are selected, one by the
client and one by the server, to be used for creating a master secret as we saw before.

Phase II: Server Key Exchange and Authentication In Phase II, the server authen-
ticates itself if needed. The sender may send its certificate, its public key, and may also
request certificates from the client.

Phase III: Client Key Exchange and Authentication Phase III is designed to authen-
ticate the client.

Phase IV: Finalizing and Finishing In Phase IV, the client and server send mes-
sages to change cipher specification and to finish the handshaking protocol.

Figure 30.20 Handshake Protocol

After Phase I, the client and server know the version of SSL, the cryptographic algo-
rithms, the compression method, and the two random numbers for key generation.

After Phase II, the server is authenticated to the client, and the client knows the public
key of the server if required.

After Phase III, The client is authenticated for the serve, and both the client and the
server know the pre-master secret.

Server authentication and key exchange

Client authentication and key exchange

Finalizing the Handshake Protocol

Establishing Security CapabilitiesPhase I

Phase II

Phase III

Phase IV

Client Server

for76042_ch30.fm Page 873 Thursday, February 19, 2009 9:29 AM

874 PART 6 SECURITY

ChangeCipherSpec Protocol

We have seen that the negotiation of the cipher suite and the generation of cryptographic
secrets are formed gradually during the Handshake Protocol. The question now is: When
can the two parties use these parameter secrets? SSL mandates that the parties cannot use
these parameters or secrets until they have sent or received a special message, the Change-
CipherSpec message, which is exchanged during the Handshake protocol and defined in
the ChangeCipherSpec Protocol. The reason is that the issue is not just sending or receiv-
ing a message. The sender and the receiver need two states, not one. One state, the pending
state, keeps track of the parameters and secrets. The other state, the active state, holds
parameters and secrets used by the Record Protocol to sign/verify or encrypt/decrypt mes-
sages. In addition, each state holds two sets of values: read (inbound) and write (outbound).

Alert Protocol

SSL uses the Alert Protocol for reporting errors and abnormal conditions. It uses only
one message that describes the problem and its level (warning or fatal).

Record Protocol

The Record Protocol carries messages from the upper layer (Handshake Protocol,
ChangeCipherSpec Protocol, Alert Protocol, or application layer). The message is frag-
mented and optionally compressed; a MAC is added to the compressed message using
the negotiated hash algorithm. The compressed fragment and the MAC are encrypted
using the negotiated encryption algorithm. Finally, the SSL header is added to the
encrypted message. Figure 30.21 shows this process at the sender. The process at the
receiver is reversed.

Figure 30.21 Processing done by the Record Protocol

a. Process b. Encapsulation

RPH: Record Protocol header

A
ll

 E
nc

ry
pt

ed
(e

xc
ep

t h
ea

de
r)

Protocol Version Length ...

… Length

Compressed fragment

MAC
(0, 16, or 20 bytes)

0 8 16 24 31

Other values

 Write
MAC secret

 Write
Cipher secret

Fragment

MAC

Compression

Encryption

Hash

Payload from upper layer protocol

RPHSSL payload

Encrypted fragment

Compressed

Compressed

for76042_ch30.fm Page 874 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 875

30.3 APPLICATION LAYER SECURITY
This section discusses two protocols providing security services for e-mails: Pretty
Good Privacy (PGP) and Secure/Multipurpose Internet Mail Extension (S/MIME).

E-mail Security
Sending an e-mail is a one-time activity. The nature of this activity is different from
those we saw in the previous two sections. In IPSec or SSL, we assume that the two
parties create a session between themselves and exchange data in both directions. In
e-mail, there is no session. Alice and Bob cannot create a session. Alice sends a mes-
sage to Bob; sometime later, Bob reads the message and may or may not send a reply.
We discuss the security of a unidirectional message because what Alice sends to Bob is
totally independent from what Bob sends to Alice.

Cryptographic Algorithms

If e-mail is a one-time activity, how can the sender and receiver agree on a crypto-
graphic algorithm to use for e-mail security? If there is no session and no handshaking
to negotiate the algorithms for encryption/decryption and hashing, how can the receiver
know which algorithm the sender has chosen for each purpose?

To solve the problem, the protocol defines a set of algorithms for each operation
that the user used in his/her system. Alice includes the name (or identifiers) of the algo-
rithms she has used in the e-mail. For example, Alice can choose DES for encryption/
decryption and MD5 for hashing. When Alice sends a message to Bob, she includes the
corresponding identifiers for DES and MD5 in her message. Bob receives the message
and extracts the identifiers first. He then knows which algorithm to use for decryption
and which one for hashing.

Cryptographic Secrets

The same problem for the cryptographic algorithms applies to the cryptographic secrets
(keys). If there is no negotiation, how can the two parties establish secrets between
themselves? The e-mail security protocols today require that encryption/decryption be
done using a symmetric-key algorithm and a one-time secret key sent with the message.
Alice can create a secret key and send it with the message she sends to Bob. To protect
the secret key from interception by Eve, the secret key is encrypted with Bob’s public
key. In other words, the secret key itself is encrypted.

In e-mail security, the sender of the message needs to include the name or identifiers
of the algorithms used in the message.

In e-mail security, the encryption/decryption is done using a symmetric-key algorithm,
but the secret key to decrypt the message is encrypted with the public key of the

receiver and is sent with the message.

for76042_ch30.fm Page 875 Thursday, February 19, 2009 9:29 AM

876 PART 6 SECURITY

Certificates

One more issue needs to be considered before we discuss any e-mail security protocol
in particular. It is obvious that some public-key algorithms must be used for e-mail
security. For example, we need to encrypt the secret key or sign the message. To
encrypt the secret key, Alice needs Bob’s public key; to verify a signed message, Bob
needs Alice’s public key. So, for sending a small authenticated and confidential mes-
sage, two public keys are needed. How can Alice be assured of Bob’s public key, and
how can Bob be assured of Alice’s public key? Each e-mail security protocol has a dif-
ferent method of certifying keys.

Pretty Good Privacy (PGP)
The first protocol discussed in this chapter is called Pretty Good Privacy (PGP). PGP
was invented by Phil Zimmermann to provide e-mail with privacy, integrity, and
authentication. PGP can be used to create a secure e-mail messages.

Scenarios

Let us first discuss the general idea of PGP, moving from a simple scenario to a com-
plex one. We use the term “Data” to show the message prior to processing.

Plaintext The simplest scenario is to send the e-mail message in plaintext as shown
in Figure 30.22. There is no message integrity or confidentiality in this scenario.

Message Integrity Probably the next improvement is to let Alice sign the message.
Alice creates a digest of the message and signs it with her private key. Figure 30.23
shows the situation.

When Bob receives the message, he verifies the message by using Alice’s public
key. Two keys are needed for this scenario. Alice needs to know her private key; Bob
needs to know Alice’s public key.

Figure 30.22 A plaintext message

Figure 30.23 An authenticated message

Alice

Data

Bob

Alice
Bob

Alice’s
public key

Alice’s
private key

Digitally signed with Alice’s private keyA

DigestData
A

for76042_ch30.fm Page 876 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 877

Compression A further improvement is to compress the message to make the packet
more compact. This improvement has no security benefit, but it eases the traffic.
Figure 30.24 shows the new scenario.

Confidentiality with One-Time Session Key Figure 30.25 shows the situation.
As we discussed before, confidentiality in an e-mail system can be achieved using
conventional encryption with a one-time session key. Alice can create a session key,
use the session key to encrypt the message and the digest, and send the key itself
with the message. However, to protect the session key, Alice encrypts it with Bob’s
public key.

When Bob receives the packet, he first decrypts the key, using his private key to
remove the key. He then uses the session key to decrypt the rest of the message. After
decompressing the rest of the message, Bob creates a digest of the message and
checks to see if it is equal to the digest sent by Alice. If it is, then the message is
authentic.

Code Conversion Another service provided by PGP is code conversion. Most e-mail
systems allow the message to consist of only ASCII characters. To translate other char-
acters not in the ASCII set, PGP uses Radix-64 conversion (see Chapter 23).

Segmentation

PGP allows segmentation of the message after it has been converted to Radix-64 to
make each transmitted unit the uniform size allowed by the underlying e-mail protocol.

Figure 30.24 A compressed message

Figure 30.25 A confidential message

Alice Bob

Alice’s
public key

Alice’s
private key

Digitally signed with
Alice’s private keyA

Digest
Data

(compressed)

A

Alice Bob

Alice’s
public key

Alice’s
private key

Bob’s
private key

Bob’s
public key

E
Digest

Message
(compressed)

S

Shared
session key

Digitally signed with Alice’s private keyS

Encrypted with Bob’s public key

Encrypted with shared session key

E

for76042_ch30.fm Page 877 Thursday, February 19, 2009 9:29 AM

878 PART 6 SECURITY

Key Rings
In all previous scenarios, we assumed that Alice needs to send a message only to Bob.
That is not always the case. Alice may need to send messages to many people; she
needs key rings. In this case, Alice needs a ring of public keys, with a key belonging to
each person with whom Alice needs to correspond (send or receive messages). In addi-
tion, the PGP designers specified a ring of private/public keys. One reason is that Alice
may wish to change her pair of keys from time to time. Another reason is that Alice
may need to correspond with different groups of people (friends, colleagues, and so
on). Alice may wish to use a different key pair for each group. Therefore, each user
needs to have two sets of rings: a ring of private/public keys and a ring of public keys of
other people. Figure 30.26 shows a community of four people, each having a ring of
pairs of private/public keys and, at the same time, a ring of public keys belonging to
other people in the community.

Alice, for example, has several pairs of private/public keys belonging to her and
public keys belonging to other people. Note that everyone can have more than one pub-
lic key. Two cases may arise.

1. Alice needs to send a message to another person in the community.

a. She uses her private key to sign the digest.

b. She uses the receiver’s public key to encrypt a newly created session key.

c. She encrypts the message and signed digest with the session key created.

2. Alice receives a message from another person in the community.

a. She uses her private key to decrypt the session key.

b. She uses the session key to decrypt the message and digest.

c. She uses her public key to verify the digest.

PGP Algorithms

PGP defines a set of asymmetric-key and symmetric-key algorithms, cryptography
hash functions, and compression methods. We leave the details of these algorithm to
the books devoted to PGP. When Alice sends an e-mail to Bob, she defines the algo-
rithm she has used for each purpose.

PGP Certificates
PGP, like other protocols we have seen so far, uses certificates to authenticate public
keys. However, the process is totally different, as explained below.

Figure 30.26 Key rings in PGP

Alice’s rings Ted’s ringsBob’s rings

Private
ring

Private
ring

Private
ring

Public
ring

Public
ring

Public
ring

for76042_ch30.fm Page 878 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 879

PGP Certificates

In PGP, there is no need for CAs; anyone in the ring can sign a certificate for anyone else in
the ring. Bob can sign a certificate for Ted, John, Anne, and so on. There is no hierarchy of
trust in PGP; there is no tree. The lack of hierarchical structure may result in the fact that
Ted may have one certificate from Bob and another certificate from Liz. If Alice wants to
follow the line of certificates for Ted, there are two paths: one starts from Bob and one
starts from Liz. An interesting point is that Alice may fully trust Bob, but only partially
trust Liz. There can be multiple paths in the line of trust from a fully or partially trusted
authority to a certificate. In PGP, the issuer of a certificate is usually called an introducer.

Trusts and Legitimacy

The entire operation of PGP is based on introducer trust, the certificate trust, and the
legitimacy of the public keys.

Introducer Trust Levels With the lack of a central authority, it is obvious that the ring
cannot be very large if every user in the PGP ring of users has to fully trust everyone else.
(Even in real life we cannot fully trust everyone that we know.) To solve this problem, PGP
allows different levels of trust. The number of levels is mostly implementation dependent,
but for simplicity, let us assign three levels of trust to any introducer: none, partial, and
full. The introducer trust level specifies the trust levels issued by the introducer for other
people in the ring. For example, Alice may fully trust Bob, partially trust Anne, and not
trust John at all. There is no mechanism in PGP to determine how to make a decision about
the trustworthiness of the introducer; it is up to the user to make this decision.

Certificate Trust Levels When Alice receives a certificate from an introducer, she
stores the certificate under the name of the subject (certified entity). She assigns a level
of trust to this certificate. The certificate trust level is normally the same as the intro-
ducer trust level that issued the certificate. Assume that Alice fully trusts Bob, partially
trusts Anne and Janette, and has no trust in John. The following scenarios can happen.

1. Bob issues two certificates, one for Linda (with public key K1) and one for Lesley
(with public key K2). Alice stores the public key and certificate for Linda under
Linda’s name and assigns a full level of trust to this certificate. Alice also stores the
certificate and public key for Lesley under Lesley’s name and assigns a full level of
trust to this certificate.

2. Anne issues a certificate for John (with public key K3). Alice stores this certificate
and public key under John’s name, but assigns a partial level for this certificate.

3. Janette issues two certificates, one for John (with public key K3) and one for Lee
(with public key K4). Alice stores John’s certificate under his name and Lee’s certifi-
cate under his name, each with a partial level of trust. Note that John now has two
certificates, one from Anne and one from Janette, each with a partial level of trust.

4. John issues a certificate for Liz. Alice can discard or keep this certificate with a sig-
nature trust of none.

In PGP, there can be multiple paths from fully or partially trusted authorities
to any subject.

for76042_ch30.fm Page 879 Thursday, February 19, 2009 9:29 AM

880 PART 6 SECURITY

Key Legitimacy The purpose of using introducer and certificate trusts is to deter-
mine the legitimacy of a public key. Alice needs to know how legitimate the public keys
of Bob, John, Liz, Anne, and so on are. PGP defines a very clear procedure for deter-
mining key legitimacy. The level of the key legitimacy for a user is the weighted trust
levels of that user. For example, suppose we assign the following weights to certificate
trust levels:

1. A weight of 0 to a nontrusted certificate

2. A weight of 1/2 to a certificate with partial trust

3. A weight of 1 to a certificate with full trust

Then to fully trust an entity, Alice needs one fully trusted certificate or two partially
trusted certificates for that entity. For example, Alice can use John’s public key in the
previous scenario because both Anne and Janette have issued a certificate for John,
each with a certificate trust level of 1/2. Note that the legitimacy of a public key belong-
ing to an entity does not have anything to do with the trust level of that person.
Although Bob can use John’s public key to send a message to him, Alice cannot accept
any certificate issued by John because, for Alice, John has a trust level of none.

Trust Model in PGP

As Zimmermann has proposed, we can create a trust model for any user in a ring with the
user as the center of activity. Such a model can look like the one shown in Figure 30.27.
The figure shows the trust model for Alice at some moment.

Let us elaborate on the figure. Figure 30.27 shows that there are three entities in
Alice’s ring with full trust (Alice herself, Bob, and Ted). The figure also shows three
entities with partial trust (Anne, Mark, and Bruce). There are also six entities with no
trust. Nine entities have a legitimate key. Alice can encrypt a message to any one of
these entities or verify a signature received from one of these entities (Alice’s key is
never used in this model). There are also three entities that do not have any legitimate
keys with Alice.

Figure 30.27 Trust model

Mark

Duc

Jenny Luise

AnneBob

Ted John Kevin

Helen

Fully trusted entity

Partially trusted entity

Untrusted entity

X introduced by Y

? X introduced by an unknown entity

X has legitimate key

Alice

??

X Y

X

X

Bruce

for76042_ch30.fm Page 880 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 881

Bob, Anne, and Mark have made their keys legitimate by sending their keys by
e-mail and verifying their fingerprints by phone. Helen, on the other hand, has sent a
certificate from a CA because she is not trusted by Alice and verification on the phone
is not possible. Although Ted is fully trusted, he has given Alice a certificate signed by
Bob. John has sent Alice two certificates, one signed by Ted and one by Anne. Kevin
has sent two certificates to Alice, one signed by Anne and one by Mark. Each of these
certificates gives Kevin half a point of legitimacy; therefore, Kevin’s key is legitimate.
Duc has sent two certificates to Alice, one signed by Mark and the other by Helen.
Since Mark is half-trusted and Helen is not trusted, Duc does not have a legitimate key.
Jenny has sent four certificates, one signed by a half-trusted entity, two by untrusted
entities, and one by an unknown entity. Jenny does not have enough points to make her
key legitimate. Luise has sent one certificate signed by an unknown entity. Note that
Alice may keep Luise’s name in the table in case future certificates for Luise arrive.

Web of Trust

PGP can eventually make a web of trust between a group of people. If each entity
introduces more entities to other entities, the public key ring for each entity gets larger
and larger and entities in the ring can send secure e-mail to each other.

Key Revocation

It may become necessary for an entity to revoke his or her public key from the ring.
This may happen if the owner of the key feels that the key is compromised (stolen, for
example) or just too old to be safe. To revoke a key, the owner can send a revocation
certificate signed by herself. The revocation certificate must be signed by the old key
and disseminated to all the people in the ring that use that public key.

PGP Packets

A message in PGP consists of one or more packets. During the evolution of PGP,
the format and the number of packet types have changed. We do not discuss the formats
of these packets here.

Applications of PGP

PGP has been extensively used for personal e-mails. It will probably continue to be.

S/MIME
Another security service designed for electronic mail is Secure/Multipurpose Internet
Mail Extension (S/MIME). The protocol is an enhancement of the Multipurpose
Internet Mail Extension (MIME) protocol we discussed in Chapter 23.

Cryptographic Message Syntax (CMS)

To define how security services, such as confidentiality or integrity, can be added to
MIME content types, S/MIME has defined Cryptographic Message Syntax (CMS).
The syntax in each case defines the exact encoding scheme for each content type. The
following describe the type of message and different subtypes that are created from these
messages. For details, the reader is referred to RFC 3369 and RFC 3370.

for76042_ch30.fm Page 881 Thursday, February 19, 2009 9:29 AM

882 PART 6 SECURITY

Data Content Type This is an arbitrary string. The object created is called Data.

Signed-Data Content Type This type provides only integrity of data. It contains any
type and zero or more signature values. The encoded result is an object called signed-
Data. Figure 30.28 shows the process of creating an object of this type. The
following are the steps in the process:

1. For each signer, a message digest is created from the content using the specific
hash algorithm chosen by that signer.

2. Each message digest is signed with the private key of the signer.

3. The content, signature values, certificates, and algorithms are then collected to cre-
ate the signedData object.

Enveloped-Data Content Type This type is used to provide privacy for the message.
It contains any type and zero or more encrypted keys and certificates. The encoded
result is an object called envelopedData. Figure 30.29 shows the process of creating an
object of this type.

1. A pseudorandom session key is created for the symmetric-key algorithms to be used.

2. For each recipient, a copy of the session key is encrypted with the public key of
each recipient.

3. The content is encrypted using the defined algorithm and created session key.

4. The encrypted contents, encrypted session keys, algorithm used, and certificates
are encoded using Radix-64.

Digested-Data Content Type This type is used to provide integrity for the message.
The result is normally used as the content for the enveloped-data content type. The
encoded result is an object called digestedData. Figure 30.30 shows the process of cre-
ating an object of this type.

Figure 30.28 Signed-data content type

signedData

Digest
Hash

algorithm

Hash
algorithm

Digital signature
algorithm

Signature +
certificate +

algorithm

Content
(any type)

Content
(any type)

Signed with private key of signer 1S1

S1

Digest
Digital signature

algorithm

Signature +
certificate +

algorithm

SN

SN Signed with private key of signer N

for76042_ch30.fm Page 882 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 883

1. A message digest is calculated from the content.

2. The message digest, the algorithm, and the content are added together to create the
digestedData object.

Encrypted-Data Content Type This type is used to create an encrypted version of any
content type. Although this looks like the enveloped-data content type, the encrypted-data
content type has no recipient. It can be used to store the encrypted data instead of transmit-
ting it. The process is very simple; the user employs any key (normally driven from the
password) and any algorithm to encrypt the content. The encrypted content is stored with-
out including the key or the algorithm. The object created is called encryptedData.

Authenticated-Data Content Type This type is used to provide authentication of
the data. The object is called authenticatedData. Figure 30.31 shows the process.

1. Using a pseudorandom generator, a MAC key is generated for each recipient.

Figure 30.29 Enveloped-data content type

Figure 30.30 Digest-data content type

Public-key
cipher

Recipient identification
Public-key certificate
Encrypted session key

Recipient identification
Public-key certificate
Encrypted session key

 Symmetric-key
cipher

Session key created by
pseudorandom

generator

Content
(any type)

Encrypted
content

envelopedData

Encrypted with public key of recipient 1R1

R1

Public-key
cipher

RN

Encrypted with public key of recipient NRN

Encrypted with session key

digestedData

Hash
algorithm

Digest +
Hash algorithm

Content
(any type)

Content
(any type)

Digest

for76042_ch30.fm Page 883 Thursday, February 19, 2009 9:29 AM

884 PART 6 SECURITY

2. The MAC key is encrypted with the public key of the recipient.

3. A MAC is created for the content.

4. The content, MAC, algorithms, and other informations are collected together to
form the authenticatedData object.

Key Management

The key management in S/MIME is a combination of key management used by X.509
and PGP. S/MIME uses public-key certificates signed by the certificate authorities
defined by X.509. However, the user is responsible to maintain the web of trust to ver-
ify signatures as defined by PGP.

Cryptographic Algorithms

S/MIME defines several cryptographic algorithms. We leave the details of these algo-
rithms to the books dedicated to security in the Internet.

Example 30.1

The following shows an example of an enveloped-data in which a small message is encrypted
using triple DES.

Figure 30.31 Authenticated-data content type

Content-Type: application/pkcs7-mime; mime-type=enveloped-data
Content-Transfer-Encoding: Radix-64
Content-Description: attachment
name=“report.txt”;
cb32ut67f4bhijHU21oi87eryb0287hmnklsgFDoY8bc659GhIGfH6543mhjkdsaH23YjBnmN
ybmlkzjhgfdyhGe23Kjk34XiuD678Es16se09jy76jHuytTMDcbnmlkjgfFdiuyu678543m0n3h
G34un12P2454Hoi87e2ryb0H2MjN6KuyrlsgFDoY897fk923jljk1301XiuD6gh78EsUyT23y

authenticatedData

MAC

MAC +
certificate +
algorithms +
session key

Content
(any type)

Content
(any type)

Encrypted with public key of recipient 1R1 Encrypted with public key of recipient NRN

MAC

Public-key
cipher

MAC
algorithm

MAC
algorithm

Public-key
cipher

R1

RN

MAC +
certificate +
algorithms +
session key

for76042_ch30.fm Page 884 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 885

Applications of S/MIME
It is predicted that S/MIME will become the industry choice to provide security for
commercial e-mail.

30.4 FIREWALLS
All previous security measures cannot prevent Eve from sending a harmful message to a
system. To control access to a system we need firewalls. A firewall is a device (usually a
router or a computer) installed between the internal network of an organization and the
rest of the Internet. It is designed to forward some packets and filter (not forward) others.
Figure 30.32 shows a firewall.

For example, a firewall may filter all incoming packets destined for a specific host
or a specific server such as HTTP. A firewall can be used to deny access to a specific
host or a specific service in the organization. A firewall is usually classified as a
packet-filter firewall or a proxy-based firewall.

Packet-Filter Firewall
A firewall can be used as a packet filter. It can forward or block packets based on the
information in the network layer and transport layer headers: source and destination
IP addresses, source and destination port addresses, and type of protocol (TCP or UDP).
A packet-filter firewall is a router that uses a filtering table to decide which packets
must be discarded (not forwarded). Figure 30.33 shows an example of a filtering table
for this kind of a firewall.

According to the figure, the following packets are filtered:

1. Incoming packets from network 131.34.0.0. are blocked (security precaution).
Note that the * (asterisk) means “any.”

2. Incoming packets destined for any internal TELNET server (port 23) are
blocked.

Figure 30.32 Firewall

Outgoing Incoming

Firewall

Site

Internet

for76042_ch30.fm Page 885 Thursday, February 19, 2009 9:29 AM

886 PART 6 SECURITY

3. Incoming packets destined for internal host 194.78.20.8. are blocked. The organi-
zation wants this host for internal use only.

4. Outgoing packets destined for an HTTP server (port 80) are blocked. The organi-
zation does not want employees to browse the Internet.

Proxy Firewall
The packet-filter firewall is based on the information available in the network layer and
transport layer headers (IP and TCP/UDP). However, sometimes we need to filter a
message based on the information available in the message itself (at the application
layer). As an example, assume that an organization wants to implement the following
policies regarding its Web pages: only those Internet users who have previously estab-
lished business relations with the company can have access; access to other users must be
blocked. In this case, a packet-filter firewall is not feasible because it cannot distinguish
between different packets arriving at TCP port 80 (HTTP). Testing must be done at the
application level (using URLs).

One solution is to install a proxy computer (sometimes called an application gate-
way), which stands between the customer computer and the corporation computer.
When the user client process sends a message, the application gateway runs a server
process to receive the request. The server opens the packet at the application level and
finds out if the request is legitimate. If it is, the server acts as a client process and sends
the message to the real server in the corporation. If it is not, the message is dropped and
an error message is sent to the external user. In this way, the requests of the external
users are filtered based on the contents at the application layer. Figure 30.34 shows an
application gateway implementation for HTTP.

Figure 30.33 Packet-filter firewall

A packet-filter firewall filters at the network or transport layer.

Packet filter
firewall

Destination
IP

Destination
port

131.34.0.0
*
*
*

*
*

*
194.78.20.8

*
*
*
*

*
 23
*
80

1
1
1
2

Source
IPInterface Source

port

1 2

Site

Internet

for76042_ch30.fm Page 886 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 887

30.5 RECOMMENDED READING
The following books give more details about subjects discussed in this chapter. The
items in brackets refer to the reference list at the end of the text. In particular, we
recommend [For 08], [Sta 06], [Bis 05], [Mao 04], [Sti 06], [Res 01], [Tho 00], [Dor &
Har 03], and [Gar 01].

30.6 KEY TERMS

Figure 30.34 Proxy firewall

A proxy firewall filters at the application layer.

Alert Protocol packet-filter firewall
application gateway pre-master secret
Authentication Header (AH) Protocol Pretty Good Privacy (PGP)
ChangeCipherSpec Protocol Record Protocol
cipher suite
connection
Cryptographic Message Syntax (CMS)
Encapsulating Security Payload (ESP)
Extension (S/MIME)
firewall
Handshake Protocol
Internet Key Exchange (IKE)
Internet Security Association and Key

Management Protocol (ISAKMP)

Secure Sockets Layer (SSL) protocol
Secure/Multipurpose Internet Mail Extension

(S/MIME)
Security Association (SA)
Security Association Database (SAD)
Security Policy (SP)
Security Policy Database (SPD)
session
SKEME
Transport Layer Security (TLS) protocol

IP Security (IPSec) transport mode
key material tunnel mode
key ring virtual private network (VPN)
master secret web of trust
Oakley

Firewall

All HTTP
packets Accepted

packets

Application
gateway

Errors

HTTP server

HTTP proxy

Internet

Site

for76042_ch30.fm Page 887 Thursday, February 19, 2009 9:29 AM

888 PART 6 SECURITY

30.7 SUMMARY
❑ IP Security (IPSec) is a collection of protocols designed by the IETF to provide

security for a packet at the network level. IPSec operates in transport or tunnel
mode. IPSec defines two protocols: Authentication Header (AH) Protocol and
Encapsulating Security Payload (ESP) Protocol to provide authentication and
encryption or both for packets at the IP level. A virtual private network is an
implementation of IPSec that provides privacy for organization with multiple
sites.

❑ A transport layer security protocol provides end-to-end security services for appli-
cations that use the services of a reliable transport layer protocol such as TCP. Two
protocols are dominant today for providing security at the transport layer: Secure
Sockets Layer (SSL) and Transport Layer Security (TLS). SSL (or TLS) provides
services such as fragmentation, compression, message integrity, confidentiality,
and framing on data received from the application layer.

❑ The Pretty Good Privacy (PGP), invented by Phil Zimmermann, provides e-mail
with privacy, integrity, and authentication. Another security service designed for
electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The
protocol is an enhancement of the Multipurpose Internet Mail Extension (MIME)
protocol.

❑ A firewall is a device (usually a router or a computer) installed between the inter-
nal network of an organization and the rest of the Internet. It is designed to forward
some packets and filter others. A firewall is usually classified as a packet-filter fire-
wall or a proxy-based firewall. The packet-filter firewall is based on the informa-
tion available in the network layer and transport layer headers. The proxy firewall
is based on the information available at the application layer.

30.8 PRACTICE SET

Exercises
1. Host A and host B use IPSec in the transport mode. Can we say that the two hosts

need to create a virtual connection-oriented service between them? Explain.

2. When we talk about authentication in IPSec, do we mean message authentication
or entity authentication? Explain.

3. When we talk about authentication in SSL, do we mean message authentication or
entity authentication? Explain.

4. When we talk about authentication in PGP (or S/MIME), do we mean message
authentication or entity authentication? Explain.

5. If cryptography algorithms in PGP or S/MIME cannot be negotiated, how can the
receiver of the e-mail determine which algorithm have been used by the sender?

6. Can we use SSL with UDP? Explain.

7. Why is there no need for security association with SSL?

for76042_ch30.fm Page 888 Thursday, February 19, 2009 9:29 AM

CHAPTER 30 INTERNET SECURITY 889

8. Compare and contrast PGP and S/MIME. What are the advantage and disadvan-
tage of each?

9. If Alice and Bob are continuously sending messages to each other, can they create
a security association once and use it for every packet exchanged? Explain.

10. Should the handshaking in SSL occur before or after the three-way handshaking in
TCP? Can they be combined? Explain.

Research Activities
11. We discuss security services only for SMTP at the application layer. Are there any

security services for other application-layer protocols?

12. Use the literature and the Internet to find more about IKE.

13. Use the literature and the Internet to find more about handshake protocol in SSL.

14. Use the literature and the Internet to find more about TLS.

for76042_ch30.fm Page 889 Thursday, February 19, 2009 9:29 AM

for76042_ch30.fm Page 890 Thursday, February 19, 2009 9:29 AM

891

P A R T

7

Appendices

 Appendix A Unicode 892

 Appendix B Positional Numbering Systems 896

 Appendix C Error Detection Codes 904

 Appendix D Checksum 914

 Appendix E HTML, XHTML, XML, and XSL 920

 Appendix F Client-Server Programming in Java 926

 Appendix G Miscellaneous Information 932

for76042_AppA.fm Page 891 Thursday, February 19, 2009 9:31 AM

A P P E N D I X

A

892

A

Unicode

omputers use numbers. They store characters by assigning a number
for each one. The original coding system was called ASCII (Ameri-

can Standard Code for Information Interchange) and had 128 numbers (0
to 127) each stored as a 7-bit number. ASCII could satisfactorily handle
lowercase and uppercase letters, digits, punctuation characters, and some
control characters. An attempt was made to extend the ASCII character
set to 8 bits. The new code, which was called Extended ASCII, was never
internationally standardized.

To overcome the difficulties inherent in ASCII and Extended ASCII,
the Unicode Consortium (a group of multilingual software manufactur-
ers) created a universal encoding system to provide a comprehensive
character set called

Unicode.

Unicode was originally a 2-byte character set. Unicode version 3,

however, is a 4-byte code and is fully compatible with ASCII and
Extended ASCII. The ASCII set, which is now called

Basic Latin,

 is Uni-
code with the upper 25 bits set to zero. Extended ASCII, which is now
called Latin-1, is Unicode with the 24 upper bits set to zero. Figure A.1
shows how the different systems are compatible.

Each character or symbol in this code is defined by a 32-bit number.
The code can define up to 2

32

 (4,294,967,296) characters or symbols. The
notation uses hexadecimal digits in the following format:

Each X is a hexadecimal digit. Therefore, the numbering goes from
U-00000000 to U-FFFFFFFF.

Figure A.1

 Unicode compatibility

U-XXXXXXXX

C

ASCII

Extended ASCII

Defining planes

Unicode

8 bits 8 bits 8 bits 8 bits

for76042_AppA.fm Page 892 Thursday, February 19, 2009 9:31 AM

893

A.1 PLANES

Unicode divides the available space codes into planes. The most significant 16 bits define
the plane, which means we can have 65,536 planes. Each plane can define up to 65,536
characters or symbols. Figure A.2 shows the structure of Unicode spaces and planes.

Basic Multilingual Plane (BMP)

Plane (0000)

16

, the basic multilingual plane (BMP), is designed to be compatible with
the previous 16-bit Unicode. The most significant 16 bits in this plane are all zeros. The
codes are normally shown as U+XXXX with the understanding that XXXX defines
only the least significant 16 bits. This plane mostly defines character sets in different
languages with the exception of some codes used for control or other special characters.

Other Planes

There are some other (non-reserved) planes, that we briefly describe below:

Supplementary Multilingual Plane (SMP)

Plane (0001)

16

, the supplementary multilingual plane (SMP), is designed to provide
more codes for those multilingual characters that are not included in the BMP.

Supplementary Ideographic Plane (SIP)

Plane (0002)

16

,

the supplementary ideographic plane (SIP),

is designed to provide
codes for ideographic symbols, symbols that primarily denote an idea (or meaning) in
contrast to a sound (or pronunciation).

Supplementary Special Plane (SSP)

Plane (000E)

16

,

the supplementary special plane (SSP), is used for special characters.

Private Use Planes (PUPs)

Planes (000F) and (0010)

16

, private use planes (PUPs), are for private use.

Figure A.2

 Unicode planes

0000: Basic Multilingual Plane (BMP)
0001: Supplementary Multilingual Plane (SMP)
0002: Supplementary Ideographic Plane (SIP)
000E: Supplementary Special Plane (SSP)
000F: Private Use Plane (PUP)
0010: Private Use Plane (PUP)

00
00

00
01

00
02

00
03

00
0D

00
0E

00
0F

00
10

F
F

F
F

00
11

Reserved Reserved

• • •• • •

for76042_AppA.fm Page 893 Thursday, February 19, 2009 9:31 AM

894

PART 7 APPENDICES

A.2 ASCII

The American Standard Code for Information Interchange (ASCII) is a 7-bit code
that was designed to provide code for 128 symbols, mostly in American English.
Today, ASCII, or Basic Latin, is part of Unicode. It occupies the first 128 codes in
Unicode (00000000 to 0000007F). Table A.1 contains the hexadecimal and graphic
codes (symbols). The codes in hexadecimal just define the two least significant
digits in Unicode. To find the actual code, we prepend 000000 in hexadecimal to
the code.

Table A.1

ASCII Codes

Hex Symbol Hex Symbol Hex Symbol Hex Symbol

00 NULL 20 SP 40 @ 60 `
01 SOH 21 ! 41 A 61 a
02 STX 22 " 42 B 62 b
03 ETX 23 # 43 C 63 c
04 EOT 24 $ 44 D 64 d
05 ENQ 25 % 45 E 65 e
06 ACK 26 & 46 F 66 f
07 BEL 27 ' 47 G 67 g
08 BS 28 (48 H 68 h
09 HT 29) 49 I 69 i
0A LF 2A * 4A J 6A j
0B VT 2B + 4B K 6B k
0C FF 2C , 4C L 6C l
0D CR 2D – 4D M 6D m
0E SO 2E . 4E N 6E n
0F SI 2F / 4F O 6F o
10 DLE 30 0 50 P 70 p
11 DC1 31 1 51 Q 71 q
12 DC2 32 2 52 R 72 r
13 DC3 33 3 53 S 73 s
14 DC4 34 4 54 T 74 t
15 NAK 35 5 55 U 75 u
16 SYN 36 6 56 V 76 v
17 ETB 37 7 57 W 77 w
18 CAN 38 8 58 X 78 x
19 EM 39 9 59 Y 79 y
1A SUB 3A : 5A Z 7A z
1B ESC 3B ; 5B [7B {
1C FS 3C < 5C \ 7C |
1D GS 3D = 5D] 7D }
1E RS 3E > 5E ^ 7E ~
1F US 3F ? 5F _ 7F DEL

for76042_AppA.fm Page 894 Thursday, February 19, 2009 9:31 AM

APPENDIX A UNICODE

895

Some Properties of ASCII

ASCII has some interesting properties that we briefly mention here.

1.

 The space character (20)

16

, is a printable character. It prints a blank space.

2.

The uppercase letters start from (41)

16

. The lowercase letters start from (61)

16

.
When compared, uppercase letters are numerically smaller than lowercase letters.
This means that in a sorted list based on ASCII values, the uppercase letters appear
before the lowercase letters.

3.

The uppercase and lowercase letters differ by only one bit in the 7-bit code. For exam-
ple, character

A

 is (1000001)

2

 and character

a

 is (1100001)

2

. The difference is in
bit 6, which is 0 in uppercase letters and 1 in lowercase letters. If we know the code
for one case, we can easily find the code for the other by adding or subtracting
(20)

16

, or we can just flip the sixth bit.

4.

The uppercase letters are not immediately followed by lowercase letters. There are
some punctuation characters in between.

5.

Digits (0 to 9) start from (30)

16

. This means that if you want to change a numeric
character to its face value as an integer, you need to subtract (30)

16

=

48 from it.

6.

The first 32 characters, (00)

16

 to (1F)

16

, and the last character, (7F)

16

, are non-
printable characters. Character (00)

16

 simply is used as a delimiter to define the
end of string character. Character (7F)

16

is the delete character used by some pro-
gramming languages to delete the previous character. The rest of the non-printable
characters are referred to as control characters and used in data communication.
Table A.2 gives the description of these characters.

Table A.2

ASCII Codes

Symbol Interpretation Symbol Interpretation

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledgment

ACK Acknowledgment SYN Synchronous idle

BEL Ring bell ETB End of transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in US Unit separator

DLE Data link escape

for76042_AppA.fm Page 895 Thursday, February 19, 2009 9:31 AM

B

A P P E N D I X

896

B

Positional Numbering Systems

positional number system

 uses a set of symbols. The value that
each symbol represents, however, depends on its

face value

 and its

place value,

the value associated with the position it occupies in the num-
ber, In other words, we have

 In this appendix, we discuss only integers, numbers with no fractional
part; the discussion of reals, numbers with a fractional part is similar.

B.1 DIFFERENT SYSTEMS

We first show how integers can be represented in four different systems:
base 10, base 2, base 16, and base 256.

Base 10: Decimal

The first positional system we discuss is called the

decimal system.

 The
term

decimal

 is derived from the Latin root

decem

(meaning

ten

). The dec-
imal system uses 10 symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) with the same
face values as the symbols. The place values in the decimal number system
are powers of 10. Figure B.1 shows the place values and the symbol values
in the integer 4,782.

Symbol value

=

 Face value

×

 Place value

Number value

=

 Sum of Symbol values

Figure B.1

An example of a decimal number

The decimal system uses 10 symbols in which the place values are
powers of 10.

A

2
100101102103

874
4,000

4,782
700 80 2+++

Symbols
Symbol values
Number value

Place values

for76042_AppB.fm Page 896 Thursday, February 19, 2009 9:32 AM

897

Base 2: Binary

The second positional system we discuss is called the

binary system.

 The term

binary

 is
derived from the Latin root

bi

(meaning

two by two

)

.

 The binary system uses 2 symbols
(0 and 1) with the same face values as the symbols. The place values in the binary num-
ber system are powers of 2. Figure B.2 shows the place values and the symbol values in
the binary (1101)

2

. Note that we use subscript 2 to show that the number is in binary.

Base 16: Hexadecimal

The third positional system we discuss is called the

hexadecimal system.

 The term

hexadecimal

 is derived from the Greek root hex (meaning 6) and the Latin root

decem

(meaning

ten

)

.

 The hexadecimal system uses 16 symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, and F). The face value of the ten symbols are the same as the symbols, but
the face values of the symbols A to F are 10 to 15 respectively. The place values in the
hexadecimal number system are powers of 16. Figure B.3 shows the place values and
the symbol values in the hexadecimal (A20E)

16

. Note that we use subscript 16 to show
that the number is in hexadecimal.

Figure B.2

An example of a binary number

The binary system uses 2 symbols in which the place values are powers of 2.

Figure B.3

An example of a hexadecimal number

The hexadecimal system uses 16 symbols in which the place values are powers of 16.

1
20212223

011
8

13
4 0 1+++

Symbols
Symbol values
Number value (in decimal)

Place values

E

160161162163

02A

40,960

41,486

512 0 14+++

Symbols

Symbol value (in decimal)

Number value (in decimal)

Place values

for76042_AppB.fm Page 897 Thursday, February 19, 2009 9:32 AM

898

PART 7 APPENDICES

Base 256: Dotted-Decimal Notation

The fourth positional system we discuss is the base 256, which is called dotted-decimal
notation. This system is used to represent IPv4 addressing. The place values in this sys-
tem are powers of 256. However, since using 256 symbols is almost impossible, the
symbols in this system are decimal numbers between 0 and 255, with the same face val-
ues as the symbols. To separate these numbers from each other, the system uses a dot as
discussed in Chapter 5. Figure B.4 shows the place values and the symbol values of the
address (14.18.111.252). Note that we never use more than four symbols in an IPv4
address.

Comparison

Table B.1 shows how three different systems represent the decimal numbers 0
through 15. For example, decimal 13 is equivalent to binary 1101, which is equivalent
to hexadecimal D.

B.2 CONVERSION

We need to know how to convert a number in one system to the equivalent number in
another system.

Figure B.4

An example of a dotted-decimal notation

The dotted-decimal notations uses decimal numbers (0 to 255) as symbols,
but inserts a dot between each symbol.

Table B.1

Comparison of three systems

Decimal Binary Hexadecimal Decimal Binary Hexadecimal

0 0000 0 8 1000 8
1 0001 1 9 1001 9
2 0010 2 10 1010 A
3 0011 3 11 1011 B
4 0100 4 12 1100 C
5 0101 5 13 1101 D
6 0110 6 14 1110 E
7 0111 7 15 1111 F

252
2560256125622563

1111814
234,881,024

236,089,340

1,179,648 28,416 252+ ++
Symbols
Symbol values
Number value (in decimal)

Place values

for76042_AppB.fm Page 898 Monday, February 23, 2009 3:02 PM

APPENDIX B POSITIONAL NUMBERING SYSTEMS

899

Conversion from Any Base to Decimal

Figures B.2 to B.4 actually show how we can manually convert a number in any base to
decimal. However, it is easier to use the algorithm in Figure B.5. The algorithm uses the
fact that the next place value is the previous value multiplied by the base (2, 16, or 256).
The algorithm is a general one that can be used to convert a string of symbols in a given
base to a decimal number. The only section in the algorithm that is different for each
base is how to extract the next symbol in the string and find its face value. In the case of
base 2, it is simple; the face value can be found by changing the symbol to a numeric
value. In the case of base 16, we need to consider the case that the face value of symbol A
is 10, the face value of symbol B is 11, and so on. In the case of base 256, we need to
extract each string delimited by dots and change the string to its numerical value. We
leave the details of these subalgorithms as an exercise because they are normally
language-dependent.

The manual implementation of the above algorithm for small numbers can be
shown in a few examples.

Example B.1

Show the equivalent of the binary number (11100111)

2

 in decimal.

Solution

We follow the algorithm as shown below.:

The value of decimal is initially set to 0. When the loop is terminated, the value of decimal is 231.

Figure B.5

Algorithm to convert from any base to decimal.

128 64 32 16 8 4 2 1

Place values

1 1 1 0 0 1 1 1 Face values

128 64 32 0 0 4 2 1 Symbol values

231

103 39 7 7 7 3 1 Decimal

=

 0

More symbols
in string

Given string
and base

PV: Place value
FV: Face value
SV: Symbol value

Return
decimal

[No]

[Yes]

Decimal = 0

PV = 1

SV = FV PV + Decimal = Decimal + SV

base PV = PV +

Extract face value
of next symbol

for76042_AppB.fm Page 899 Thursday, February 19, 2009 9:32 AM

900

PART 7 APPENDICES

Example B.2

Show the equivalent of the IPv4 address 12.14.67.24 in decimal.

Solution

We follow the algorithm as shown below.:

The value of decimal is initially set to 0. When the loop is terminated, the value of decimal is
202,255,272.

Conversion from Decimal to Any Base

Conversion from a decimal value to any base can be done if we continuously divide the
decimal number by the base to find the remainder and the quotient. The remainder is
the face value of the next symbol; the quotient is the decimal value to be used in the
next iteration. As in the case of inverse conversion, we need to have a separate algo-
rithm to change the face value of a symbol, in the corresponding base, to the actual
symbol and insert it in the string representing the converted number. We leave the detail
of this subalgorithm as an exercise. Figure B.6 shows the main algorithm.

We can show how we can manually follow the algorithm in a few examples.

Example B.3

Convert the decimal number 25 to its binary equivalent.

Solution

We continuously divide the decimal value by 2 (the base of binary system) until the quotient
becomes 0. In each division we interpret the value of the remainder as the next symbol to be

16,772,216 65,536 256 1

Place values

12

•

14

•

67

•

24 Face values

201,266,592 917,504 17,152 24 Symbol values

202,255,272

988,680 71,176 24 Decimal

=

 0

Figure B.6

Conversion from decimal to any base

Decimal is
zero?

Given decimal
and base

Return
the string

[No]

[Yes]

Create an empty
string.

FV = decimal % base

FV: Face value of symbol
%: Remainder operator
/: Quotient operator

Convert FV to the symbol
and insert it into string

decimal = decimal / base

for76042_AppB.fm Page 900 Monday, February 23, 2009 3:03 PM

APPENDIX B POSITIONAL NUMBERING SYSTEMS

901

inserted in the hexadecimal string. The down arrow shows the remainder; the left arrow shows the
quotient. When the decimal value becomes 0, we stop. The result is the binary string (11001)

2

.

Example B.4

Convert the decimal number 21,432 to its hexadecimal equivalent.

Solution

We continuously divide the decimal value by 16 (the base of hexadecimal system) until the quo-
tient becomes 0. In each division we interpret the value of the remainder as the next symbol to be
inserted in the hexadecimal string. The result is the hexadecimal string (53B8)

16

.

Example B.5

Convert the decimal number 73,234,122 to base 256 (IPv4 address).

Solution

We continuously divide the decimal value by 256 (the base) until the quotient becomes 0. In each
division we interpret the value of the remainder as the next symbol to be inserted in the IPv6
address. We also insert dots as required in the dotted-decimal notation. The result is the IPv4
address 4.93.118.202.

Other Conversions

Conversion from a nondecimal system to another nondecimal system is often eas-
ier. We can easily convert a number in binary to hexadecimal by converting a group
of 4 bits into 1 hexadecimal digit. We can also convert a hexadecimal digit into a
group of 4 bits. We give a few examples to show the process.

Example B.6

Convert the binary number (1001111101)

2

 to its equivalent in hexadecimal.

Solution

We create groups of 4 bits from the right. We then replace each group with its equivalent hexa-
decimal digit. Note that we need to add two extra 0s to the last group.

0

←

1

←

3

←

6

←

12

←

25

Decimal

↓ ↓ ↓ ↓ ↓

1 1 0 0 1 Binary

0

←

5

←

83

←

1339

←

21432

Decimal

↓ ↓ ↓ ↓

5 3 B 8 Hexadecimal

0

←

4

←

1,117

←

286,070

←

73,234,122

Decimal

↓ ↓ ↓ ↓

4

•

93

•

118

•

202 IPv4 address

for76042_AppB.fm Page 901 Thursday, February 19, 2009 9:32 AM

902

PART 7 APPENDICES

The result is (27D)

16

.

Example B.7

Convert the hexadecimal number (3A2B)

16

 to its equivalent in binary.

Solution

We change each hexadecimal digit to its 4-bit binary equivalent.

The result is (0011 1010 0010 1011)

2

.

Example 3.8

Convert the IPv4 address 112.23.78.201 to its binary format.

Solution

We replace each symbol to its equivalent 8-bit binary.

The result is (01110000 00010111 01001110 11001001)

2

.

0010 0111 1101

Binary

↓ ↓ ↓

2 7 D Hexadecimal

3 A 2 B

Hexadecimal

↓ ↓ ↓ ↓

0011 1010 0010 1011 Binary

112

•

23

•

78

•

201

IPv4 address

↓ ↓ ↓ ↓

01110000 00010111 01001110 11001001 Binary

for76042_AppB.fm Page 902 Thursday, February 19, 2009 9:32 AM

for76042_AppB.fm Page 903 Thursday, February 19, 2009 9:32 AM

A P P E N D I X

C

904

C

Error Detection Codes

C.1 INTRODUCTION

Networks must be able to transfer data with acceptable accuracy. For
most applications, a system must guarantee that the data received are
identical to the data transmitted. Data can become corrupted in passage.
Some applications require a mechanism for detecting and, eventually,
correcting errors.

Types of Errors

Error can affect only one bit or multiple bits. The term

single-bit error

means that only 1 bit of a given data unit (such as a byte, character, or
packet) is changed. The term

burst error

 means that two or more bits in the
data unit have changed. Figure C.1 shows the effect of a single-bit or burst
error on a data unit.

A burst error is more likely to occur than a single-bit error. The dura-
tion of noise is normally longer than the duration of 1 bit, which means
that when noise affects data, it affects a set of bits.

Redundancy

The central concept in detecting or correcting errors is

redundancy.

 To
be able to detect or correct errors, we need to send some extra bits with
our data. These redundant bits are added by the sender and removed by
the receiver. Their presence allows the receiver to detect, and eventually,
correct corrupted bits.

Detection versus Correction

The correction of errors is more difficult than the detection. In

error
detection,

 we are looking only to see if any error has occurred. The
answer is a simple yes or no. We are not even interested in the number of
errors. In

error correction,

 we need to know the exact number of bits that
are corrupted and, more importantly, their location in the message. There
are two main methods of error correction.

Forward error correction

 is
the process in which the receiver tries to guess the message by using

for76042_AppC.fm Page 904 Thursday, February 19, 2009 9:33 AM

905

redundant bits. Correction by

retransmission

 is a technique in which the receiver
detects the occurrence of an error and asks the sender to resend the message. In this
appendix, we discuss only error detection, assuming that the correction is achieved
through retransmission.

Coding

Redundancy is achieved through various coding schemes. The sender adds redundant
bits through a process that creates a relationship between the redundant bits and the
actual data bits. The receiver checks the relationships between the two sets of bits to
detect or correct the errors. The ratio of redundant bits to the data bits and the robust-
ness of the process are important factors in any coding scheme. Figure C.2 shows the
general idea of coding.

We can divide coding schemes into two broad categories:

block coding

 and

convo-
lution coding.

 In this appendix, we concentrate on block coding; convolution coding is
more complex and beyond the scope of this book.

Figure C.1

Single-bit and burst errors

Sent

Received 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1

0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1

Corrupted bits

Length of burst error (8 bits)

Corrupted bit

0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 Sent

Received

a. Single-bit error b. Burst error

Figure C.2

The structure of encoder and decoder

Unreliable transmission

Generator

Message

Message and redundancy

Sender

Encoder Decoder

Receiver

Message

Correct or
discard

Received information

Checker

for76042_AppC.fm Page 905 Monday, February 23, 2009 7:23 PM

906

PART 7 APPENDICES

C.2 BLOCK CODING

In block coding, we divide our message into blocks, each of

k

 bits, called

datawords.

We add

r

 redundant bits to each block to make the length

n = k + r

. The resulting

n

-bit
blocks are called

codewords.

 How the extra

r

 bits is chosen or calculated is some-
thing we will discuss later. For the moment, it is important to know that we have a set
of datawords, each of size

k

, and a set of codewords, each of size of

n

. With

k

 bits, we
can create a combination of 2

k

 datawords; with

n

 bits, we can create a combination of
2

n

 codewords. Since

n

 >

k

, the number of possible codewords is larger than the num-
ber of possible datawords. The block coding process is one-to-one; the same data-
word is always encoded as the same codeword. This means that we have 2

n

−

 2

k

codewords that are not used. We call these codewords invalid. Figure C.3 shows the
situation.

Error Detection

How can errors be detected by using block coding? If the following two conditions are
met, the receiver can detect a change in the original codeword.

1.

The receiver has (or can find) a list of valid codewords.

2.

The original codeword has changed to an invalid one.

The sender creates codewords out of datawords by using a generator that applies
the rules and procedures of encoding (discussed later). Each codeword sent to the
receiver may change during transmission. If the received codeword is the same as one
of the valid codewords, the word is accepted; the corresponding dataword is extracted
for use. If the received codeword is not valid, it is discarded. However, if the codeword
is corrupted during transmission but the received word still matches a valid codeword,
the error remains undetected.

Hamming Distance

One of the central concepts in coding for error control is the idea of the Hamming dis-
tance. The

Hamming distance

 between two words (of the same size) is the number of
differences between the corresponding bits. We show the Hamming distance between
two words

x

 and

y

 as

d

(

x

,

y

). The Hamming distance can easily be found if we apply the
XOR operation (

⊕

) on the two words and count the number of 1s in the result.

Figure C.3

Datawords and codewords in block coding

2k Datawords, each of k bits

2n Codewords, each of n bits (only 2k of them are valid)

k bits k bits k bits

n bits n bits n bits

• • •

• • •

for76042_AppC.fm Page 906 Thursday, February 19, 2009 9:33 AM

APPENDIX C ERROR DETECTION CODES

907

Minimum Hamming Distance

Although the concept of the Hamming distance is the central point in dealing with error
detection and correction codes, the measurement that is used for designing a code is the
minimum Hamming distance. In a set of words, the

minimum Hamming distance

 is
the smallest Hamming distance between all possible pairs. We use

d

min

to define the
minimum Hamming distance in a coding scheme. To find this value, we find the Ham-
ming distances between all words and select the smallest one. A coding scheme

C

 is
written as

C

(

n

,

k

) with a separate expression for

d

min

.

Hamming Distance and Error

Before we explore the criteria for error detection or correction, let us discuss the rela-
tionship between the Hamming distance and errors occurring during transmission.
When a codeword is corrupted during transmission, the Hamming distance between the
sent and received codewords is the number of bits affected by the error. In other words,
the Hamming distance between the received codeword and the sent codeword is the number
of bits that are corrupted during transmission. For example, if the codeword 00000 is sent
and 01101 is received, 3 bits are in error and the Hamming distance between the two is

d

(00000, 01101) = 3.

Minimum Distance for Error Detection

Now let us find the minimum Hamming distance in a code if we want to be able to detect
up to

s

 errors. If

s

 errors occur during transmission, the Hamming distance between the
sent codeword and received codeword is

s

. If our code is to detect up to

s

 errors, the min-
imum distance between the valid codes must be

s

 + 1, so that the received codeword
does not match a valid codeword. In other words, if the minimum distance between all
valid codewords is

s

 + 1, the received codeword cannot be erroneously mistaken for
another codeword. The error will be detected. We need to clarify a point here: Although
a code with

d

min

 =

s

 + 1 may be able to detect more than

s

 errors in some special cases,
only

s

 or fewer errors are guaranteed to be detected.
We can look at this geometrically. Let us assume that the sent codeword

x

 is at the
center of a circle with radius

s

. All other received codewords that are created by 1 to

s

errors are points inside the circle or on the perimeter of the circle. All other valid code-
words must be outside the circle, as shown in Figure C.4. As the figure shows

d

min

 must
be an integer greater than

s

; that is,

d

min

 =

s

 + 1.

Figure C.4

Geometric concept for finding d

min

 in error detection

Radius sx y

dmin > s

Any valid codeword

Legend

Any corrupted codeword
with 0 to s errors

for76042_AppC.fm Page 907 Thursday, February 19, 2009 9:33 AM

908

PART 7 APPENDICES

C.3 LINEAR BLOCK CODES

Almost all block codes used today belong to a subset called

linear block codes.

 The use of
nonlinear block codes for error detection and correction is not as widespread because
their structure makes theoretical analysis and implementation difficult. We therefore
concentrate on linear block codes.

The formal definition of linear block codes requires the knowledge of abstract alge-
bra (particularly Galois fields), which is beyond the scope of this book. We therefore give
an informal definition. For our purposes, a linear block code is a code in which the exclu-
sive OR (addition modulo-2) of two valid codewords creates another valid codeword.

Minimum Distance for Linear Block Codes

It is simple to find the minimum Hamming distance for a linear block code. The mini-
mum Hamming distance is the number of 1s in the nonzero valid codeword with the
smallest number of 1s.

Simple Parity-Check Code

Perhaps the most familiar error-detecting code is the

simple parity-check code.

 In this
code, a

k

-bit dataword is changed to an

n

-bit codeword where

n

 =

k

 + 1. The extra bit,
called the parity bit, is selected to make the total number of 1s in the codeword even.
Although some implementations specify an odd number of 1s, we discuss the even
case. The minimum Hamming distance for this category is

d

min

 = 2, which means that
the code is a single-bit error-detecting code. Figure C.5 shows a possible structure of an
encoder (at the sender) and a decoder (at the receiver).

The encoder uses a generator that takes a copy of a 4-bit dataword (

a

0

,

a

1

,

a

2

, and

a

3

) and generates a parity bit

r

0

. The dataword bits and the

parity bit

 create the 5-bit
codeword. The parity bit that is added makes the number of 1s in the codeword even.
This is normally done by adding the 4 bits of the dataword (modulo-2); the result is the
parity bit. In other words,

Figure C.5

Encoder and decoder for simple parity-check code

r

0

=

(

a

3

 +

a

2

 +

a

1

 +

a0) modulo 2

CheckerGenerator

Codeword

Unreliable
transmission

EncoderDataword Dataword
a3 a2 a1 a0a3 a2 a1 a0

b3 b2 b1 b0 q0

Sender Receiver

Decoder

Codeword

D
is

ca
rd

Accept

Syndrome

Parity bit

Decision
logic

s0

a3 a2 a1 a0 r0

for76042_AppC.fm Page 908 Thursday, February 19, 2009 9:33 AM

APPENDIX C ERROR DETECTION CODES 909

If the number of 1s is even, the result is 0; if the number of 1s is odd, the result is 1.
In both cases, the total number of 1s in the codeword is even.

The sender sends the codeword, which may be corrupted during transmission. The
receiver receives a 5-bit word. The checker at the receiver does the same thing as the gen-
erator in the sender with one exception: The addition is done over all 5 bits. The result,
which is called the syndrome, is just 1 bit. The syndrome is 0 when the number of 1s in
the received codeword is even; otherwise, it is 1.

The syndrome is passed to the decision logic analyzer. If the syndrome is 0, there
is no error in the received codeword; the data portion of the received codeword is
accepted as the dataword; if the syndrome is 1, the data portion of the received code-
word is discarded. The dataword is not created.

Hamming Codes

Now let us discuss a category of error-correcting codes called Hamming codes. These
codes were originally designed with dmin = 3, which means that they can detect up to
two errors.

First let us find the relationship between n and k in a Hamming code. We need to
choose an integer m ≥ 3. The values of n and k are then calculated from m as n = 2m − 1
and k = n − m. The number of check bits r = m. For example, if m is 3, then n is 7 and k
is 4. This is a Hamming code C(7, 4) with dmin = 3. It can detect at least two errors.
We leave the process of creating codewords to books dedicated to error correction.

C.4 CYCLIC CODES
Cyclic codes are special linear block codes with one extra property. In a cyclic code, if a
codeword is cyclically shifted (rotated), the result is another codeword. For example, if
1011000 is a codeword and we cyclically left-shift it, then 0110001 is also a codeword.

Cyclic Redundancy Check
We can create cyclic codes to correct errors. However, the theoretical background
required is beyond the scope of this book. In this section, we simply discuss a category
of cyclic codes called the cyclic redundancy check (CRC) that is used in networks
such as LANs and WANs. Figure C.6 shows one possible design for the encoder and
decoder.

In the encoder, the dataword has k bits (4 here); the codeword has n bits (7 here). The
size of the dataword is augmented by adding n − k 0s to the right-hand side of the word.
The n-bit result is fed into the generator. The generator uses a divisor of size n − k + 1,
predefined and agreed upon. The generator divides the augmented dataword by the divi-
sor (modulo-2 division). The quotient of the division is discarded; the remainder (r2r1r0)
is appended to the dataword to create the codeword.

The decoder receives the possibly corrupted codeword. A copy of all n bits is fed to
the checker which is a replica of the generator. The remainder produced by the checker

s0 = (b3 + b2 + b1 + b0 + q0) modulo 2

for76042_AppC.fm Page 909 Thursday, February 19, 2009 9:33 AM

910 PART 7 APPENDICES

is a syndrome of n − k bits, which is fed to the decision logic analyzer. The analyzer has
a simple function. If the syndrome bits are all 0s, the k leftmost bits of the codeword are
accepted as the dataword (interpreted as no error); otherwise, the k bits are discarded
(error).

Encoder

Let us take a closer look at the encoder. The encoder takes the dataword and augments it
with n − k number of 0s. It then divides the augmented dataword by the divisor, as shown
in Figure C.7. The process of modulo-2 binary division is the same as the familiar

Figure C.6 CRC encoder and decoder

Figure C.7 Division in CRC encoder

Accept

CheckerGenerator

Codeword

Encoder
Dataword Dataword

a3 a2 a1 a0a3 a2 a1 a0

q2 q1 q0b3 b2 b1 b0

Sender

0 0 0

Receiver

Decoder

Codeword

D
is

ca
rd

Syndrome

Decision
logic

s0s1s2

a3 a2 a1 a0 r2 r1 r0

Divisor

R
em

ai
nd

er

Unreliable
transmission

d1d3d2 d0

Division

1 10 1

1 10 1

1 10 1

0 01 0

0 00 0

1 00 1

01 1

0 01 1

0 00 0

1 00 0

Divisor

Quotient

Dividend:
augmented
dataword

Codeword 1 10 0 1 1 0
Dataword Remainder

1 10 0Dataword

Remainder

Leftmost bit 0:
use 0000 divisor

Leftmost bit 0:
use 0000 divisor

1 10 0 0 0 0

for76042_AppC.fm Page 910 Thursday, February 19, 2009 9:33 AM

APPENDIX C ERROR DETECTION CODES 911

division process we use for decimal numbers. However, as mentioned at the beginning
of the chapter, in this case addition and subtraction are the same. We use the XOR oper-
ation to do both. Multiplication uses the AND operation.

As in decimal division, the process is done step by step. In each step, a copy of
the divisor is XORed with the 4 bits of the dividend. The result of the XOR operation
(remainder) is 3 bits (in this case), which is used for the next step after 1 extra bit is
pulled down to make it 4 bits long. There is one important point we need to remember
in this type of division. If the leftmost bit of the dividend (or the part used in each
step) is 0, the step cannot use the regular divisor; we need to use an all-0s divisor.
When there are no bits left to pull down, we have a result. The 3-bit remainder forms
the check bits (r2, r1, and r0). They are appended to the dataword to create the
codeword.

Decoder

The codeword can be changed during transmission. The decoder does the same division
process as the encoder. The remainder of the division is the syndrome. If the syndrome
is all 0s, there is no error; the dataword is separated from the received codeword and
accepted. Otherwise, everything is discarded. Figure C.8 shows two cases:

The left-hand figure shows the value of syndrome when no error has occurred; the
syndrome is 000. The right-hand part of the figure shows the case in which there is one
single error. The syndrome is not all 0s (it is 011).

Divisor

You may be wondering how the divisor 1011 is chosen. There are some criteria, but we
leave the discussion to books dedicated to the error detection.

Figure C.8 Division in the CRC decoder for two cases

Division Division

1 10 0 1 1 0

1 10 0 1 1 0

1 10 1

1 10 1

1 10 1

0 11 0

0 00 0

1 00 1

00 0

0 00 0

0 00 0

1 10 1

Codeword

1 10 0Dataword
accepted

Syndrome

Codeword 1 00 0 1 1 0

1 00 0 1 1 0

1 10 1

1 10 1

1 10 1

0 11 1

1 10 1

1 00 1

10 1

1 00 0

0 00 0

1 11 1

Codeword

Dataword
discarded

Syndrome

Codeword

for76042_AppC.fm Page 911 Thursday, February 19, 2009 9:33 AM

912 PART 7 APPENDICES

Advantages of Cyclic Codes
Cyclic codes have a very good performance in detecting single-bit errors, double errors,
an odd number of errors, and burst errors. They can easily be implemented in hardware
and software. They are especially fast when implemented in hardware.

Other Cyclic Codes
The cyclic codes we have discussed in this section are very simple. The check bits and
syndromes can be calculated by simple algebra. There are, however, more powerful
codes, such as Reed-Solomon code, used today for both detection and correction.

for76042_AppC.fm Page 912 Thursday, February 19, 2009 9:33 AM

for76042_AppC.fm Page 913 Thursday, February 19, 2009 11:05 AM

D

A P P E N D I X

914

D

Checksum

n Appendix C, we discussed some error-detection codes. One particular
error-detection method, which is prevalent in the three upper layers of

the TCP/IP protocol suite, is the checksum. We discuss this method in this
appendix.

D.1 TRADITIONAL CHECKSUM

Let us first discuss the traditional checksum that has been used in the
Internet. We later show some new proposals that are different from the
traditional one.

Idea

The idea of the traditional checksum is very simple. We show this idea
using a simple example.

Example D.1

Suppose our data is a list of five 4-bit numbers that we want to send to a destina-
tion. In addition to sending these numbers, we send the sum of the numbers. For
example, if the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12, 0, 6,

36

),
where 36 is the sum of the original numbers. The receiver adds the five numbers
and compares the result with the sum. If the two are the same, the receiver
assumes no error, accepts the five numbers, and discards the sum. Otherwise, there
is an error somewhere and the data are not accepted.

One’s Complement Addition

The previous example has one major drawback. Each number can be writ-
ten as a 4-bit word (each is less than 15) except for the sum. One solution
is to use

 one’s complement

 arithmetic. In this arithmetic, we can repre-
sent unsigned numbers between 0 and 2

n

−

 1 using only

n

 bits. If the
number has more than

n

 bits, the extra leftmost bits need to be added to
the

n

 rightmost bits (wrapping).

I

for76042_AppD.fm Page 914 Thursday, February 19, 2009 9:34 AM

915

Example D.2

In the previous example, the decimal number 36 in binary is (100100)

2

. To change it to a 4-bit
number we add the extra rightmost bit to the left 4 bits as show below:

(10)

2

 + (0100)

2

 = (0110)

2

→

(6)

10

Instead of sending 36 as the sum, we can send 6 as the sum (7, 11, 12, 0, 6,

6

). The receiver
can add the first five numbers in one’s complement arithmetic. If the result is 6, the numbers are
accepted; otherwise, they are rejected.

Checksum

We can make the job of the receiver easier if we send the complement of the sum,
called the

checksum

. In one’s complement arithmetic, the complement of a number is
found by completing all bits (changing all 1s to 0s and all 0s to 1s). This is the same as
subtracting the number from 2

n

−

 1. In one’s complement arithmetic, we have two 0s:
positive and negative, which are complements of each other. The positive zero has all

n

 bits set to 0; the negative zero has all bits set to 1 (it is 2

n

−

1). If we add a number
with its complement, we get a negative zero (a number with all bits set to 1). When the
receiver adds all five numbers (including the checksum), it gets a negative zero. The
receiver can complement the result again to get a positive zero.

Example D.3

Let us use the idea of checksum in Example D.2. The sender adds all five numbers in one’s com-
plement to get the sum

=

6. The sender then complements the result to get the checksum

=

 9,
which is 15

−

 6. Note that 6

=

 (0110)

2

 and 9

=

 (1001)

2

; they are complements of each other. The
sender sends the five data numbers and the checksum (7, 11, 12, 0, 6,

9

). If there is no corruption
in transmission, the receiver receives (7, 11, 12, 0, 6,

9

) and adds them in one’s complement to get
15. The sender complements 15 to get 0. This shows that data have not been corrupted. Figure D.1
shows the process.

Figure D.1

7, 11, 12, 0, 6, 9

Sender

Packet

Receiver 7

11

12

0

6

9

15

0

Received Checksum

Sum (in one’s complent)

Calculated Checksum

7

11

12

0

6

0

6

9

Initialized checksum

Sum (in one’s complent)

Actual checksum

for76042_AppD.fm Page 915 Thursday, February 19, 2009 9:34 AM

916

PART 7 APPENDICES

Internet Checksum

Traditionally, the Internet has used a 16-bit checksum. The sender and the receiver follow
the steps depicted in Table D.1. The sender uses five steps, but the receiver uses only four.

Algorithm

We can use the flow diagram of Figure D.2 to show the algorithm for calculation of the
checksum. A program in any language can be easily written based on the algorithm.

Performance

The traditional checksum uses a small number of bits (16) to detect errors in a message
of any size (sometimes thousands of bits). However, it is not as strong as the CRC in
error-checking capability. For example, if the value of one word is incremented and the
value of another word is decremented by the same amount, the two errors cannot be
detected because the sum and checksum remain the same. Also if the values of several
words are incremented but the sum and the checksum do not change, the errors are not

Table D.1

Procedure to Calculate the Traditional Checksum

Sender Receiver

1. The message is divided into

16-bit words. 1. The message is divided into

16-bit words.

2. The value of the checksum word is initially
set to zero.

2. All words are added using one’s comple-
ment addition.

3. All words including the checksum are
added using one’s complement addition.

3. The sum is complemented and becomes the
new checksum.

4. The sum is complemented and becomes the
checksum.

4. If the value of checksum is 0, the message
is accepted; otherwise, it is rejected.

5. The checksum is sent with the data.

Figure D.2

Algorithm to calculate traditional checksum

Sum = 0

[yes]

[no]

More words?

Start

Stop

 Sum = Sum + Next Word

[yes]

Word and Checksum are each 16 bits,
but Sum is 32 bits.

Left (Sum) can be found by shifting
Sum16 bits to the right.
Right (Sum) can be found by ANDing
Sum with (0000FFFF)16 .
After Checksum is found, it is
truncated to 16 bits.

Notes:

Left(sum)
is nonzero?

Sum = Left(Sum) + Right(Sum)

Checksum = Complement (Sum)

for76042_AppD.fm Page 916 Thursday, February 19, 2009 9:34 AM

APPENDIX D CHECKSUM

917

detected. Fletcher and Adler have proposed some weighted checksums, in which each
word is multiplied by a number (its weight) that is related to its position in the text.
This will eliminate the first problem we mentioned. However, the tendency in the Inter-
net, particularly in designing new protocols, is to replace the checksum with a CRC.

D.2 FLETCHER

As mentioned before, there is one major problem with the traditional checksum calcu-
lation. If two 16-bit items are transposed in transmission, the checksum cannot catch
this error. The reason is that the traditional checksum is not weighted: it treats each data
item equally. In other words, the order of data item is immaterial to the calculation. The
Fletcher checksum was devised to weight each data item according to its position.

Fletcher has proposed two algorithms: 8-bit and 16-bit. The first, 8-bit Fletcher,
calculates on 8-bit data items and creates a 16-bit checksum. The second, 16-bit
Fletcher, calculates on 16-bit data items and creates a 32-bit checksum.

Eight-Bit Fletcher

The 8-bit Fletcher is calculated over data octets (bytes) and creates a 16-bit checksum.
The calculation is done modulo 256 (2

8

), which means the intermediate results are
divided by 256 and the remainder is kept. The algorithm uses two accumulators, L and R.
The first simply adds data items together; the second adds a weight to the calculation.
There are many variations of the 8-bit Fletcher algorithm; we show a simple one in
Figure D.3.

It can be proved that the accumulator L is a weighted sum of the data items. We have

Figure D.3

Algorithm to calculate an 8-bit Fletcher checksum

R

=

 D

1

+

 D

2

+

…

+

 D

n

L

=

n

D

1

+

 (

n

−

1)D

2

+

…

+

 D

n

L16-bit
checksum

R

R = L = 0

R = (R + Di) mod 256L = (L + R) mod 256

256 + R+Checksum = L

[yes]

[no]

More data?

Start

Stop

Notes
L: Left 8-bit checksum

R: Right 8-bit checksum

Di: Next 8-bit data item

for76042_AppD.fm Page 917 Thursday, February 19, 2009 9:34 AM

918

PART 7 APPENDICES

If, for example, D

1

 and D

2

 are swapped during the transmission, the calculation of
L at the receiver is different from the one done at the sender.

As an example, let us calculate the eight-bit Fletcher checksum for the string
“Forouzan”. We change each character to its equivalent ASCII value and calculate the
values of R and L in Table D.2.

The 16-bit checksum in this case is (8254)

16

. Note that the checksum is actually the
concatenation of L = (82)

16

 and R = (54)

16

. In other words, when R and L are calcu-
lated, L goes to the leftmost byte and R to the rightmost byte.

Sixteen-Bit Fletcher

The 16-bit Fletcher checksum is calculated over 16-bit data items and creates a 32-bit
checksum. The calculation is done modulo 65536.

D.3 ADLER

The Adler checksum is a 32-bit checksum. Figure D.4 shows a simple algorithm in
flowchart form.

Table D.2

Example of an 8-bit Fletcher Checksum

Byte D

i

R =

0

L =

0

F
o
r
o
u
z
a
n

 70
111
114
111
117
122
 97
110

R = 0 + 70 = 70
R = 70 +111 = 181
R = 181 + 114 = 39
R = 39 + 111 = 150
R = 150 + 117 = 11
R = 11 + 122 = 133
R = 133 + 97 = 230
R = 230 + 110 = 84

B = 0 + 70 = 70
L = 70 + 181 = 251
L = 251 + 39 = 34
L = 34 + 150 = 184
L = 184 + 11 = 195
L = 195 + 133 = 72
L = 72 + 230 = 46
L = 46 + 84 = 130

Checksum = L

×

256

 + R = 33,364

Figure D.4

Algorithm for calculating Adler checksum

L

32-bit checksum

R

R = (R + Di) mod 65521

65536 + R+Checksum = L

[yes]

[no]

More data?

Start

Stop

Notes
L: Left 16-bit checksum

R: Right 16-bit checksum

Di: Next 16-bit data item R = 1 L = 0

L = (L + R) mod 65521

for76042_AppD.fm Page 918 Thursday, February 19, 2009 9:34 AM

APPENDIX D CHECKSUM

919

It is similar to the 16-bit Fletcher with three differences. First, calculation is done on
single bytes instead of 2 bytes at a time. Second, the modulus is a prime number
(65,521) instead of 65,536. Third, L is initialized to 1 instead of 0. It has been proved that
a prime modulo has a better detecting capability in some combinations of data.

Let us calculate the Adler checksum for the string “Forouzan”. We change each
character to its equivalent ASCII value and calculate the values of R and L in Table D.3.
The 32-bit checksum in this case is (0E8A0355)

16

. Note that the checksum is actually
the concatenation of L

=

(0E8A)

16

 and R

=

 (0355)

16

.

Table D.3

Example of Adler Checksum

Byte D

i

R =

1

L =

0

F
o
r
o
u
z
a
n

 70
111
114
111
117
122
 97
110

R = 1 + 70 = 71
R = 71 +111 = 182
R = 182 + 114 = 296
R = 296 + 111 = 407
R = 407 + 117 = 524
R = 524 + 122 = 646
R = 646 + 97 = 743
R = 743 + 110 = 853

L = 0 + 71 = 71
L = 71 + 182 = 253
L = 253 + 296 = 549
L = 549 + 407 = 956
L = 956 + 524 = 1,480
L = 1480 + 646 = 2,126
L = 2126 + 743= 2,869
L = 2869 + 853 = 3,722

Checksum = 3,722

×

65,536

+ 853 = 243,925,845

for76042_AppD.fm Page 919 Thursday, February 19, 2009 9:34 AM

E

A P P E N D I X

920

E

HTML, XHTML, XML, and XSL

E.1 HTML

Hypertext Markup Language

(HTML)

 is a

language

for creating Web
pages. The term

markup language

 comes from the book publishing indus-
try. Before a book is typeset and printed, a copy editor reads the manu-
script and puts marks on it. These marks tell the compositor how to format
the text. For example, if the copy editor wants part of a line to be printed
in boldface, he or she draws a wavy line under that part. In the same way,
data for a Web page are formatted for interpretation by a browser.

Tags

An HTML document is made of text and some commands that define how
the text should be formatted or interpreted by the browser that displays
the contents of the document. A command in HTML is called a

tag.

 When
a browser encounters a tag, it removes the tag and formats or interprets
the text that follows. Since different parts of a document may need to be
formatted or interpreted differently, the tags are designed as pairs:

begin-
ning tag

 and

ending tag.

However, some tags may have no explicit ending
symbol because the ending is implicit from the text. The following shows
the general format of a pair of tags.

The

<

tagName

>

 is the beginning (opening) tag; the

<

/tagName

>

 is
the ending (closing) tag. Between them we can have a single-line or mul-
tiline text. The tagName can be either in lowercase or uppercase, but we
use lowercase in this appendix.

In addition to a name, a tag can have a set of

attributes

 and the corre-
sponding

values

. An attribute and a value define more information, as we
discuss later.

In this appendix, we discuss a limited number of tags to give an idea
about HTML. For a comprehensive list of tags see some books dedicated
to HTML.

<

tagName

>

… </

tagName

>

<

tagName

attribute

=

 value attribute

=

 value

… >

for76042_AppE.fm Page 920 Thursday, February 19, 2009 9:35 AM

921

Document Tag

A web page in HTML is called a document. A

document

in HTML starts and ends
with predefined tags that distinguish an HTML document from other types of docu-
ments.

The beginning tag is

<

html

>

; the ending tag is

</

html

>

. Between these two tags,
we can have text and other tags that interpret the text. The following shows the format
of a document using tags.

Although there is no need to indent the contents of the document, we often do so
for clarity.

Head and Body Tags

An HTML document is made of two parts: the head and the body. The head of the doc-
ument normally contains only the title of the documents, but there can be some other
informational materials. We show only the title in this section. Note that the title is not
displayed by the browser, it has only informational value. The body of the document
embeds text, image, link, and other information in an HTML document. The following
shows an HTML document including head and body.

We have used only a single-line title, but the title can span several lines. Note also
that we have not used any formatting for the title because the title is not displaced by
the browser.

Paragraph and Line Tags

Probably the first tags we need to learn are those that separate our paragraphs in the text
and organize text into lines. The paragraph tags are

<

p

>

 and

</

p

>

; the line break tags
are

<

br

>

 and

</

br

>

. Using a pair of line breaks without any text in between create a

<

html

>

 …

</

html

>

<

html

>

<

head

>

<

title

>

TCP/IP Protocol Suite

</

title

>

</

head

>

<

body

>

 …

</

body

>

</

html

>

for76042_AppE.fm Page 921 Thursday, February 19, 2009 9:35 AM

922

PART 7 APPENDICES

blank line in the display text. The following shows an example of using these tags (in
the body of the document).

Appearance Tags

The next set of tags allows us to make text bold or italic. The bold tags are the pair

<

b

>

and

</

b

>

; the italic tags are

<

i

>

 and

</

i

>

. The following shows an example of using
these tags.

The first line will be displayed in bold; the second line will be displayed in italic.

Heading Tags

We can define up to six levels of heading in HTML, although only a few levels are nor-
mally used. The heading tags are <h

n

> and </h

n

>, in which

n

 defines the level (1
through 6). For example, the following shows how we can define two header levels in a
document.

The first line will be displayed using a larger font; the second line will be displayed
using a smaller font.

List Tags

In HTML, we can define two types of lists: unordered list and ordered list. An unor-
dered list tags are

<

ul

>

 and

</

ul

>

. Each item in the list then needs the tag

<

li

>

 and

</

li

>

.
The items in the list are normally bulleted and the browser inserts a line break at the
end of each item. An ordered list tags are

<

ol

>

 and

</

ol

>

. Each item in the list then
needs the tag

<

li

>

 and

</

li

>

. The items in the list then are numbered and the browser
inserts a line break at the end of each item. The following shows one example of an
unordered and one example of ordered list (in two separate documents).

<

p

>

 <

br

>

This is the first line

</

br

>

<

br

>

</

br>

 This is the third line </br>
 </p>

 This is the first line
<i> This is the third line </i>

 <h1> TCP/IP Protocol Suite </h1> </br>

 <h2> A Book by B. Forouzan </h2> </br>

 CIS 011 CIS 011
 CIS 015 CIS 015
 CIS 051 CIS 051

for76042_AppE.fm Page 922 Thursday, February 19, 2009 9:35 AM

APPENDIX E HTML, XHTML, XML, AND XSL 923

Image Tag

We can also include images (graphics) in a document. However, an image is not
directly embedded in the document; the image tag just includes a reference to the place
where the image is stored. The browser is responsible to go to the location defined in
the tag, get the image, and display it in the place where the tag is located. The format of
the image tag is shown below:

 Several attributes can be used in the image tag including:

❑ src The src (source) attribute defines the address (URL) of the location where the
image can be found. The value needs to be enclosed in double quotes.

❑ align The align attribute defines how the image can be aligned with respect to the
text in the document. The values can be top, middle, and bottom.

❑ alt The alt (alternate) attribute defines the text to replace the image if for any rea-
son it cannot be displaced.

The following shows an example of an image tag:

Link Tag

The main idea behind HTML is to provide hypertext links. The links in an HTML doc-
ument allows the user to navigate from one document, somewhere in the world, to
another document, possibly somewhere else in the world. The tags are <a> and . A
link to another document is made of two parts: the URL of the document and the
anchor. The anchor defines the text (underscore or colored) or an image that appears in
the document when it is viewed by the user. The user clicks on the anchor to move to
the new document. The following shows the format of the link tag.

The following shows an example of link tag:

Only the text McGraw-Hill will be shown after the colon. When the user clicks on
the anchor, the browser goes to the McGraw-Hill site and displays what is there.

Form and Input Tags

HTML 2.0 has added the idea of forms to the previous HTML versions. In HTML 1.0,
a user can download an HTML document and browse through it. To be used as com-
mercial tool, to let customers browse through the document and then do shopping if
they wish, the forms were introduced. Forms are a set of boxes (buttons) that the user

 anchor

To find the site of this book, please go to:

 McGraw-Hill

for76042_AppE.fm Page 923 Thursday, February 19, 2009 9:35 AM

http://www.mhhe.com/engcs/compsci/forouzan/%E2%80%9D

924 PART 7 APPENDICES

can fill and send the information to the website. The following shows an example, using
form and input tags.

Other Tags

There are many other tags that we leave for the books dedicated to HTML.

XHTML
The Extended HTML (XHTML) is the new version of the HTML (after version 4.0)
that is close to XML and XSL (defined later). In general, XHTML is similar to HTML,
but more restricted in using the rules of the language. In particular, there are some
changes in XHTML, which are briefly discussed below:

❑ All tags and attributes must be in lowercase.

❑ The closing tag is required. If the tag in HTML does not have a closing counter-
part, in XHTML we need to insert a slash before the greater-than symbol. For
example, the image tag in XHTML is <image …/>.

❑ Attributes must be enclosed in quotes (strings or numbers).

❑ Tags must be nested properly.

❑ Every XHTML document must have a document type as defined for XML and
XSL (discussed below).

E.2 XML AND XSL
HTML uses predefined tags to format and interpret a document. HTML, however, does
not provide data structure and data representation as has been defined by many pro-
gramming languages like C. A program written in a programming language like C can
preform two separate tasks:

1. We can define a data structure such as an array or record in the program and initial-
ize it to appropriate values. For example, we can define a record of students with
fields defined as name, id, birthday, and so on.

2. We can use the printing and formatting functions such as printf function to format
and print the contents of the defined record.

The interesting point is that these two tasks can be independent of each other. We can
change the values stored in the record without changing the printing format. We can
also change the printing format to print the same record in a different format. The
duties of these two tasks have been assigned to XML and XSL.

 <form action = … method = POST >
 <input name = “user” size = …>
 <input name = “address” size = …>
 …
 </form>

for76042_AppE.fm Page 924 Thursday, February 19, 2009 9:35 AM

APPENDIX E HTML, XHTML, XML, AND XSL 925

Extensible Markup Language (XML)

XML is a language that allows a user to define a representation of data or data structure
and assign values to each part (field) in the structure. In other words, XML is a custom-
ized HTML in which users can define their own tags, such as <name>, <id>, and so on.
The only restriction is that the user needs to follow the rules defined in XML. For
example, the following shows how we can define a student record with three fields:
name, id, and birthday.

Extensible Style Language (XSL)

The data defined and initialized to values in an XML document need another language,
a style language, to define how the data should be displayed. One of the ways to accom-
plish this is to use XSL. XSL uses formatting statements and even repeating statements
to define how to display data defined in an XML document. In other words, XSL is
actually an HTML document, but the style is applied to an XML document. We leave
the details of XSL format to the books dedicated to website design.

 <?xml version="1.0"?>
 <student>
 <name> George Brown </name>
 <id> 2345 </id>
 <birthday> 12-08-82 </birthday>
 </student>

for76042_AppE.fm Page 925 Thursday, February 19, 2009 9:35 AM

F

A P P E N D I X

926

F

Client-Server Programming
in Java

n this appendix, we touch on client-server programming in Java using

the socket interface

. Java offers network programming to access both
iterative and concurrent servers. Although writing server programs for
iterative servers in Java is straight forward, writing concurrent server pro-
grams are more involved because they need Java threads. In this appen-
dix, we only concentrate on iterative programming, both for UDP and
TCP. We leave programming for concurrent servers to dedicated books on
network programming in Java.

In the first section of this appendix, we give two simple programs:
echo client and echo server using the services of UDP. In the second sec-
tion of the appendix, we also give two simple programs: echo client and
echo server using the service of TCP.

To allow server programming, Java uses several classes. Some of
these classes are particularly designed to be used with UDP; other classes
can be used only with TCP. The DatagramSocket class, with several
methods is used to create socket objects for UDP. The ServerSocket class,
with several methods, is used to create socket objects for TCP. UDP also
uses the class DatagramPacket, which facilitates the creation of datagram
packets.

We also have used several other input/output classes, stream classes,
and buffered classes that are familiar to Java programmers.

I

for76042_AppF.fm Page 926 Monday, February 23, 2009 7:27 PM

927

F.1 UDP PROGRAMS

We first concentrate on UDP client and server program. Table F.1 shows the program for
the UDP echo server. It is the Java version of the program in Table 17.1 (Chapter 17).
We use DatagramSocket class in line 11 to create a socket. We then use Datagram-
Packet class in lines 15 and 16 to create a datagram packet. The blocking

receive

 method in
line 17 blocks the execution of the program until a packet arrives from the client. It then
uses the DatagramPacket class again to create a new packet (lines 19 to 21). It finally sends
the echoed data in line 22.

Table F.1

Echo Server Program using the Service of UDP

01

// UDP echo server program

02

import java.io.*;

03

import java.net.*;

04

public class UDPEchoServer

05

{

06

public static void main (String args []) throws Exception

07

{

08

 byte [] recvBuf = new byte [256];

// Receive buffer

09

 byte [] sendBuf = new byte [256];

// Send buffer

10

 // Create server socket

11

 DatagramSocket socket = new DatagramSocket (7);

12

 for (; ;)

// Repeat forever

13

 {

14

 // Receive a datagram

15

 DatagramPacket receivePacket =

16

new DatagramPacket (recvBuf, recvBuf.length);

17

socket.receive (receivePacket);

18

 // Send the datagram

19

 DatagramPacket sendPacket =

20

 new DatagramPacket (sendBuf, sendBuf.length,

21

 receivePacket.getAddress (), receivePacket.getPort ());

22

 socket.send (sendPacket);

23

}

// End of

for

 loop

24

}

// End of main

25

}

// End of class

for76042_AppF.fm Page 927 Monday, February 23, 2009 7:27 PM

928

PART 7 APPENDICES

Table F.2 shows the client program (Java version of the program in Table 17.2 in
Chapter 17). Line 11 creates a socket object. Line 13 shows how we find the server
address using the getByName method in InetAddress class. In lines 15, 16, and 17 we
read user data from the keyboard and create a send buffer. In lines 19 to 21 we send the
data. The program receives echoed data in lines 22 and 23. Finally we display the ech-
oed data using lines 26 and 27. Note that we assume that server uses port 7 for echo
program.

Table F.2

Echo Client Program using the Service of UDP

 01

// UDP echo Client program

 02

import java.io.*;

 03

import java.net.*;

 04

public class UDPEchoClient

 05

{

 06

public static void main (String args[]) throws Exception

 07

{

 08

 byte[] recvBuf = new byte[256];

// Receive buffer

 09

 byte[] sendBuf = new byte[256];

// Send buffer

 10

 // Create client socket

 11

 DatagramSocket socket = new DatagramSocket();

 12

 // Find the server address

 13

 InetAddress serverAddr = InetAddress.getByName ("server name");

 14

 // Input String

 15

 BufferedReader In = new BufferedReader(new Input StreamReader(System.in));

 16

 String sendString = In.readLine ();

 17

 sendBuf = sendString.getByte();

 18

 // Send the datagram

 19

 DatagramPacket sendPacket =

 20

 new DatagramPacket (sendBuf, sendBuf.length, serverAddr, serverPort);

 21

 socket.send (sendPacket);

 22

 // Receive the datagram

 23

 DatagramPacket recvPacket = new DatagramPacket (recvBuf, recvBuf.length);

 24

 socket.receive (recvPacket);

 25

 // Output String

 26

 String recvString = new String (recvPacket.getData());

 27

 System.out.println ("Received from server:" + recvString);

 28

 // Close Socket

 29

 socket.close ();

 30

}

// End of main

 31

}

// End of class

for76042_AppF.fm Page 928 Monday, February 23, 2009 7:27 PM

APPENDIX F CLIENT-SERVER PROGRAMMING IN JAVA

929

F.2 TCP PROGRAMS

As discussed before, to make our discussion simpler, we assume an iterative TCP
server (instead of a concurrent one). Table F.3 shows the iterative version of Table 17.3
discussed in Chapter 17. In line 11, we create a TCP socket. In line 15, we use one of
the method in ServerSocket class to create a listen socket. Lines 17 and 18 use the
InputStream and OutputStream classes to create two stream object that receive and
send streams of data. Since the string sent by the client may arrive in different seg-
ments, we use a while loop to read the data in all segments before echo the data back to
the client. Note that we assume that the server used port 7 for echo program.

Table F.3

Echo Server Program using the Service of TCP

01

// TCP echo server program

02

import java.io.*;

03

import java.net.*;

04

public class TCPEchoServer

05

{

06

public static void main (String args []) throws Exception

07 {

08 byte [] buffer = new byte [256]; // Byte buffer

09 int br = 0; // Number of bytes read

10 // Create server socket

11 ServerSocket listenSocket = new ServerSocket (7);

12 for (; ;) // Repeat forever

13 {

14 // Create connection socket to serve client

15 Socket connectSocket = listenSocket.accept();

16 // Create input and output streams to receive and send data

17 InputStream in = connectSocket.getInputStream();

18 OutputStream out = connectSocket.getOutputStream();

19 // Read and write from stream

20 while ((br = in.read(buffer)) > 0)

21 {

22 out.write (buffer, 0, br);

23 } // End of while loop

24 connectSocket.close();

25 } // End of for loop

26 }// End of main

27 } // End of class

for76042_AppF.fm Page 929 Monday, February 23, 2009 7:27 PM

930 PART 7 APPENDICES

Table F.4 shows the corresponding client program. We use the Socket class to create
a connecting socket in line 11. Lines 13 to 15 read data from keyboard and store them in
the send buffer. We send data in lines 17 and 18 and receive data back in lines 21 to 25.
Lines 27 and 28 print the received data.

Table F.4 Echo Client Program using the Service of TCP

 01 // TCP echo client program

 02 import java.io.*;

 03 import java.net.*;

 04 public class TCPEchoClient

 05 {
 06 public static void main (String args[]) throws Exception
 07 {
 08 byte[] recvBuf = new byte[256]; // Receive buffer
 09 byte[] sendBuf = new byte[256]; // Send buffer
 09 int tbr = 0; // Total number of bytes received
 09 int br; // Number of bytes received
 10 // Create socket
 11 Socket socket = new Socket("server name", 7);
 12 // Input string
 13 BufferedReader In = new BufferedReader(new Input StreamReader(System.in));
 14 String sendString = In.readLine ();
 15 sendBuf = sendString.getByte();
 16 // Send data
 17 OutputStream out = socket.getOutputStream ();
 18 out.write (sendBuf);
 19 // Receive data
 20 InputStream in = socket.getIutputStream ();
 21 while (tbr < sendBuf.length)
 22 {
 23 br = in.read (recvBuf, tbr, sendBuf.length − tbr);
 24 tbr = tbr + br;
 25 }
 26 // Output the echoed string
 27 String recvString = new String (recvBuf);
 28 System.out.println ("Received from server:" + recvString);
 29 // Close Socket
 30 socket.close ();
 31 }// End of main
 32 } // End of class

for76042_AppF.fm Page 930 Monday, February 23, 2009 7:27 PM

for76042_AppF.fm Page 931 Monday, February 23, 2009 7:27 PM

G

A P P E N D I X

932

G

Miscellaneous Information

G.1 PORT NUMBERS

Table G.1 lists all port numbers we have mentioned in this book.

Table G.1

Ports by port number

Port Number UDP or TCP Protocol

 7

TCP/UDP

ECHO
13

UDP/TCP

DAYTIME
19

UDP/TCP

CHARACTER GENERATOR
20

TCP

FTP-DATA
21

TCP

FTP-CONTROL
22

TCP

SSH
23

TCP

TELNET
25

TCP

SMTP
37

UDP/TCP

TIME
67

UDP

DHCP-SERVER
68

UDP

DHCP-CLIENT
69

UDP

TFTP
70

TCP

GOPHER
79

TCP

FINGER
80

TCP

HTTP
110

TCP

POP-3
111

UDP/TCP

RPC
143

TCP

IMAP
161

UDP

SNMP
162

UDP

SNMP-TRAP
179

TCP

BGP
443

TCP

HTTPS
520

UDP

RIP

for76042_AppG.fm Page 932 Thursday, February 19, 2009 9:36 AM

933

G.2 RFC

In Table G.2, we list the RFCs that are directly related to the material in this text. For
more information go to the site:

http://www.rfc-editor.org

.

Table G.2

RFCs for Each Protocol

Protocol RFC

ARP 826, 1029, 1166, and 1981.
BGP 1654, 1771, 1773, 1997, 2439, 2918, and 3392.
DHCP 3396 and 3342.
DNS 1034, 1035, 1996, 2535, 3008, 3658, 3755, 3757, and 3845.
Forwarding 1812, 1971, and 1980.
FTP 959, 2577, and 2585.
HTTP 2068 and 2109.
ICMP 792, 950, 956, 957, 1016, 1122, 1256, 1305, and 1987.
IPMPv6 2461, 2894, 3122, 3810, 4443, and 4620.
IPv4 Addressing 917, 927, 930, 932, 940, 950, 1122, and 1519.
IPv4 760, 781, 791, 815, 1025, 1063, 1071, 1141, 1190, 1191, 1624, and 2113.
IPv6 1365, 1550, 1678, 1680, 1682, 1683, 1686, 1688, 1726, 1752, 1826, 1883,

1884, 1886, 1887, 1955, 2080, 2373, 2452, 2463, 2465, 2466, 2472, 2492,
2545, and 2590.

IPv6 Addressing 2375, 2526, 3513, 3587, 3789, and 4291.
IPv6 2460, 2461, and 2462.
MIB 2578, 2579, and 2580.
MIME 2046, 2047, 2048, and 2049.
Mobile IP 1701, 2003, 2004, 3024, 3344, and 3775.
MPLS 3031, 3032, 3036, and 3212.
Multicast Routing 1584, 1585, 2117, and 2362.
Multimedia 2198, 2250, 2326, 2475, 3246, 3550, and 3551.
OSPF 1583 and 2328.
POP3 1939.
RIP 1058 and 2453.
SCTP 4820, 4895, 4960, 5043, 5061, and 5062.
SMTP 2821 and 2822.
SNMP 3410, 3412, 3415, and 3418.
SSH 4250, 4251, 4252, 4253, 4254, and 4344.
TCP 793, 813, 879, 889, 896, 1122, 1987, 1988, 1993, 1975, 2018, 2581, 3168, and 3782.
TELNET 854, 855, 856, 1041, 1091, 1372, and 1572.
TFTP 906, 1350, 2347, 2348, and 2349.
UDP 768.
WWW 1614, 1630, 1737, and 1738.

for76042_AppG.fm Page 933 Thursday, February 19, 2009 9:36 AM

http://www.rfc-editor.org

934

PART 7 APPENDICES

G.3 CONTACT ADDRESSES

Table G.3 shows the contact addresses for organizations we discussed in this book.

Table G.3

Contact Addresses

ATM Forum

Presidio of San Francisco
P.O. Box 29920
572B Ruger Street
San Francisco, CA 94129-0920
www.atmforum.com

International Telecommunication Union

Place des Nations CH-1211
Geneva 20 Switzerland
intwww.itu.int/home

Federal Communications Commission

445 12th Street S.W.
Washington, DC 20554
www.fcc.gov

Internet Corporation for Assigned Names
and Numbers (ICANN)

4676 Admiralty Way, Suite 330
Marina del Rey, CA 90292-6601
www.icann.org

Institute of Electrical and Electronics
Engineers (IEEE)

Operations Center
445 Hoes Lane
Piscataway, NJ 08854-1331
www.ieee.org

Internet Engineering Task Force (IETF)

E-mail: ietf-infor@ietf.org
www.ietf.org

International Organization for
Standardization (ISO)

1, rue de Varembe
Case postale 56
CH-1211 Geneva 20 Switzerland
www.iso.org

Internet Society (ISOC)

1775 Weihle Avenue, Suite 102
Reston, VA 20190-5108
www.isoc.org

for76042_AppG.fm Page 934 Thursday, February 19, 2009 9:36 AM

http://www.atmforum.com
http://www.fcc.gov
http://www.icann.org
http://www.ieee.org
mailto:ietf-infor@ietf.org
http://www.ietf.org
http://www.iso.org
http://www.isoc.org

935

Glossary

1000BASE-CX, 1000BASE-LX, 1000BASE-SX, 1000BASE-T

The IEEE 802.3 standards
for Ethernet implementation with 1-Gbps data rate.

100BASE-FX, 100BASE-T4, 100BASE-TX, 100BASE-X

The IEEE 802.3 standards for Fast
Ethernet implementation with 100-Mbps data rate.

10BASE2, 10BASE5, 10BASE-F, 10BASE-E, 10BASE-L

The IEEE 802.3 standard for Thin
Ethernet with 100-Mbps data rate.

10BASE5

The IEEE 802.3 standard for Thick Ethernet with 100-Mbps data rate.

10GBASE-L

The IEEE 802.3 standard for Ethernet with 10-Gbps data rate.

abstract syntax notation 1 (ASN.1)

A formal language using abstract syntax for defining the
structure of a protocol data unit (PDU).

access control

A security service that protects against unauthorized access to data.

acknowledgment

A packet sent by the receiver to show a successful reception.

active attack

An attack that

may change the data or harm the system.

active close

Closing a TCP connection by a client.

active document

In the World Wide Web, a document executed at the local site using Java.

active open

Establishment of a connection with a server by a client.

additive cipher

The simplest monoalphabetic cipher in which each character is encrypted by
adding its value with a key.

additive increase

With slow start, a congestion avoidance strategy in which the window size is
increased by just one segment instead of exponentially.

address

An integer to identify the source or destination of a packet.

address mask

A 32-bit integer in which the leftmost 1s define the netid.

address resolution protocol (ARP)

In TCP/IP, a protocol for obtaining the physical address of
a node when the Internet address is known.

address space

The total number of addresses used by a protocol.

Advanced Encryption Standard (AES)

A non-Feistel symmetric-key block cipher published
by the NIST.

Advanced Networks and Services (ANS)

The owner and operator of the Internet since 1995.

Advanced Networks and Services Network (ANSNET)

The high-speed Internet backbone.

Advanced Research Projects Agency (ARPA)

The government agency that funded ARPANET.

Advanced Research Projects Agency Network (ARPANET)

The packet switching network
that was funded by ARPA.

American National Standards Institute (ANSI)

A national standards organization that
defines standards in the United States.

American Standard Code for Information Interchange (ASCII)

A character code devel-
oped by ANSI and used extensively for data communication.

for76042_Glossary.fm Page 935 Thursday, February 19, 2009 4:17 PM

936

GLOSSARY

anonymous FTP

A protocol in which a remote user can access another machine without an
account or password.

anycast address

An address that lets a packet be routed to any computer in a set of computers.

applet

A computer program for creating an active Web document. It is usually written in Java.

application adaptation layer (AAL)

A layer in ATM protocol that carries user data.

application layer

The seventh layer in the OSI model or the fifth layer in the TCP/IP protocol;
it provides access to network resources.

application programming interface (API)

A set of declarations, definitions, and procedures
followed by programmers to write client-server programs.

area

A collection of networks, hosts, and routers all contained within an autonomous system.

asymmetric digital subscriber line (ADSL)

A communication technology in which the
downstream data rate is higher than the upstream rate.

asymmetric-key cryptosystem

A cryptosystem that uses two different keys for encryption and
decryption: a public key for encryption and a private key for decryption.

asymmetric-key encipherment

An encipherment using an asymmetric-key cryptosystem.

asynchronous transfer mode (ATM)

A wide area protocol featuring high data rates and
equal-sized packets (cells); ATM is suitable for transferring text, audio, and video data.

ATM adaptation layer (AAL)

The layer in the ATM protocol that encapsulates the user data.

ATMARP

A version of ARP protocol used over an ATM network.

authentication

A security service that checks the identity of the party at the other end of the
line.

Authentication Header Protocol (AH)

A protocol defined by IPSec at the network layer that
provides integrity service for the payload.

autokey cipher

A stream cipher in which each subkey in the stream is the same as the previous
plaintext character. The first subkey is the secret between two parties.

autonomous system (AS)

A group of networks and routers under the authority of a single
administration.

availability

A component of information security that requires the information created and
stored by an organization to be available to authorized entities.

base 64

An encoding to represent nontextual data in MIME.

Basic Encoding Rules (BER)

A standard that encodes data to be transferred through a
network.

Basic Service Set (BSS)

The building block of a wireless LAN as defined by the IEEE 802.11
standard.

Bellman-Ford algorithm

An algorithm used to calculate routing tables in the distance vector
routing method.

best-effort delivery

The unreliable transmission mechanism by IP that does not guarantee
message delivery.

big-endian byte order

A format in which the most significant byte is stored or transmitted first.

biometrics

The measurement of physiological or behavioral features that identify a person.

bit

A binary digit with a value of 0 or 1.

bit-oriented cipher

A cipher in which the symbols in the plaintext, the ciphertext, and the key
are bits.

block

A group of bits treated as one unit.

block cipher

A type of cipher in which blocks of plaintext are encrypted one at a time using
the same cipher key.

for76042_Glossary.fm Page 936 Thursday, February 19, 2009 4:17 PM

GLOSSARY

937

bootstrap process

The booting up of a computer that requires its IP address, subnet mask,
default router address, and name server address.

Bootstrap Protocol (BOOTP)

The protocol that provides configuration information from a
table (file).

Border Gateway Protocol (BGP)

An interautonomous system routing protocol based on path
vector routing.

bridge

A network device operating at the first two layers of the OSI model with filtering and
forwarding capabilities.

broadcast address

An address that allows transmission of a message to all nodes of a network.

broadcast/unknown server (BUS)

A server connected to an ATM switch that can multicast
and broadcast frames.

browser

An application program that displays a WWW document. A browser usually uses
other Internet services to access the document.

buffer

Memory set aside for temporary storage.

byte

A group of 8 bits. An octet.

caching

The storing of information in a small, fast memory used to hold data items that are
being processed.

Caesar cipher

An additive cipher with a fixed-value key used by Julius Caesar.

carrier sense multiple access with collision avoidance (CSMA/CA)

An access method in
wireless LANs that avoids collision by forcing the stations to send reservation messages when
they find the channel is idle.

carrier sense multiple access with collision detection (CSMA/CD)

An access method in
which stations transmit whenever the transmission medium is available and retransmit when col-
lision occurs.

cell

A small, fixed-size data unit; also, in cellular telephony, a geographical area served by a
cell office.

Certification Authority (CA)

An agency such as a federal or state organization that binds a
public key to an entity and issues a certificate.

challenge-response authentication

An authentication method in which the claimant proves
that she

knows

a secret without sending it.

character-oriented cipher

A cipher in which the symbols in the plaintext, the ciphertext, and
the key are characters.

checksum

A field used for error detection. It is formed by adding bit streams using one’s com-
plement arithmetic and then complementing the result.

cipher.

A decryption and/or encryption algorithm.

ciphertext

The message after being encrypted.

claimant

In entity authentication, the entity whose identity needs to be proved.

Clark’s solution

A solution to prevent the silly window syndrome. An acknowledgment is sent
as soon as the data arrive, but announces a window size of zero until either there is enough space
to accommodate a segment of maximum size or until half of the buffer is empty.

classful addressing

An IPv4 addressing mechanism in which the IP address space is divided
into five classes: A, B, C, D, and E. Each class occupies some part of the whole.

classless addressing

An addressing mechanism in which the IP address space is not divided
into classes.

Classless Interdomain Routing (CIDR)

A technique to reduce the number of routing table
entries when supernetting is used.

for76042_Glossary.fm Page 937 Thursday, February 19, 2009 4:17 PM

938

GLOSSARY

client process

A running application program on a local site that requests service from a
running application program on a remote site.

client-server model

The model of interaction between two application programs in which a
program at one end (client) requests a service from a program at the other end (server).

client-server paradigm

A paradigm in which two computers connected by an internet; each
must run a program, one to provide a service and one to request a service.

collision

The event that occurs when two transmitters send at the same time on a channel
designed for only one transmission at a time; data will be destroyed.

colon hexadecimal notation

In IPv6, an address notation consisting of 32 hexadecimal digits,
with every four digits separated by a colon.

common gateway interface (CGI)

A standard for communication between HTTP servers and
executable programs. CGI is used in creating dynamic documents.

compression P-box

A P-box with

n

inputs and

m

outputs, where

n

>

m

.

concurrent client

A client program running at the same time with other client programs.

concurrent server

A server that can process many requests at the same time and share its time
between many requests.

confidentiality

A security goal that defines procedures to hide information from an unautho-
rized entity.

configuration file

A file containing information needed when a computer is booted.

congestion

Excessive network or internetwork traffic causing a general degradation of service.

connectionless iterative server

A connectionless server that processes one request at a time.

connectionless service

A service for data transfer without connection establishment or
termination.

connection-oriented concurrent server

A connection-oriented server that can serve many cli-
ents at the same time.

connection-oriented protocol

A protocol for data transfer with connection establishment and
termination.

connection-oriented service

A service for data transfer involving establishment and
termination of a connection.

Consultative Committee for International Telegraphy and Telephony (CCITT)

An inter-
national standards group now known as the ITU-T.

contiguous mask

A mask composed of a run of 1s followed by a run of 0s.

control character

A character that conveys information about the transmission rather than the
actual data.

control traffic

Highest priority traffic, such as routing and management messages.

Core-Based Tree (CBT)

In multicasting, a group-shared protocol that uses a center router as
the root of the tree.

cryptanalysis

The science and art of breaking codes.

cryptographic hash function

 A function that creates a much shorter output from an input. To
be useful, the function must be resistant to image, preimage, and collision attacks.

Cryptographic Message Syntax (CMS)

The syntax used in S/MIME that defines the exact
encoding scheme for each content type.

cryptography

The science and art of transforming messages to make them secure and immune
to attacks.

CSNET

A network sponsored by the National Science Foundation originally intended for
universities.

for76042_Glossary.fm Page 938 Thursday, February 19, 2009 4:17 PM

GLOSSARY

939

Data Encryption Standard (DES)

A symmetric-key block cipher using rounds of Feistel
ciphers and standardized by NIST.

data link layer

The second layer in the OSI model. It is responsible for node-to-node delivery.

datagram

In packet switching, an independent data unit.

datagram socket

A structure designed to be used with a connectionless protocol such as UDP.

decapsulation

Removal of a header and trailer from a message.

decryption

Descrambling of the ciphertext to create the original plaintext.

default mask

The mask for a network that is not subnetted.

default routing

A routing method in which a router is assigned to receive all packets with no
match in the routing table.

Defense Advanced Research Projects Agency (DARPA)

A government organization, which,
under the name of ARPA, funded ARPANET and the Internet.

Defense Data Network (DDN)

The military portion of the Internet.

denial of service

The only attack on the availability goal that may slow down or interrupt the
system.

destination address

The address of the receiver of the data unit.

dialog control

The technique used by the session layer to control the dialog.

Diffie-Hellman protocol

A protocol for creating a session key without using a KDC.

digest

A condensed version of a document.

digital signature A security mechanism in which the sender can electronically sign the mes-
sage and the receiver can verify the message to prove that the message is indeed signed by the
sender.

Digital Signature Standard (DSS) The digital signature standard adopted by NIST under
FIPS 186.

digital subscriber line (DSL) A technology using existing telecommunication networks to
accomplish high-speed delivery of data, voice, video, and multimedia.

Dijkstra’s algorithm In link state routing, an algorithm that finds the shortest path to other
routers.

direct delivery A delivery in which the final destination of the packet is a host connected to the
same physical network as the deliverer.

direct sequence spread spectrum (DSSS) A wireless transmission method in which each bit
to be sent by the sender is replaced by a sequence of bits called a chip code.

Distance Vector Multicast Routing Protocol (DVMRP) A protocol based on distance vector
routing that handles multicast routing in conjunction with IGMP.

distance vector routing A routing method in which each router sends its neighbors a list of
networks it can reach and the distance to that network.

distributed database Information stored in many locations.

DNS server A computer that holds information about the name space.

domain A subtree of the domain name space.

domain name system (DNS) A TCP/IP application service that converts user-friendly names
to IP addresses.

dotted-decimal notation A notation devised to make the IP address easier to read; each byte is
converted to its decimal equivalent and then set off from its neighbor by a decimal.

dual stack Two protocols (IPv4 and IPv6) on the same station.

dynamic document A Web document created by running a CGI program at the server site.

for76042_Glossary.fm Page 939 Thursday, February 19, 2009 4:17 PM

940 GLOSSARY

dynamic domain name system (DDNS) A method to update the DNS master file dynamically.

dynamic host configuration protocol (DHCP) An extension to BOOTP that dynamically
assigns configuration information.

dynamic mapping A technique in which a protocol is used for address resolution.

dynamic port An ephemeral port; a port that is neither controlled nor registered and can be
used by any process.

dynamic routing Routing in which the routing table entries are updated automatically by the
routing protocol.

electronic mail (e-mail) A method of sending messages electronically based on mailbox
addresses rather than a direct host-to-host exchange.

Electronic Industries Alliance (EIA) An organization that promotes electronics manufactur-
ing concerns. It has developed interface standards such as EIA-232, EIA-449, and EIA-530.

Encapsulating Security Payload (ESP) A protocol defined by IPSec that provides privacy as
well as a combination of integrity and message authentication.

encapsulation The technique in which a data unit from one protocol is placed within the data
field portion of the data unit of another protocol.

encipherment See encryption.

encryption Converting a message into an unintelligible form that is unreadable unless
decrypted.

entity authentication A technique designed to let one party prove the identity of another party.

ephemeral port A port number used by the client.

error control The detection and handling of errors in data transmission.

Ethernet A local area network using the CSMA/CD access method.

extended binary coded decimal interchange code (EBCDIC) An 8-bit character code devel-
oped and used by IBM.

Extended Service Set (ESS) A wireless LAN service composed of two or more BSSs with
APs as defined by the IEEE 802.11 standard.

extranet A private network that uses the TCP/IP protocol suite that allows authorized access
from outside users.

Federal Communications Commission (FCC) A government agency that regulates radio,
television, and telecommunications.

Feistel cipher A class of product ciphers consisting of both invertible and noninvertible com-
ponents. A Feistel cipher combines all noninvertible elements in a unit (called a mixer in this
text) and uses the same unit in the encryption and decryption algorithms.

File Transfer Protocol (FTP) In TCP/IP, an application layer protocol that transfers files
between two sites.

finite state machine A machine that goes through a limited number of states.

firewall A device (usually a router) installed between the internal network of an organization
and the rest of the Internet to provide security.

flat namespace A method to map a name to an address in which there is no hierarchical
structure.

flooding Saturation of a network with a message.

flow control A technique to control the rate of flow of frames (packets or messages).

fork A UNIX function that creates a child process that has exactly the same image as its
parent.

for76042_Glossary.fm Page 940 Thursday, February 19, 2009 4:17 PM

GLOSSARY 941

forum An organization that tests, evaluates, and standardizes a specific new technology.

four-way handshake A sequence of events for connection termination consisting of four steps
between the client and server.

fragmentation The division of a packet into smaller units to accommodate a protocol’s MTU.

frame A group of bits representing a block of data.

frame relay A packet-switching specification defined for the first two layers of the OSI model.
There is no network layer. Error checking is done on end-to-end basis instead of on each link.

Frame Relay Forum A group formed by Digital Equipment Corporation, Northern Telecom,
Cisco, and StrataCom to promote the acceptance and implementation of frame relay.

frequency hopping spread spectrum (FHSS) A wireless transmission method in which the
sender transmits at one carrier frequency for a short period of time, then hops to another carrier
frequency for the same amount of time, hops again for the same amount of time, and so on.

full-duplex Ethernet An Ethernet implementation in which every station is connected by two
separate paths to the central hub.

fully qualified domain name (FQDN) A domain name consisting of labels beginning with the
host and going back through each level to the root node.

gateway A device used to connect two separate networks that use different communication
protocols.

generic domain A subdomain in the domain name system that uses generic suffixes.

geographical routing A routing technique in which the entire address space is divided into
blocks based on physical land masses.

Gigabit Ethernet Ethernet with a 1,000-Mbps data rate.

global Internet The Internet.

grafting Resumption of multicast messages.

graph A data structure with no hierarchy.

group-shared tree A multicast routing feature in which each group in the system shares the
same tree.

H.323 An ITU standard for a protocol suite to be used with IP telephony.

half-duplex mode A transmission mode in which communication can be two-way but not at
the same time.

handshaking A process to establish or terminate a connection.

hardware address An address used by a data link layer to identify a device.

hash function An algorithm that creates a fixed-size digest from a variable-length message.

hashed message authentication Authentication using a message digest.

hashed message authentication code (HMAC) A standard issued by NIST (FIPS 198) for a
nested MAC.

hashing A cryptographic technique in which a fixed-length message digest is created from a
variable-length message.

header Control information added to the beginning of a data packet.

hierarchical name space A name space made of several parts, with each succeeding part
becoming more and more specific.

hierarchical routing A routing technique in which the entire address space is divided into lev-
els based on specific criteria.

high bit rate digital subscriber line (HDSL) A service similar to the T1 line that can operate
at lengths up to 3.6 km.

for76042_Glossary.fm Page 941 Thursday, February 19, 2009 4:17 PM

942 GLOSSARY

home address A mobile host’s permanent address on its home network.

home agent Usually a router attached to the home network of the mobile host that receives and
sends packets (for the mobile host) to the foreign agent.

home network A network that is the permanent home of the mobile host.

homepage A unit of hypertext or hypermedia available on the Web that is the main page for an
organization or an individual.

hop count The number of nodes along a route. It is a measurement of distance in routing
algorithms.

hop limit The number of nodes a datagram can travel before being discarded.

host A station or node on a network.

host file A file, used when the Internet was small, that mapped host names to host addresses.

hostid The part of an IP address that identifies a host.

host-specific routing A routing method in which the full IP address of a host is given in the
routing table.

host-to-host protocol A protocol that can deliver a packet from one physical device to another.

hybrid network A network with a private internet and access to the global Internet.

hypermedia Information containing text, pictures, graphics, and sound that is linked to other
documents through pointers.

hypertext Information containing text that is linked to other documents through pointers.

hypertext markup language (HTML) The computer language for specifying the contents
and format of a Web document. It allows additional text to include codes that define fonts, lay-
outs, embedded graphics, and hypertext links.

hypertext transfer protocol (HTTP) An application service for retrieving a Web document.

initial vector (IV) A block used to initialize the first iteration in a calculation.
Institute of Electrical and Electronics Engineers (IEEE) A group consisting of professional
engineers that has specialized societies whose committees prepare standards in members’ areas
of specialty.

integrity A security service designed to protect data from modification, insertion, deletion, and
replaying.

interactive traffic Traffic in which interaction with the user is necessary.

interface The boundary between two pieces of equipment. It also refers to mechanical,
electrical, and functional characteristics of the connection. In network programming, a set of pro-
cedures available to the upper layer to use the services of the lower layer.

International Organization for Standardization (ISO) A worldwide organization that defines
and develops standards on a variety of topics.

International Telecommunications Union–Telecommunication Standardization Sector
(ITU–T) A standards organization formerly known as the CCITT.

internet A collection of networks connected by internetworking devices such as routers or
gateways.

Internet A global internet that uses the TCP/IP protocol suite.

Internet address A 32-bit or 128-bit network-layer address used to uniquely define the con-
nection of a host to an internet using the TCP/IP protocol.

Internet Architecture Board (IAB) The technical adviser to the ISOC; oversees the continuing
development of the TCP/IP protocol suite.

Internet Assigned Numbers Authority (IANA) A group supported by the U.S. government that
was responsible for the management of Internet domain names and addresses until October 1998.

for76042_Glossary.fm Page 942 Thursday, February 19, 2009 4:17 PM

GLOSSARY 943

Internet Control Message Protocol (ICMP) A protocol in the TCP/IP protocol suite that han-
dles error and control messages. Two versions are used today ICMPv4 and ICMPv6.

Internet Corporation for Assigned Names and Numbers (ICANN) A private, nonprofit cor-
poration managed by an international board that assumed IANA operations.

Internet draft A working Internet document (a work in progress) with no official status and a
six-month lifetime.

Internet Engineering Steering Group (IESG) An organization that oversees the activity of
IETF.

Internet Engineering Task Force (IETF) A group working on the design and development of
the TCP/IP protocol suite and the Internet.

Internet Group Management Protocol (IGMP) A protocol in the TCP/IP protocol suite that
handles multicasting.

Internet Key Exchange (IKE) A protocol designed to create security associations in IPSec.

Internet Mail Access Protocol (IMAP) A complex and powerful protocol to pull e-mail mes-
sages from an e-mail server.

Internet Network Information Center (INTERNIC) An agency responsible for collecting
and distributing information about TCP/IP protocols.

Internet Protocol (IP) The network-layer protocol in the TCP/IP protocol suite governing
connectionless transmission across packet-switching networks. Two versions commonly in use:
IPv4 and IPv6.

Internet Protocol, next generation (IPng) Another term for the sixth version of the Internet
Protocol.

Internet Research Task Force (IRTF) A forum of working groups focusing on long-term
research topics related to the Internet.

Internet Security Association and Key Management Protocol (ISAKMP) A protocol designed
by the NSA that implements the exchanges defined in IKE.

Internet service provider (ISP) Usually, a company that provides Internet services.

Internet Society (ISOC) The nonprofit organization established to publicize the Internet.

Internet standard A thoroughly tested specification that is useful to and adhered to by those
who work with the Internet. It is a formalized regulation that must be followed.

internetworking Connecting several networks together using internetworking devices such as
routers and gateways.

intranet A private network that uses the TCP/IP protocol suite.

inverse cipher The decryption algorithm.

IP datagram The Internetworking Protocol data unit.

IP Security (IPSec) A collection of protocols designed by the IETF (Internet Engineering
Task Force) to provide security for a packet carried on the Internet.

Java A programming language used to create active Web documents.

jitter A phenomenon in real-time traffic caused by gaps between consecutive packets at the
receiver.

Karn’s Algorithm An algorithm that does not include the retransmitted segments in calcula-
tion of round-trip time.

key A set of values that the cipher, as an algorithm, operates on.

key ring A set of public or private keys used in PGP.

key-distribution center (KDC) A trusted third party that establishes a shared secret key
between two parties.

for76042_Glossary.fm Page 943 Thursday, February 19, 2009 4:17 PM

944 GLOSSARY

Link Control Protocol (LCP) A PPP protocol responsible for establishing, maintaining, con-
figuring, and terminating links.

link local address An IPv6 address that is used if a LAN is to use the Internet protocols
but is not connected to the Internet for security reasons.

link state database In link state routing, a database common to all routers and made from
LSP information.

little-endian byte order A format in which the least significant byte is stored or transmit-
ted first.

local address The part of an e-mail address that defines the name of a special file, called
the user mailbox, where all of the mail received for a user is stored for retrieval by the user
agent.

local area network (LAN) A network connecting devices inside a single building or
inside buildings close to each other.

local client program A program run locally that requests a service from a remote server
program.

local host The computer that a user is physically using.

local login Using a terminal directly connected to the computer.

local loop The link that connects a subscriber to the telephone central office.

logical address An address defined in the network layer.

logical IP subnet (LIS) A grouping of nodes of an ATM network in which the connection
is logical, not physical.

logical tunnel The encapsulation of a multicast packet inside a unicast packet to enable
multicast routing by non-multicast routers.

loopback address An address used by a host to test its internal software.

magic cookie In DHCP, the number in the format of an IP address with the value of
99.130.83.99; indicates that options are present.

mail access protocol A protocol used by the remote user agent to access the mailbox and
obtain the mail.

mail transfer agent (MTA) An SMTP component that transfers the mail across the Internet.

Management Information Base (MIB) The database used by SNMP that holds the infor-
mation necessary for management of a network.

mapped address An IPv6 address used when a computer that has migrated to IPv6 wants
to send a packet to a computer still using IPv4.

mask For IPv4, a 32-bit binary number that gives the first address in the block (the net-
work address) when ANDed with an address in the block.

masking A process that extracts the address of the physical network from an IP address.

master secret In SSL, a 48-byte secret created from the pre-master secret.

maturity level The phases through which an RFC goes.

maximum transfer unit (MTU) The largest size data unit a specific network can handle.

message authentication Proving the authenticity of a sender in a connectionless communication.

message authentication code (MAC) An MDC that includes a secret between two parties.

message digest The fixed-length string created from applying a hash function to a message.

Message Digest (MD) A set of several hash algorithms designed by Ron Rivest and
referred to as MD2, MD4, and MD5.

metric A cost assigned for passing through a network.

for76042_Glossary.fm Page 944 Thursday, February 19, 2009 4:17 PM

GLOSSARY 945

metropolitan area network (MAN) A network that can span a geographical area the size of
a city.

Military Network (MILNET) A network for military use that was originally part of
ARPANET.

mobile host A host that can move from one network to another.

modern block cipher A symmetric-key cipher in which each n-bit block of plaintext is
encrypted to an n-bit block of ciphertext using the same key.

modern stream cipher A symmetric-key cipher in which encryption and decryption are done
r bits at a time using a stream of keys.

monoalphabetic cipher A substitution cipher in which a symbol in the plaintext is always
changed to the same symbol in the ciphertext, regardless of its position in the text.

monoalphabetic substitution cipher A cipher in which the key is a mapping between each
plaintext character and the corresponding ciphertext character.

multicast address An address used for multicasting.

multicast backbone (MBONE) A set of internet routers supporting multicasting through the
use of tunneling.

Multicast Open Shortest Path First (MOSPF) A multicast protocol that uses multicast link
state routing to create a source-based least-cost tree.

multicast router A router with a list of loyal members related to each router interface that dis-
tributes multicast packets.

multicast routing Moving a multicast packet to its destinations.

multicasting A transmission method that allows copies of a single packet to be sent to a
selected group of receivers.

multihomed device A device connected to more than one network.

multimedia traffic Traffic consisting of data, video, and audio.

multiple unicasting Sending multiple copies of a message, each with a different unicast desti-
nation address, from one source.

multiplexing The process of combining signals from multiple sources for transmission across
a single data link.

multiplicative decrease A congestion avoidance technique in which the threshold is set to half
of the last congestion window size, and the congestion window size starts from one again.

Multipurpose Internet Mail Extension (MIME) A supplement to SMTP that allows non-
ASCII data to be sent through SMTP.

multistation access unit (MAU) In token ring, a device that houses individual automatic
switches.

Nagle’s algorithm An algorithm that attempts to prevent silly window syndrome at the
sender’s site; both the rate of data production and the network speed are taken into account.

National Institute of Standards and Technology (NIST) An agency in the U.S. government
that develops standards and technology.

National Science Foundation (NSF) A government agency responsible for Internet funding.

National Science Foundation Network (NSFNET) A backbone funded by NSF.

National Security Agency (NSA) A U.S. intelligence-gathering security agency.

national service provider (NSP) A backbone network created and maintained by a specialized
company.

netid The part of an IP address that identifies the network.

Network Access Point (NAP) A complex switching station that connects backbone networks.

for76042_Glossary.fm Page 945 Thursday, February 19, 2009 4:17 PM

946 GLOSSARY

network address An address that identifies a network to the rest of the Internet; it is the first
address in a block.

network address translation (NAT) A technology that allows a private network to use a set of
private addresses for internal communication and a set of global Internet addresses for external
communication.

network byte order Same as big-endian byte order.

Network Control Protocol (NCP) In PPP, a set of control protocols that allows the encapsula-
tion of data coming from network layer protocols.

network file system (NFS) A TCP/IP application protocol that allows a user to access and
manipulate remote file systems as if they were local. It uses the services of Remote Procedure
Call Protocol.

Network Information Center (NIC) An agency responsible for collecting and distributing
information about TCP/IP protocols.

network interface card (NIC) An electronic device, internal or external to a station, that con-
tains circuitry to enable the station to be connected to the network.

network layer The third layer in the OSI model (or TCP/IP protocol suite), responsible for the
delivery of a packet to the final destination.

Network Virtual Terminal (NVT) A TCP/IP application protocol that allows remote login.

network-specific routing Routing in which all hosts on a network share one entry in the rout-
ing table.

network-to-network interface (NNI) In ATM, the interface between two networks.

next-hop address The address of the first router to which the packet is delivered.

next-hop routing A routing method in which only the address of the next hop is listed in the
routing table instead of a complete list of the stops the packet must make.

noise Random electrical signals that can be picked up by the transmission medium and result in
degradation or distortion of the data.

noncontiguous mask A mask composed of a series of bits that is not a string of 1s followed by
a string of 0s, but a mixture of 0s and 1s.

non-Feistel cipher A product cipher that uses only invertible components.

nonpersistent connection A connection in which one TCP connection is made for each
request/response.

nonrepudiation A security aspect in which a receiver must be able to prove that a received
message came from a specific sender.

Oakley A key-exchange protocol developed by Hilarie Orman; it is an improved Diffie-Hellman
method.

one’s complement A representation of binary numbers in which the complement of a number
is found by complementing all bits.

one-time pad A cipher invented by Vernam in which the key is a random sequence of symbols
having the same length as the plaintext.

one-time password A password that is used only once.

open shortest path first (OSPF) An interior routing protocol based on link state routing.

open systems interconnection (OSI) A seven-layer model for data communication defined by
ISO.

out-of-band signaling A method of signaling in which control data and user data travel on dif-
ferent channels.

packet Synonym for data unit, mostly used in the network layer.

for76042_Glossary.fm Page 946 Thursday, February 19, 2009 4:17 PM

GLOSSARY 947

Packet Internet Groper (PING) An application program to determine the reachability of a
destination using an ICMP echo request and reply.
packet-filter firewall A firewall that forwards or blocks packets based on the information in
the network layer and transport layer headers.
page A unit of hypertext or hypermedia available on the Web.
partially qualified domain name (PQDN) A domain name that does not include all the levels
between the host and the root node.
passive attack A type of attack in which the attacker’s goal is to obtain information; the attack
does not modify data or harm the system.
passive open The state of a server as it waits for incoming requests from a client.

password-based authentication The simplest and oldest method of entity authentication, in
which a password is used to identify the claimant.
Path MTU Discovery technique An IPv6 method to find the smallest MTU supported by any
network on a path.
path vector routing A routing method on which BGP is based; in this method, the ASs
through which a packet must pass are explicitly listed.
P-box A component in a modern block cipher that transposes bits.
peer-to-peer process A process on a sending and a receiving machine that communicates at a
given layer.
peer-to-peer paradigm A paradigm in which two peer computers can communicate with each
other to exchange services.
persistent connection A connection in which the server leaves the connection open for more
requests after sending a response.
physical address The address of a device used at the data link layer (MAC address).
physical layer The first layer of the OSI model, responsible for the mechanical and electrical
specifications of the medium.
physical topology The manner in which devices are connected in a network.
piggybacking The inclusion of acknowledgment on a data frame.
plaintext The message before encryption or after decryption.
playback buffer A buffer that stores the data until they are ready to be played.
point-to-point link A dedicated transmission link between two devices.
Point-to-Point Protocol (PPP) A protocol for data transfer across a serial line.
poison reverse A variation of split horizons. In this method, information received by the router
is used to update the routing table and then passed out to all interfaces. However, a table entry that
has come through one interface is set to a metric of 16 as it goes out through the same interface.
policy routing A path vector routing feature in which the routing tables are based on rules set
by the network administrator rather than a metric.
polyalphabetic cipher A cipher in which each occurrence of a character may have a different
substitute.
port address In TCP/IP protocol, an integer identifying a process (see port number).
port number An integer that defines a process running on a host.

Post Office Protocol (POP) A popular but simple SMTP mail access protocol.
prefix For a network, another name for the common part of the address range (similar to the
netid).

preimage resistance The desired property of a cryptographic hash function in which, given a
digest, it must be extremely difficult for the adversary to find any other message with the same digest.

for76042_Glossary.fm Page 947 Thursday, February 19, 2009 4:17 PM

948 GLOSSARY

pre-master secret In SSL, a secret exchanged between the client and server before calculation
of the master secret.

presentation layer The sixth layer of the OSI model responsible for translation, encryption,
authentication, and data compression.

Pretty Good Privacy (PGP) A protocol invented by Phil Zimmermann to provide e-mail with
privacy, integrity, and authentication.

privacy A security aspect in which the message makes sense only to the intended receiver.

private key In an asymmetric-key cryptosystem, the key used for decryption. In a digital sig-
nature, the key is used for signing.

private network A network that is isolated from the Internet.

process A running application program.

process-to-process communication Communication between two running application
programs.

promiscuous ARP (proxy ARP) A technique that creates a subnetting effect; one device
answers ARP requests for multiple hosts.

protocol Rules for communication.

Protocol Independent Multicast (PIM) A multicasting protocol family with two members,
PIM-DM and PIM-SM; both protocols are unicast-protocol dependent.

Protocol Independent Multicast, Dense Mode (PIM-DM) A source-based routing protocol
that uses RPF and pruning/grafting strategies to handle multicasting.

Protocol Independent Multicast, Sparse Mode (PIM-SM) A group-shared routing protocol
that is similar to CBT and uses a rendezvous point as the source of the tree.

protocol suite A stack or family of protocols defined for a complex communication system.

proxy firewall A firewall that filters a message based on the information available in the
message itself (at the application layer).

proxy server A computer that keeps copies of responses to recent requests.

pruning Stopping the sending of multicast messages from an interface.

pseudoheader Information from the IP header used only for checksum calculation in UDP and
TCP packets.

public key In an asymmetric-key cryptosystem, the key used for encryption. In digital signa-
ture, the key is used for verification.

public-key encryption A method of encryption based on a nonreversible encryption
algorithm. The method uses two types of keys: The public key is known to the public; the private
key (secret key) is known only to the receiver.

public-key infrastructure (PKI) A model for creating and distributing certificates based on
X.509.

pure ATM LAN A LAN in which an ATM switch is used to connect the stations in a LAN, in
the same way stations are connected to an Ethernet switch.

pushing data A technique in which the application program on the sending site does not wait
for the window to be filled. It creates a segment and sends it immediately.

quality of service (QoS) A combined measure dealing with loss, delay, throughput, and so on.

queue A waiting list.

quoted-printable An encoding scheme used when the data consist mostly of ASCII characters
with a small non-ASCII portion. If a character is ASCII, it is sent as is. If a character is not
ASCII, it is sent as three characters. The first character is the equals sign (=). The next two char-
acters are the hexadecimal representations of the byte.

for76042_Glossary.fm Page 948 Thursday, February 19, 2009 4:17 PM

GLOSSARY 949

rate adaptive asymmetrical digital subscriber line (RADSL) A DSL-based technology that
features different data rates depending on the type of communication.

raw socket A structure designed for protocols that directly use the services of IP and use
neither stream sockets nor datagram sockets.

read-only memory (ROM) Permanent memory, with contents that cannot be changed.

real-time multimedia traffic Traffic consisting of data, audio, and video that is simultaneously
produced and used.

real-time traffic Traffic in one form that is simultaneously produced and used.

Real-time Transport Control Protocol (RTCP) A companion protocol to RTP with messages
that control the flow and quality of data and allow the recipient to send feedback to the source or
sources.

Real-time Transport Protocol (RTP) A protocol for real-time traffic; used in conjunction
with UDP.

regional ISP A small ISP that is connected to one or more NSPs.

registered port A port number, ranging from 1,024 to 49,151, not assigned or controlled by
IANA.

registration A phase of communication between a remote host and a mobile host in which the
mobile host gives information about itself to the foreign agent.

remote host The computer that a user wishes to access while seated physically at another
computer.

remote login (rlogin) The process of logging on to a remote computer from a terminal
connected to a local computer.

rendezvous router A router that is the core or center for each multicast group; it becomes the
root of the tree.

rendezvous-point tree A group-shared tree method in which there is one tree for each group.

repeater A device that extends the distance a signal can travel by regenerating the signal.

repudiation A type of attack on information integrity that can be launched by one of the two
parties in the communication: the sender or the receiver.

Request for Comment (RFC) A formal Internet document concerning an Internet issue.

requirement level One of five RFC levels.

reserved address IP addresses set aside by the Internet authorities for the use of private
networks. Or an IPv6 address with a reserved prefix.

resolver The DNS client that is used by a host that needs to map an address to a name or a
name to an address.

retransmission timer A timer that controls the waiting time for an acknowledgment of a segment.

Reverse Address Resolution Protocol (RARP) A TCP/IP protocol that allows a host to find
its Internet address, given its physical address.

reverse path broadcasting (RPB) A technique in which the router forwards only the packets
that have traveled the shortest path from the source to the router.

reverse path forwarding (RPF) A technique in which the router forwards only the packets
that have traveled the shortest path from the source to the router.

reverse path multicasting (RPM) A technique that adds pruning and grafting to RPB to cre-
ate a multicast shortest-path tree that supports dynamic membership changes.

ring topology A topology in which the devices are connected in a ring. Each device on the ring
receives the data unit from the previous device, regenerates it, and forwards it to the next device.

rlogin A remote login application designed by BSD UNIX.

for76042_Glossary.fm Page 949 Thursday, February 19, 2009 4:17 PM

950 GLOSSARY

round Each iterated section in an iterative block cipher.

round-trip time (RTT) The time required for a datagram to go from a source to a destination
and then back again.

router An internetworking device operating at the first three OSI layers. A router is attached to
two or more networks and forwards packets from one network to another.

routing The process performed by a router; finding the next hop for a datagram.

Routing Information Protocol (RIP) A routing protocol based on the distance vector routing
algorithm.

routing table A table containing information a router needs to route packets. The information
may include the network address, the cost, the address of the next hop, and so on.

RSA cryptosystem The most common public-key algorithm, devised by Rivest, Shamir, and
Adleman.

RSA signature scheme A digital signature scheme that is based on the RSA cryptosystem, but
changes the roles of the private and public keys. The sender uses her own private key to sign the
document, and the receiver uses the sender’s public key to verify it.

salting A method of improving password-based authentication in which a random string,
called the salt, is concatenated to the password.

S-box A component in a block cipher that substitutes the bits in the input with new bits in the
output.

secret-key encryption A security method in which the key for encryption is the same as the
key for decryption; both sender and receiver have the same key.

Secure Hash Algorithm (SHA) A series of hash function standards developed by NIST and
published as FIPS 180. It is mostly based on MD5.

Secure Key Exchange Mechanism (SKEME) A protocol designed by Hugo Krawcyzk for
key exchange that uses public-key encryption for entity authentication.

secure shell (SSH) A client-server program that provides security.

Secure Sockets Layer (SSL) A protocol designed to provide security and compression
services to data generated from the application layer.

Secure/Multipurpose Internet Mail Extension (S/MIME) An enhancement to MIME
designed to provide security for the electronic mail.

security The protection of a network from unauthorized access, viruses, and catastrophe.

Security Association (SA) In IPSec, a logical relationship between two hosts.

Security Association Database (SAD) A two-dimensional table with each row defining a sin-
gle security association (SA).

security attacks Attacks threatening the security goals of a system.

security goals The three goals of information security: confidentiality, integrity, and availability.

Security Policy (SP) In IPSec, a set of predefined security requirements applied to a packet
when it is to be sent or when it has arrived.

Security Policy Database (SPD) A database of security policies (SPs).

security services Five services related to security goals and attacks: data confidentiality, data
integrity, authentication, nonrepudiation, and access control.

segment The packet at the TCP layer.

segmentation The splitting of a message into multiple packets; usually performed at the trans-
port layer.

semantics The meaning of each section of bits.

sequence number The number that denotes the location of a frame or packet in a message.

for76042_Glossary.fm Page 950 Thursday, February 19, 2009 4:17 PM

GLOSSARY 951

session In SSL, an association between a client and a server. After a session is established, the
two parties have common information such as the session identifier, the certificate authenticating
each of them (if necessary), the compression method (if needed), the cipher suite, and a master
secret that is used to create keys for message authentication encryption.

session key A secret one-time key between two parties.

session layer The fifth layer of the OSI model, responsible for the establishment, management,
and termination of logical connections between two end users.

shared secret key The key used in asymmetric-key cryptography.

shift cipher A type of additive cipher in which the key defines shifting of characters toward the
end of the alphabet.

shortest path The optimal path from the source to the destination.

silly window syndrome A situation in which a small window size is advertised by the receiver
and a small segment sent by the sender.

Simple Mail Transfer Protocol (SMTP) The TCP/IP protocol defining electronic mail
service on the Internet.

Simple Network Management Protocol (SNMP) The TCP/IP protocol that specifies the pro-
cess of management in the Internet.

simplex mode A transmission mode in which communication is one way.

site local address An IPv6 address used if a site having several networks uses the Internet pro-
tocols but is not connected to the Internet for security reasons.

slash notation A shorthand method to indicate the number of 1s in the mask.

sliding window protocol A protocol that allows several data units to be in transition before
receiving an acknowledgment.

slow convergence A RIP shortcoming apparent when a change somewhere in an internet prop-
agates very slowly through the rest of the internet.

slow start A congestion-control method in which the congestion window size increases
exponentially at first.

snooping Unauthorized access to confidential information. An attack on the confidentiality
goal in information security.

socket An end point for a process; two sockets are needed for communication.

socket address A structure holding an IP address and a port number.

socket interface An API based on UNIX that defines a set of system calls (procedures) that are
an extension of system calls used in UNIX to access files.

something inherent A characteristic of the claimant, such as conventional signatures, finger-
prints, voice, facial characteristics, retinal pattern, and handwriting, used for entity authentication.

something known A secret known only by the claimant that can be checked by the verifier in
entity authentication.

something possessed Something belonging to the claimant that can prove the claimant’s iden-
tity, such as a passport, a driver’s license, an identification card, a credit card, or a smart card.

sorcerer’s apprentice bug A TFTP problem for a packet that is not lost, but delayed in which
every succeeding block is sent twice and every succeeding acknowledgment is received twice.

source quench A method, used in ICMP for flow control, in which the source is advised to
slow down or stop the sending of datagrams because of congestion.

source-based tree A tree used for multicasting by multicasting protocols in which a single tree
is made for each combination of source and group.

for76042_Glossary.fm Page 951 Thursday, February 19, 2009 4:17 PM

952 GLOSSARY

source-to-destination delivery The transmission of a message from the original sender to the
intended recipient.

spanning tree A tree with the source as the root and group members as leaves; a tree that con-
nects all of the nodes.

split horizon A method to improve RIP stability in which the router selectively chooses the
interface from which updating information is sent.

split operation An operation in a block cipher that splits a block in the middle, creating two
equal-length blocks.

spoofing See masquerading.

spread spectrum A wireless transmission technique that requires a bandwidth several times
the original bandwidth.

standard A basis or model to which everyone has agreed.

star topology A topology in which all stations are attached to a central device (hub).

state In AES, a unit of data in intermediate stages consists of a matrix of 16 bytes.

state transition diagram A diagram to illustrate the states of a finite state machine.

static document On the World Wide Web, a fixed-content document that is created and stored
in a server.

stationary host A host that remains attached to one network.

station-to-station protocol A method of creating a session key based on the Diffie-Hellman
protocol that uses public-key certificates to prevent man-in-the-middle attacks.

steganography A security technique in which a message is concealed by covering it with
something else.

Steiner tree A method to find the multicast tree in which the optimal tree is the one in which
the sum of the costs of the links is minimum.

stop-and-wait A flow-control method in which each data unit must be acknowledged before
the next one can be sent.

stop-and-wait ARQ An error-control protocol using stop-and-wait flow control.

straight P-Boxes A P-box with n inputs and n outputs.

stream cipher A type of cipher in which encryption and decryption are done one symbol (such
as a character or a bit) at a time.

stream socket A structure designed to be used with a connection-oriented protocol such as
TCP.

Structure of Management Information (SMI) In SNMP, a component used in network
management.

stub link A network that is connected to only one router.

subnet address The network address of a subnet.

subnet mask The mask for a subnet.

subnetting Dividing a network into smaller units.

subnetwork A part of a network.

substitution cipher A cipher that replaces one symbol with another.

suffix For a network, the varying part (similar to the hostid) of the address. In DNS, a string
used by an organization to define its host or resources.

supernet A network formed from two or more smaller networks.

supernet mask The mask for a supernet.

for76042_Glossary.fm Page 952 Thursday, February 19, 2009 4:17 PM

GLOSSARY 953

supernetting The combining of several class C blocks to create a larger range of addresses.

switch A device connecting multiple communication lines together.

switched Ethernet An Ethernet in which a switch, replacing the hub, can direct a transmission
to its destination.

switched virtual circuit (SVC) A virtual circuit transmission method in which a virtual circuit
is created and in existence only for the duration of the exchange.

symmetric digital subscriber line (SDSL) A DSL-based technology similar to HDSL, but
using only one single twisted-pair cable.

symmetric-key cryptosystem A cryptosystem in which a single secret key is used for both
encryption and decryption, sometimes called secret-key cryptosystem.

symmetric-key encipherment An encipherment using a symmetric-key cryptosystem.

synchronous digital hierarchy (SDH) The ITU-T equivalent of SONET.

Synchronous Optical Network (SONET) A standard developed by ANSI for fiber-optic tech-
nology that can transmit high-speed data. It can be used to deliver text, audio, and video.

syntax The structure or format of data, meaning the order in which they are presented.

TCP/IP protocol suite A group of hierarchical protocols used in an internet.

Terminal Network (TELNET) A general purpose client-server program for remote login.

three-way handshake A sequence of events for connection establishment or termination con-
sisting of the request, then the acknowledgment of the request, and then confirmation of the
acknowledgment.

ticket An encrypted message intended for entity B, but sent to entity A for delivery.

T-lines A hierarchy of digital lines designed to carry speech and other signals in digital forms.

topology The structure of a network including physical arrangement of devices.

traffic analysis A type of attack on confidentiality in which the attacker obtains some informa-
tion by monitoring online traffic.

trailer Control information appended to a data unit.

transient link A network with several routers attached to it.

Transmission Control Protocol (TCP) A transport protocol in the TCP/IP protocol suite.

Transmission Control Protocol/Internetwork Protocol (TCP/IP) A five-layer protocol suite
that defines the exchange of transmissions across the Internet.

transport layer The fourth layer in the OSI model; responsible for reliable end-to-end delivery
and error recovery.

Transport Layer Security (TLS) A security protocol at the transport level designed to pro-
vide security on the WWW. An IETF version of the SSL protocol.

transport mode Encryption in which a TCP segment or a UDP user datagram is first
encrypted and then encapsulated in an IPv6 packet.

transposition cipher A cipher that transposes symbols in the plaintext to create the ciphertext.

tree A hierarchical data structure in which each node on a tree has one single parent, and zero
or more children.

triple DES (3DES) A cipher that uses three instances of DES ciphers for encryption and three
instances of reverse DES ciphers for decryption.

Trivial File Transfer Protocol (TFTP) An unreliable TCP/IP protocol for file transfer that
does not require complex interaction between client and server.

tunnel mode A mode in IPSec that protects the entire IP packet. It takes an IP packet, including
the header, applies IPSec security methods to the entire packet, and then adds a new IP header.

for76042_Glossary.fm Page 953 Thursday, February 19, 2009 4:17 PM

954 GLOSSARY

tunneling In multicasting, a process in which the multicast packet is encapsulated in a unicast
packet and then sent through the network.

unattended data traffic Traffic in which the user is not waiting (attending) for the data.

unicast address An address defining one single destination.

unicasting The sending of a packet to just one destination.

Uniform Resource Locator (URL) A string of characters (address) that identifies a page on
the World Wide Web.

urgent data In TCP/IP, data that must be delivered to the application program as quickly as
possible.

urgent pointer A pointer to the boundary between urgent data and normal data.

user agent (UA) An SMTP component that prepares the message, creates the envelope, and
puts the message in the envelope.

user datagram The name of the packet in the UDP protocol.

User Datagram Protocol (UDP) A connectionless TCP/IP transport layer protocol.

user interface The interface between the user and the application.

variable-length subnetting The use of different masks to create subnets on a network.

very high bit rate digital subscriber line (VDSL) A DSL-based technology for short distances.

virtual circuit A logical circuit made between the sending and receiving computer.

virtual private network (VPN) A technology that creates a network that is physically public,
but virtually private.

web of trust In PGP, the key rings shared by a group of people.

well-known port A port number that identifies a process on the server.

Whirlpool A cryptosystem based on altered AES.

Whirlpool hash function An iterated cryptographic hash function, based on the Whirlpool
cryptosystem.

wide area network (WAN) A network that uses a technology that can span a large geographical
distance.

word In AES, a group of 32 bits that can be treated as a single entity, a row matrix of 4 bytes,
or a column matrix of 4 bytes.

working group An IETF committee concentrating on a specific Internet topic.

World Wide Web (WWW) A multimedia Internet service that allows users to traverse the
Internet by moving from one document to another via links that connect them together.

X.25 An ITU-T standard that defines the interface between a data terminal device and a packet-
switching network.

X.509 A recommendation devised by ITU and accepted by the Internet that defines certificates
in a structured way.

zone In DNS, what a server is responsible for or has authority over.

for76042_Glossary.fm Page 954 Thursday, February 19, 2009 4:17 PM

955

References

[Bar et al. 05]

Barrett, Daniel, J., Silverman, Richard, E., and Byrnes, Robert, G.

SSH: The Secure Shell,

Sebastopol, CA: O’Reilly, 2005.

[Bis 05]

Bishop, Matt,

Introduction to Computer Security.

Reading, MA:
Addison-Wesley, 2005.

[Cer 89]

Cerf, V.

A History of Arpanet, The Interoperability Report.

[Com 06]

Comer, Douglas E.

Internetworking with TCP/IP,

 vol. 1. Upper Saddle
River, NJ: Prentice Hall, 2006.

[Don & Cal 01]

Danaho, Michael J., and Calvert, Kenneth, L.

TCP/IP Sockets,
version C.

San Francisco, CA: Morgan Kaufmann, 2003.

[Dor & Har 03]

Doraswamy, H., and Harkins, D.

IPSec.

 Upper Saddle River, NJ:
Prentice Hall, 2003.

[Far 04]

Frankkel, S.

Demystifying the IPSec Puzzle

. Norwood, MA:
Artech House, 2001.

[For 03]

Forouzan, B.

Local Area Networks.

 New York: McGraw-Hill, 2003.

[For 07]

Forouzan, Behrouz.

Introduction to Data Communication and
Networking

.

New York: McGraw-Hill, 2007.

[For 08]

Forouzan, Behrouz.

Cryptography and Network Security

.

New York:
McGraw-Hill, 2008.

[Gar & Vid 04]

Garcia, A., and Widjaja, I.

Communication Networks.

 New York:
McGraw-Hill, 2004.

[Gar 01]

Garret, P.

Making, Breaking Codes.

 Upper Saddle River, NJ:
Prentice Hall, 2001.

[Jen et al. 86]

Jennings, D. M., Lancaster, L. M., Fuchs, I. H., Farber, D. H., and
Arison, W. R.

“Computer Networking for Scientists and Engineers,”
Science, vol. 231.

[Kle 04]

Kleinrock, L.

The Birth of the Internet.

[Koz 05]

Kozierock, Charles M.

The TCP/IP Guide.

San Francisco: No
Starch Press, 2005.

[Kur & Ros 08]

Kurose, James F., and Ross, Keith W.

Computer Networking,

4th ed.
Reading, MA: Addison-Wesley, 2008.

[Lei et al. 98]

Leiner, B., Cerf, D., Clark, R., Kahn, L., Kleinrock, D., Lynch, J.,
Postel, L., Roberts, and Woolf, S.,

A Brief History of the Internet.

for76042_Ref.fm Page 955 Friday, February 20, 2009 4:13 PM

956

REFERENCES

[Los 04]

Loshin, Pete.

IPv6: Theory, Protocol, and Practice.

 San Francisco:
Morgan Kaufmann, 2004.

[Mao 04]

Mao, W.

Modern Cryptography.

 Upper Saddle River, NJ: Prentice
Hall, 2004.

[Mau & Sch 01]

Mauro, D., and Schmidt, K.

Essential SNMP.

 Sebastopol, CA:
O’Reilly, 2001.

[Mir 07]

Mir, Nader F.

 Computer and Communication Network

. Upper
Saddle River, NJ: Prentice Hall, 2007.

[Moy 98]

Moy, John.

OSPF

. Reading, MA: Addison-Wesley, 1998.

[Per 00]

Perlman, Radia.

Interconnections,

2nd ed.

Reading, MA: Addison-
Wesley, 2000.

[Pet & Dav 03]

Peterson, Larry L., and Davie, Bruce S.

Computer Networks,

 3rd ed.
San Francisco: Morgan Kaufmann, 2003.

[Res 01]

Rescorla, E.

SSL and TLS

. Reading, MA: Addison-Wesley, 2001.

[Rob & Rob 96]

Robbins, Kay A., and Robbins, Steven.

Practical UNIX Program-
ming,

Upper Saddle River, NJ: Prentice Hall, 1996.

[Sam et al. 99]

Sami, Iren, Amer, Paul D., and Conrad Phillip T. “The Transport
Layer: Tutorial and Survey,”

ACM Computing Surveys,

 vol. 31,
no. 4, Dec. 1999.

[Seg 98]

Segaller, S.

A Brief History of the Internet

.

[Sta 04]

Stallings, William.

Data and Computer Communications,

 5th ed.
Upper Saddle River, NJ: Prentice Hall, 1997.

[Sta 06]

Stallings, William.

Data and Computer Communications,

 5th ed.
Upper Saddle River, NJ: Prentice Hall, 1997.

[Ste & Xie 01]

Stewart, Randall, R. and Xie, Qiaobing.

Stream Control Transmis-
sion Protocol (STCP).

 Reading, MA: Addison-Wesley, 1998.

[Ste 94]

Stevens, W. Richard.

TCP/IP Illustrated,

 vol. 1. Reading, MA:
Addison-Wesley, 1994.

[Ste 95]

Stevens, W. Richard.

TCP/IP Illustrated,

 vol. 2. Reading, MA:
Addison-Wesley, 1995.

[Ste et al. 04]

Stevens, W. Richard, Fenner, Bill, and Rudoff, Andrew, M.

UNIX
Network Programming: The Sockets Networking API

. Reading, MA:
Addison-Wesley, 2004.

[Sti 06]

Stinson, D.

Cryptography: Theory and Practice.

 New York:
Chapman & Hall /CRC, 2006.

[Tan 03]

Tanenbaum, Andrew S.

Computer Networks,

 4th ed. Upper Saddle
River, NJ: Prentice Hall, 2003.

[Tho 00]

Thomas, S.

SSL and TLS Essentials

. New York: John Wiley &
Sons, 2000.

[Wit & Zit 01]

Wittmann, R., and Zitterbart, M.

Multicast Communication.

 San
Francisco: Morgan Kaufmann, 2001.

for76042_Ref.fm Page 956 Friday, February 20, 2009 4:13 PM

957

Index

Numerics

1000Base-CX, 58
1000Base-LX, 58
1000Base-SX, 58
1000Base-T4, 58
100Base-FX, 56
100Base-T4, 56
100Base-TX, 56
10Base2, 55
10Base5, 55
10Base-F, 55
10Base-T, 55
10GBase-E, 59
10GBase-L, 59
10GBase-S, 59
2MSL, 482
56K modem, 70
802.11

addressing mechanism, 64

A

AAL
function, 81

AAL5
cell network, 208

abbreviation (IPv6 addresses), 770
ABORT, 518
abort a connection, 456
ABORT chunk, 525
abortion

SCTP, 525
Abstract Syntax Notation 1.

See

 ASN.1
AC value, 733
accept, 559
access control

data link layer, 25
access method, 52
access point.

See

 AP
accumulative acknowledgment, 465
ACK segment, 443

acknowledgement
delayed, 464
policy, 385
rules, 466
virtual-circuit network, 101

acknowledgment number, 393, 396
acknowledgment policy, 385
active documents, 663
active open, 442, 450
Active Server Pages (ASP), 662
ad hoc architecture, 60
additive increase, 475
address

limited broadcast, 147
address, 34

broadcast, 148
Ethernet, 34
physical, 36
types, 34

address aggregation, 145, 172
address binding in ATM WAN, 209
address conversion functions, 554
address mapping, 221
address mask request and reply, 256
Address Resolution Protocol, 38, 161
Address Resolution Protocol.

See

 ARP
address space, 115, 572
address to name resolution, 593
addresses, 686
addressing

port numbers, 375
addressing, 34

block allocation, 141
Adler, 918
Adler checksum, 918
admission control, 758
Adobe Post Script, 698
ADSL, 71

HDSL, 72
Advanced Research Projects

Agency, 3
agent, 270

function, 719
passive open, 724

agent advertisement, 272
care-of address field, 273

agent discovery
agent solicitation, 273
AH, 861

authentication, 862
integrity, 862
privacy, 862
protocol, 682

Alert Protocol, 874
alias, 686
align, 923
all-zeros address, 147
American Standard Code for

Information Interchange.

See

 ASCII
AMI, 72
analog audio signal, 730
anonymous FTP, 642
ANSI.

 See

 American National
Standards Institute

ANSNET, 5
anycast address, 772
AP, 59
appearance tags, 922
apple, 34
applet, 663
application, 651
application adaptation layer, 81
application adaptation layer.

See

 AAL
application gateway, 886
application layer, 27, 33, 542
application program

server, 543
applications, 836
application-specific address, 34, 40
area, 304
area border router, 304, 315
ARP, 161, 220, 222–223, 806

cache memory, 233
cache-control module, 237
encapsulation, 224
four cases, 225

for76042_Index.fm Page 957 Friday, January 1, 1904 12:06 AM

958

INDEX

ARP—

Cont.

indirect delivery, 162
input module, 236
IP to physical address mapping, 222
operation, 224
output module, 235
packet format, 223
proxy, 226
query packet, 222
queues, 235
response packet, 222

ARP package, 233
components, 233
Input Module, 236
PENDING state, 236–237
RESOLVED state, 236–237

ARP packet
reply, 237
request, 237

ARP Protocol, 222
ARP.

See

 Address Resolution
Protocol

ARPA, 3
ARPA.

See

 Advance Research Project
Agency

ARPANET, 3
original nodes, 3

AS, 284
multihomed, 323
stub, 323
transit, 324
types, 323

ASCII, 892, 894
ASN.1, 712, 853
ASP, 662
association, 519

termination, 524
association abortion, 524
association establishment, 519
asymmetrical cipher

ksey, 832
asymmetrical DSL.

See

 ADSL
asymmetric-key ciphers, 821

encryption/decryption, 833
plaintext, 833

asymmetric-key ciphers
general Idea, 832

asymmetric-key cryptography, 831
asynchronous TDM, 79

ATM, 79
Asynchronous Transfer Mode.

See

 ATM

Asynchronous Transmission Mode.

See

 ATM
ATM, 10, 78–79, 81, 208

AAL Layer, 81
addresses, 209
architecture, 79, 208
ATM Layer, 82
design goals, 78
entering-point router, 208
layers, 81
multiplexing, 79
physical layer, 83
virtual connection, 79

ATM Forum (address), 934
ATM Layer, 81, 208
ATM network, 79
ATM WAN, 207–208

address binding, 209
ATM.

See

 Asynchronous Transfer
Mode

ATMARP, 207, 210, 228
connecting to server, 231
establishing virtual

circuit, 231
hardware type field, 228
inverse operation, 232
inverse reply message, 230
inverse request message, 230
logical IP subnet (LIS), 232
operation, 229
packet format, 228
PVC connection, 229
receiving physical address, 231
server table, 232
SVC connection, 230

attack
masquerading, 818
modification, 818
repudiation, 818
traffic analysis, 818

attacks threatening availability, 819
attacks threatening confidentiality

snooping, 818
attacks threatening integrity, 818
attenuation, 83
attributes, 920, 923
audio

compression, 731
audio and video Compression, 731
audio compression, 731

perceptual encoding (MP3), 731
predictive encoding, 731

authentication, 298
authentication

receiver, 795
RIPv2, 298
security parameter index field, 794

authentication (IPv6), 794
Authentication Header, 861
Authentication Header protocol.

See

 AH
autoconfiguration, 781
autokey cipher, 824
autonegotiation, 56
autonomous system, 304

area, 304
backbone, 304

autonomous system.

See

 AS
availability, 817

B

backbone, 304
backbone ISP, 6
backbone router, 305
bandwidth, 78, 753
bandwidth on demand

bursty data, 78
bandwidth-delay product, 394
Banyan Switch, 180
base 16 system, 897
base 2 system, 897
base 256 system, 898
base header (IPv6), 788
Basic Encoding Rules.

See

 BER
Basic Latin, 892
basic multilingual plane (BMP), 893
basic service set.

See

 BSS
Batcher-Banyan Switch, 81, 181
Bellman-Ford algorithm, 285
BER, 713

IP address example, 715
object identifier example, 715
string example, 714

best-effort delivery, 187
B-frame, 736
BGP, 282, 284, 323

CIDR, 324
external, 324
header, 325
internal, 324
packets, 325
path attributes, 324
path vector routing, 323
session, 324

for76042_Index.fm Page 958 Tuesday, February 24, 2009 7:32 PM

INDEX

959

bidirectional protocols
piggybacking, 409

binary notation, 116
binary system, 897
bind function, 550
bit, 24
bit synchronization, 24
bit-oriented cipher, 826
bitwise AND operation, 119
bitwise NOT operation, 118
bitwise OR operation, 120
block cipher, 825
block coding, 905
block descriptor, 635
block of addresses, 145
blocking state, 394, 399, 407
blocks of classful addresses, 123
Bluetooth, 59, 67, 89

architecture, 67
frame format, 68

body tag, 921
BOOTP.

See

 Bootstrap Protocol
bootstrap process, 569
Bootstrap Protocol, 569
Border Gateway Protocol.

See

 BGP
Bourne Shell, 661
bridge

dynamic, 85
as a filter, 84
filtering, 84
forwarding, 85
learning, 85
transparent, 85

broadcast, 38
broadcast address, 36, 50
broadcast physical address, 36
broadcasting, 338
browser, 658, 660

client protocol, 658
HTML, 920
interpreter, 658
streaming stored audio/video, 736

BSS, 59
BSS-transition mobility, 61
bucket, 175
burst error, 904
bursty, 78
bursty data, 78, 757

Frame Relay, 78
bursty traffic, 756
bus topology, 24
byte, 116

byte ordering functions, 553
byte-oriented, 504

C

C, 661
C Shell, 661
C++, 661
CA, 852
cable modem, 72

bandwidth, 73
devices, 74
sharing, 74

cable modem transmission system.

See

 CMTS
cable modem.

See

 CM
cable TV, 73
cache table in ARP, 233
cache-control module in ARP, 237
caching, 594
Caesar Cipher, 822
calculation of maximum response

time, 811
calculation of query interval, 811
care-of address, 269
carrier, 52
carrier extension, 58
carrier sense multiple access with collision

avoidance.

See

 CSMA/CA
carrier sense multiple access.

See

 CSMA
CATV, 73
CBT, 364

autonomous system, 364
DVMRP and MOSPF, 364
rendezvous router, 364

cell, 79, 82
payload, 82
size, 82

cell network, 79
VC, 80

cell relay, 78
center router, 357
Cerf, Vint, 3
certification authority.

See

 CA
CGI, 661–662

body, 662
form, 661
header, 662
output, 662
query string, 661

CGI.

See

 Common Gateway Interface
challenge-response authentication, 845
ChangeCipherSpec Protocol, 874
character mode, 622
character-oriented cipher, 826
checksum, 205, 915

Adler, 918
algorithm, 916
calculation, 257
Fletcher, 917
ICMP, 256
Internet, 916
performance, 916
SCTP, 508
testing, 257
traditional, 914

choke packet, 110
chunk, 506

flag field, 511
SSN field, 513

CIDR, 138
IPv6, 770, 783
routing table search algorithms, 175

cipher, 820, 826
Caesar, 822
monoalphabetic, 821
polyalphabetic, 821
substitution, 821
transposition, 824

cipher suite, 870
ciphertext, 820
circuit switching, 96
circular buffer, 434
circular shift operation, 827
cknowledgment packet, 101
claimant, 844–845, 854
Clark’s solution, 464
class A address, 123–124
class B address, 124
class C address, 124
class D address, 125
class E address, 125
classes, 121
classful addressing, 121, 135

forwarding, 169
search, 175

classful addressing, 164
blocks, 123
classes, 123
searching, 175

classless interdomain routing (CIDR), 138
clear to send (CTS), 62

for76042_Index.fm Page 959 Tuesday, February 24, 2009 7:32 PM

960

INDEX

client, 375, 543–544, 571
active open, 544

client process, 114, 555, 561
client program, 376, 544

port number, 410
client-server model

application programs, 543
concurrency, 566
e-mail, 683

client-server paradigm, 375, 543, 565
client-server programming in

Java, 926
clock synchronization, 255
close function, 552
CLOSE state, 455
CLOSED state, 452, 455, 457,

526–527, 529
Closed-Loop Congestion Control, 385
CLOSE-WAIT state, 452, 455
CLOSING state, 455
CM, 74
CMS, 881
CMTS, 74
coaxial cable, 73

cable TV, 73
codeword, 906

geometry, 907
coding, 905
ColdFusion, 662
collision, 52

CSSMA/CD, 53
wireless, 63

colocated care-of address, 271
colon hexadecimal notation, 769
combine operation, 827
command processing, 635
Common Gateway Interface (CGI), 661
communication, 633–634
communication using TCP, 558
community antenna TV, 73
compatible address, 776
components, 624
components of a modern block

cipher, 826
compression, 27

DNS, 600
compression function, 837
concurrency, 544

servers, 544
concurrency in clients, 544
concurrent client, 544
concurrent server, 544

conditional request, 670
confidentiality, 817, 836
congestion, 110, 384

additive increase, 475
congestion (in network), 385
congestion avoidance (additive

increase), 477
congestion control, 110, 384, 385, 473,

510, 535
closed-loop, 385
open-loop, 385
SCTP, 510

congestion control in a connectionless
network, 110

congestion control in a connection-
oriented network, 110

congestion detection, 476
connect function, 551
connecting device, 25, 83, 96
connection, 872
connection control, 26
connection establishment, 647, 691

procedure, 442
connection resetting

purpose, 448
connection termination, 524, 647

SMTP, 692
connectionless iterative server, 545
connectionless network

delay, 98
connectionless service, 97, 386
connectionless transport layer, 26
connection-oriented concurrent

server, 545
connection-oriented service, 97,

436, 386
Data Transfer Phase, 102
setup phase, 100
Teardown Phase, 102

connection-oriented transport
layer, 26

Consultative Committee for
International Telegraphy
and Telephony, 9

contact address, 926
content type, 696
content-description header, 700
control chunk, 509
control frame, 64
control variable, 393
control-block table, 426
controller, 658

controlling the server, 618
conversion from any base to

decimal, 899
conversion from decimal to any

base, 900
conversion from non-decimal to

non-decimal, 901
convolution coding, 905
cookie, 444, 521, 672–673
COOKIE ACK chunk, 516
COOKIE ECHO, 515
COOKIE-ECHO chunk, 515
COOKIE-ECHOED state, 527
COOKIE-WAIT state, 527
core router, 357
core-based Tree, 364
core-based tree.

See

 CBT
correctiing error, 904
cost, 283
count to infinity, 291
country domain, 590

mapping, 593
CRC, 909

PPP, 76
CRC-32, 49, 64
crossbar switch, 180
crosspoint, 180
Cryptographic Message Syntax

(CMS), 881
cryptography, 816, 819
CSMA, 52
CSMA/CA, 61
CSMA/CD, 49, 52–54, 59

Ethernet, 49
wireless, 62

CSNET, 4
CTS, 62
cumulative acknowledgment, 465
cyclic code, 909

advantages, 912
cyclic redundancy check.

see

 CRC

D

data
bursty, 78

data chunk, 506, 509, 512
data compression

presentation layer, 27
data connection, 632

for76042_Index.fm Page 960 Tuesday, February 24, 2009 8:01 PM

INDEX

961

data delivery
ordered, 523

Data Encryption Standard (DES), 828
data frame, 64
data link layer, 24, 31

access control, 25
addressing, 24
error control, 25
framing, 24
function, 24
physical Addressing, 24
sublayers, 47

data mark, 620
DATA message, 645
data rate, 24
data transfer, 444, 647

mobile IP, 271, 275
multi-homing, 522
remote host, 275

data transfer phase, 99, 102
database description message, 318
datagram, 32, 97, 187

version field, 644–645
DatagramPacket class, 926
data-origin authentication, 844
dataword, 906
DCA.

See

 Defense Communication
Agency

DCT, 732
AC value, 733

DDNS, 604
DDNS.

See

 Dynamic Domain Name
System

de facto standard, 8, 16
de jure standard, 8, 16
decapsulation

UDP, 421
decimal number, 896–897
decimal system, 896

symbols, 896–897
weight and value, 896–897

decoder, 908, 911
decryption, 819
decryption algorithm, 820
default method, 164
default mode, 621
Defense Communication Agency, 4
definition, 7
delay, 98, 753
delay in connection-oriented

network, 103
delayed segment, 471

delivery, 160
direct, 161

delivery of IP packets, 161
demultiplexing, 379
denial of service, 819
denial of service attack, 444
denying a connection, 455
Department of Defense.

See

 DOD
DES, 828

cipher key, 829
function, 828
key generation, 829
round key, 829
rounds, 828
S-box, 829
straight permutation, 829
XOR, 829

designated parent, 362
destination option (IPv6), 793
destination unreachable, 247

code field, 248
destination unreachable

message, 247, 802
detecting error, 904
DHCP, 269, 570–573, 575–578

BOOTP, 576
bound state, 578
database, 576
DDNS, 605
error control, 573
exchanging messages, 579
options, 575
rebinding state, 578
renewing state, 578
requesting state, 578
selecting state, 577
TFTP, 651
transition states, 576

DHCP.

See

 Dynamic Host
Configuration Protocol

DHCPACK message, 578
DHCPDISCOVER, 577
DHCPDISCOVER message, 577
DHCPOFFER message, 577
DHCPREQUEST message, 578
dialog control, 26
Differentiated Services, 762
Diffie-Hellman, 850
Diffie-Hellman key agreement, 850
Diffie-Hellman protocol, 850
Diffserv, 762
DIFS, 62

digest, 837
digital signature, 839

message Authentication, 842
message Integrity, 842
nonrepudiation, 842
schemes, 843
services, 842
signing algorithm, 840
signing the digest, 841
verifying algorithm, 840

digital signature scheme
RSA, 843

Digital Signature Schemes, 843
Digital Signature Standard

(DSS), 844
digital subscriber line access

multiplexer.

See

 DSLAM
digital subscriber line.

See

 DSL
digitizing an audio signa, 730
digitizing audio, 730
digitizing audio and video, 730
digitizing video, 730
Dijkstra algorithm, 299, 301

steps, 301
Dijkstra’s algorithm

multicast link state routing, 359
direct broadcast address, 149
direct delivery, 161
directory services, 27
Discrete Cosine Transform.

See

 DCT
diskless workstation, 569, 643
dissemination of news, 338
distance learning, 338
Distance Vector Multicast Routing

Protocol.

See

 DVMRP
Distance Vector Routing

algorithm, 287
count to infinity, 291
defining infinity, 292
instability, 291
poison reverse, 292
RIP, 293
three-node Instability, 292

distributed databases, 338
distributed interframe space (DIFS), 62
distribution system, 60
divisor

CRC, 911
DM.

See

 data mark
DMT, 72

division of bandwidth, 71
VDSL, 72

for76042_Index.fm Page 961 Tuesday, February 24, 2009 7:32 PM

962

INDEX

DNS, 582, 589–596, 598, 604–605
compression, 600
encapsulation, 604
generic domain, 589
Internet, 589
inverse domain, 591
inverted-tree structure, 585
labels, 585
message, 595
offset pointer, 600
question record, 598
record types, 598
recursive resolution, 593
resolver, 593
resource record, 599
root server, 589
server, 587
UDP, 604

DNS message
additional information section, 597
answer section, 597
authoritative section, 597
header, 596
question section, 597

DNS response
answer records field, 597
question records field, 597

DNS Security, 605
DNS.

See

 Domain Name System
DNSSEC.

see

 DNS Security
DO command, 616
do not fragment bit, 194
document, 921
document Tag, 921
DOD, 3
dog-leg routing, 277
domain, 587
domain name, 586, 686

full, 585
Domain Name System, 583
DONT command, 616–617
dotted-decimal notation,

769, 898
double crossing, 277
downloading, 70
dropper, 764
DS, 762

field, 762
per-hop behavior (PHB), 763

DSL, 71
limitation, 72

DSL WAN, 103

DSLAM, 72
DSS, 844

Digital Signature Standard, 844
duplicate ACKs, 466
DVMRP, 364

MBONE, 368
dynamic configuration protocol, 570
dynamic database, 576
dynamic document, 660

script, 662
Dynamic Domain Name System, 605
Dynamic Host Configuration Protocol,

568, 570
dynamic mapping

protocols, 222
dynamic port, 377
dynamic routing, 283

E

early release, 578
E-BGP.

See

 external BGP
echo request and reply messages, 254

reachability of host, 254
echo server program, 927
echo-reply message, 254, 805
echo-request message, 254, 804
ECN, 535
e-commerce, 673
Ehternet

maximum length, 49
EIA, 9
EIA.

See

 Electronic Industries
Association

electronic mail, 680
elm, 685
email, 681, 686

certificates, 876
cryptographic algorithms, 875
cryptographic secrets, 875

e-mail address, 686
e-mail security, 701, 875
embedded IPv4 addresses, 776
emulation of multicasting with

unicasting, 337
Encapsulating Security Payload

(ESP), 862
Encapsulation, 23, 604
encoder, 908

CRC, 910
encoding, 24

Encrypted Security Payload (IPv6), 795
encrypted security payload.

See

 ESP
encryption, 27, 819
encryption algorithm, 820
end-of-option option, 482
entering-point router, 209
entity, 844, 854
entity authentication, 844

challenge-Response, 845
something inherent, 845
something known, 845
something possessed, 845
verification categories, 845

envelope, 685
ephemeral port number, 376, 410, 422
error

types, 904
Error control, 26, 108, 382, 648

BOOTP, 573
SCTP, 531
transport layer, 25
X.25, 78

error correction, 904
error correction by retransmission, 905
error detection, 904
error detection codes, 904
ERROR message, 646
error message

ICMP package, 263
error reporting, 812
error-detection codes, 914
error-reporting message (ICMP), 246
escape character, 620
ESP, 795, 861–862

padding field, 863
ESS, 59

communication, 60
stations, 60

ESS-transition mobility, 61
ESS-transition station, 60
ESTABLISHED, 454, 526, 529
ESTABLISHED state, 450, 452
Ethernet, 34

acknowledgment, 249
address transmission, 50
addressing, 49
broadcast address, 50
fields, 48
frame format, 48
frame length, 49
MAC frame, 48
maximum frame length, 49

for76042_Index.fm Page 962 Tuesday, February 24, 2009 7:32 PM

INDEX

963

minimum data length, 49
minimum frame size, 53
multicast address, 50
multicasting, 342
SA, 48
unicast address, 50

Ethernet evolution, 51
Eudora, 685
EUI-64, 780
exchanger, 686
exiting-point router, 209
exiting-point router (in ATM), 208
exiting-point routers, 208
expansion permutation, 829
Explicit Congestion Notification, 535
exponential backoff, 481
exponential increase, 474
exposed station, 66
exposed station problem, 66
Extended ASCII, 892
Extended HTML, 924
Extended Hypertext Markup Language

(XHTML), 660
extended service set.

See

 ESS
Extensible Markup Language

(XML), 660
Extensible Markup Language.

See

 XML
Extensible Style Language.

See

 XSL
extension header, 790

destination option, 795
ESP, 795

extension headers (IPv6), 790
exterior routing protocol, 283
External BGP, 324
external link LSA, 316

F

Fast Ethernet, 51, 55
autonegotiation, 56
backward compatibility, 56
Implementation, 56
MAC sublayer, 56

fast retransmission, 467
FCC (address), 934
FCC.

See

 Federal Communication
Commission

FDDI, 55
Federal Communications Commission, 10
fiber, 75

Fiber Channel, 55
fiber-optic, 55
fiber-optic cable, 75
FIFO queueing, 753
file transfer protocol, 631
file transfer, access, and

management, 27
filter

ADSL, 72
FIN segment, 446–447
fingerprint, 836
finite, 544
finite state machine, 449

SCTP, 525
finite state machine (FSM), 387
FIN-WAIT-1 state, 450, 454
FIN-WAIT-2 state, 450, 454
firewall

packet-Filter, 885
proxy, 886

first-in, first-out (FIFO) queuing.

See

 FIFO Queuing
flat, 584
Fletcher, 917
Fletcher checksum, 310, 917
flickering, 730
flooding, 300, 360

RPF, 360
flow class, 753
flow classes, 753
Flow Control, 25, 109, 379, 509, 526,

529, 648
definition, 459
SCTP, 509
transport layer, 25

flow label, 99
rules for use, 790

flow label (IPv6), 789
flow specification, 758
foreign agent, 270
foreign network, 270
fork, 559
fork function, 551, 928
form, 10, 923
forward error correction, 904
forwarding

based on destination
address, 162

based on label, 176
classful addressing, 164
classless addrressing, 169
host-specific method, 163

network-specific method, 163
next-hop method, 163
subnet, 167
techniques, 162
using address aggregation, 172
using longest mask matching, 173
without subnetting, 165

four-way handshake, 446, 452, 519
FQDN.

See

 fully qualified domain
name

fractional T services, 75
fragmentation, 192–193, 523

header fields, 193
IPv6, 794
offset, 195
reassembly, 193
wireless, 63

fragmentation (IPv6), 793
frame, 24, 31
frame length

Ethernet, 49
Frame Relay, 10, 78

congestion control, 76
need for, 78
issues, 10

Frame Relay Forum, 10
frequency masking, 731
From DS, 64
FSM, 387
FTAM.

See

 file transfer, Access, and
management

FTP, 631–637, 639–640, 642–643,
 659, 664

binary file, 634–635
command, 635
communication, 633
control connection, 631–632
data connection, 631–632
data structure, 634
file retrieval, 639
file retrieval example, 639
file storage, 639
file transfer, 639
file type, 634
minimize delay TOS, 632
response, 635
second digit of response, 638
transmission mode, 635

FTP.

See

 File Transfer Protocol
full domain name, 585
full-duplex, 24
full-duplex mode, 24

for76042_Index.fm Page 963 Tuesday, February 24, 2009 7:32 PM

964

INDEX

full-duplex service, 506
Fully Qualified Domain Name, 586

G

G.71, 751
G.723.1, 751
G.723.3, 731
G.729, 731
GA.

See

 go ahead character
gateway, 3
generator, 906, 908

CRC, 909
generic domain labels, 591
generic domains, 589
geographical routing, 175
GET message, 738
getByName method, 927
GIF, 698
GIF.

See

 Graphic Interchange Format
Gigabit Ethernet, 51, 56

carrier extension, 58
frame bursting, 58
full-duplex mode, 57
half-duplex mode, 57
implementation, 58
MAC sublayer, 57
medium access, 57
traditional approach, 58

global Internet, 95
global unicast block, 777
go ahead character, 623
go-back_N

receiver sliding window, 398
receivewindow size, 401
send window size, 401
sequence number, 383

go-back-N protocol, 402
go-back-N Protocol (GBN), 396
go-back-N versus stop-and-wait, 402
go-back-N window, 385
Gopher, 659
graceful termination, 524
grafting, 363–364
Graphics Interchange Format, 698
group address, 336
group list, 686
group management, 344
group membership messages, 809
group-shared tree, 357
growth, 7
GSM, 731

H

H.225, 751
H.245, 751
H.248, 503
H.323, 503, 748, 750

gateway, 751
operation, 751

H3.23
gatekeeper, 751

half duplex, 24
half-close, 447
half-close option, 446
Hamming, 909
Hamming code, 909
Hamming Distance, 906
Handshake Protocol, 873
handshaking

wireless, 63
hash function, 837

simple, 856
hash functions, 837
hashed MAC, 838
HDSL, 72
head end, 73
head tags, 921
header, 22, 662
header files, 554
header translation (IPv6

transition), 797
headers, 695
heading tags, 922
HEARTBEAT, 517
HEARTBEAT ACK, 517
HEARTBEAT ACK chunk, 517
Hello Message, 317
hello packet

network mask field, 327–328
hexadecimal colon notation, 769
hexadecimal notation, 117
hexadecimal system, 897
HFC, 73

bandwidth, 73
data rate, 73
downstream data, 73
sharing, 74
transmission medium, 73
upstream data, 74
video band, 73

hidden station problem, 61
hierarchical name space, 584
hierarchical routing, 174

high bit rate digital subscriber line.

See

 HDSL
history, 3
HMAC, 838
home address, 269
home agent, 270, 273, 275
home network, 270
hop count

RIP, 293
hop-by-hop option, 790
host configuration, 568
host file, 583
hostid, 123
host-specific method, 163
host-to-host communication, 375
host-to-host delivery, 94
Hotmail, 700
HTML, 659–660, 920–922, 925

form, 923
Input Tags, 923

HTML document, 925
HTML.

See

 Hypertext Markup
Language

htonl, 553
htons, 553
HTTP, 656, 659, 664, 666, 670, 672,

675, 700, 736–738
client, 664
data sending Example, 669
information retrieval Example, 669
MIME, 664
proxy server, 675

HTTP.

See

 Hypertext Transfer Protocol
hub, 84
hybrid-fiber-coaxial network.

See

 HFC
hypermedia, 658
hypertext, 658
Hypertext Markup Language

(HTML), 660
Hypertext Preprocessor (PHP), 662
Hypertext Transfer Protocol, 664

I

IAB.

See

 Internet Architecture Board
IANA, 14

range, 377
I-BGP.

See

 internal BGP
ICANN, 145, 604
ICANN (address), 934
ICANN.

See

 Internet Corporation for
Assigned Names and Numbers

for76042_Index.fm Page 964 Tuesday, February 24, 2009 7:32 PM

INDEX

965

ICMP, 93, 194, 244–245
address mask request and reply, 256
checksum, 256
deprecated messages, 256
destination unreachable message, 247
diagnostics, 253
echo reply message, 254
echo request, 255
echo request messages, 254
error reporting messages, 246
error-reporting message, 265
information request and replay, 256
message format, 246
messages, 246
nongeneration of message, 247
parameter problem error, 803
parameter problem message, 252
query message, 265
query messages, 253
redirect message, 252
router solicitation and

advertisment, 256
source quench message, 249
time exceeded error, 803
time exceeded message, 251
time reply message, 254
timestamp request message, 254

ICMP package, 262
input module, 263
modules, 262
output module, 263

ICMPv6, 800–801
destination unreachable

message, 802
echo reply message, 805
echo request message, 804
error reporting, 802
group membership messages, 809
Informational Messages, 804
inverse-neighbor-advertisement

message, 808
inverse-neighbor-solicitation

message, 808
membership-query message, 809
membership-report message, 810
neighbor advertisement message, 807
neighbor solicitation and

advertisement, 806
neighbor-discovery messages, 805
neighbor-solicitation message, 806
packet too big message, 803
parameter problem message, 804

redirection message, 808
router solicitation and

advertisement, 806
router solicitation message, 805
Router-Advertisement

Message, 806
time exceeded message, 803

IEEE
Project 802, 47

IEEE 802.11, 59
IEEE 802.15, 67
IEEE 802.3u, 55
IEEE Standard Project 802, 47
IEEE(address), 934
IEEE.

See

 Institute of Electrical and
Electronics Engineers

IESG.

See

 Internet Engineering Steering
Group

IETF, 748
IETF.

See

 Internet Engineering Task
Force

ietf.org, 15
I-frame, 736
IGMP, 343–344

address mapping, 342
encapsulation, 355
in network layer, 344
membership query message, 344
membership report, 809
membership report message

format, 346
message format, 346, 809–810
messages, 344
multicast routing, 359
physical multicast addressing, 342
timers, 354
variables, 354

IGMPv2, 809
IGMPv3, 809
IKE, 868
image tag, 923
IMAP, 693, 695
IMAP4, 695
IMP.

See

 interface message
processor

implex, 24
in_addr, 549
Inbound SPD, 867
incarnation, 452, 520
IND, 805
indirect delivery, 161
inet_aton, 554

inet_ntoa, 554
InetAddress class, 927
infinite program, 544
infinity

distance vector routing, 292
Information Dissemination, 338
information request and replay, 256
information technology, 9
infrastructure network, 60
INIT ACK chunk, 513, 519
INIT chunk, 513

rwnd, 514
INIT state, 577
initial sequence number

 (ISN), 440
initiation tag, 528
input, 661
input port, 178
input tags, 923
instance suffix, 717
Institute of Electrical & Electronics

Engineers.

See

 IEEE
integrated services, 758

problem, 762
Integrated Services.

See

 IntServ
integrity, 817, 836

AH protocol, 862
checking, 837

interactive audio/video, 729
interactive multimedia traffic, 744
inter-AS routing, 320
interconnectivity, 16
inter-domain routing, 283, 320
interface, 22, 546

OSI model, 22
interface message processor, 3
interior routing protocol, 283
internal BGP, 324
International Organization for

Standardization.

See

 ISO
International Standards Organization, 8
International Telecommunications

Union, 9
International Telecommunications

Union-Telecommunications
Standards Sector, 9

Internet, 2–3, 5, 7, 15, 95, 916
ATM WAN, 208
birth of, 3
draft, 10
standard, 16
Timeline, 6

for76042_Index.fm Page 965 Tuesday, February 24, 2009 7:32 PM

966

INDEX

internet
concept, 221
definition, 15
example, 129
IP address, 221
physical address, 221

Internet address, 115
internet administration, 13
Internet Architecture Board, 13
Internet Assigned Numbers

Authority, 14
Internet Checksum, 916
Internet Control Message Protocol

version 6.

See

 ICPMv6
Internet Corporation for Assigned

Names and Numbers, 14
Internet Engineering Steering Group, 13
Internet Engineering Task Force, 13
Internet Group Management Protocol.

See

 IGMP
Internet Key Exchange (IKE), 868
Internet Mail Access Protocol, 694–695
Internet phone, 740
Internet Protocol, 4, 32, 187
Internet Protocol Version 4, 186
Internet Protocol version 6, 787
Internet Protocol.

See

 IP
Internet radio, 729
Internet Research Steering Group, 14
Internet Research Task Force, 13–14
Internet Security, 858
Internet Security Association and

Key Management Protocol
(ISAKMP), 868

Internet Service Provider, 6
Internet Society, 13
Internet Standard, 10, 11
Internet TV, 729
internetwork, 25, 95
internetwork layer.

See

 network layer
interpret as control.

See

 IAC
interpreter, 659
intracoded frame, 736
intra-domain routing, 283
intradomain routing, 284
IntServ, 758–759
inverse pointer, 592
inverse query, 592
Inverse-Neighbor-Advertisement

Message, 808
Inverse-Neighbor-Discovery (IND)

protocol, 805

Inverse-Neighbor-Solicitation
Message, 808

IP.

See

 Internet Protocol
IP, 93, 186–187

analogy, 187
best-effort delivery, 187
checksum, 205
connectionless protocol, 643
end-of-option option, 198
forwarding module, 214
fragmentation module, 214
header-adding module, 212
incomplete delivery, 375
lack of error handling, 245
lack of management

communication, 245
loose-source-router option, 201
MTU Table, 214
no-operation option, 198
option type, 197
option value, 198
options format, 197
options length, 198
package, 211
processing module, 213
queues, 213
reassembly module, 215
reassembly table, 215
record-route option, 199
routing table, 214
security, 210
strict-source option, 200
timestamp option, 201
unreliable, 187

IP address, 94, 114, 115
host, 377
mobile host, 269
stationary host, 269

IP address in ATM network, 209
IP addressing, 94, 114
IP datagram

options, 197
IP design

MTU Table, 214
reassembly table, 215

IP over ATM, 207
IP packet, 77, 160
IP security, 859

IP spoofing, 210
IPSec, 211
packet modification, 210
packet sniffing, 210

IP spoofing, 210
IP telephony, 503
IP. Internet Protocol
IPng, 188
IPSec

access control, 864
confidentiality, 864
Encapsulating Security Payload, 862
entity authentication, 864
inbound SPD, 867
Internet Key Exchange (IKE), 868
ISAKMP, 868
message integrity, 864
modes, 859
Okley protocol, 868
outbound SPD, 866
protocols, 859
replay attack protection, 864
security association (SA), 865
security Association Database

(SAD), 865
Security Policy (SP), 866
Security Policy Database (SPD), 866
services provided, 864
SKEME, 868
transport mode, 859
tunnel mode, 860

IPSec), 859
IPv4, 186

comparison to IPv6, 795
IPv4 address

IPv6, 776
IPv4 address notation, 115
IPv4 addresses

range, 117
IPv4 addressing, 898
IPV6

colon hexadecimal notation, 769
IPv6, 787

address notation, 783
address Space, 772
address space allocation, 773
addressing

multicast, 772
authentication, 794
autoconfiguration, 781
base header, 788
broadcasting, 773
CIDR, 783
comparison to IPv4, 795
compatible addresses, 776
destination option, 793

for76042_Index.fm Page 966 Tuesday, February 24, 2009 7:32 PM

INDEX

967

dual stack, 796
Encrypted Security Payload, 795
encryption, 795
extension header, 790
flow label, 789
fragmentaion, 793
global unicast addresses, 778
header translation, 797
hop-by-hop option, 790
jumbo payload, 792
local address, 777–778
multicasting, 773
packet format, 788
renumbering, 782
source routing, 793
transition, 796
tunneling, 797

IPv6 address, 769
IPv4, 776
IPv4 mapped, 776
multicast, 778
provider-based, 778
reserved, 775
shorthand notation, 783
unspecified, 775

IPv6 addressing, 768
abbreviation, 770
anycast, 772
CIDR Notation, 770
colon hexadecimal notation, 769
global routing prefix, 779
global unicast block, 777
interface identifier, 779
link local block, 778
loopback address, 775
mapping ethernet MAC

address, 780
mapping EUI-64, 780
mixed representation, 770
multicast block, 778
subnet identifier, 779
unicast, 772
unique local unicast block, 777
zero compression, 770

IPv6 addressing embedded
addresses, 776

IPv6 packet
base header, 788
base header fields, 788

IPv6 Protocol, 786
IPv6 traffic

flow label, 789

IPv6addressing
mapped address, 776

IRTF, 14
IRTF.

See

 Internet Research
Task Force

ISAKMP, 868
ISDN over IP, 503
ISN, 440
ISO

address, 934
frame relay, 10

ISO.

See

 International Standards
Organization

ISOC, 13
ISOC (address), 934
ISOC.

See

 Internet Society
ISP, 103, 136, 174

local, 174
national, 174
regional, 174

ISP.

See

 Internet Service
Provider

iterated cryptographic hash
function, 837

iterative resolution, 594
iterative server, 544
ITU

address, 934
ITU.

See

 International Telecommunica-
tion Union

ITU-T, 9
IUA, 503

J

jamming signal, 54
Java, 659, 663, 926
Java applet, 663
Java Server Pages (JSP), 662
Java threads, 928
JavaScript, 659, 663
jitter, 741, 753
Joint Photographic Experts

Group, 698
Joint Photographic Experts Group

(JPEG), 764
Joint Photographic Experts Group.

See

 JPEG
JPEG, 698, 731–732

compression, 734
DCT, 732

quantization, 734
redundancy, 732

JPEG.

See

 Joint Photographic Experts
Group

JSP.

See

 Java Server Pages
jumbo payload option, 791

K

Kahn, Bob, 3
Karn’s algorithm, 480
KDC, 848

flat multiple, 848
keepalive message, 326
keepalive timer, 482
key, 820, 832
key distribution center (KDC), 848
Key management, 847

symmetric-key distribution, 847
key material, 871
Korn Shell, 661

L

label, 82
LAN, 47, 77, 89, 95, 103
lastack, 486
LAST-ACK state, 452
Latin-1, 892
layered architecture, 21
layers in the TCP/IP Protocol suite, 29
layer-to-layer Communication, 22
LCP, 76
leaky bucket, 755
lease, 576
lexicographic ordering, 718
limited broadcast address, 147
line configuration, 24
line mode, 622
line tags, 921
linear block code

cyclic code, 909
linear block codes, 908
link, 25, 30, 95

OSPF, 305
link address, 34
Link Control Protocol.

See

 LCP
link local block (IPv6), 778
link state acknowledgment packet, 320
link state packet, 300

for76042_Index.fm Page 967 Tuesday, February 24, 2009 8:02 PM

968

INDEX

link state request packet, 319
link state routing, 299–300

Dijkstra algorithm, 299
hello message, 317
root, 301
routing table, 304

link state update packet, 309
link tag, 923
LIS, 232
LIST command, 639
list tags, 922
listen function, 551
LISTEN state, 452, 455
LLC, 47
load, 384
local area network, 30
local ISP, 6
local login, 611
local part, 686
localTalk, 34
LocalTalk address, 34
locator, 659
logical address, 25, 34, 36, 38, 221
logical addressing, 104
Logical IP Subnet (LIS), 232
logical link control.

See

 LLC
login, 611

local, 611
long fat pipe, 484
longest mask matching, 173
longest match, 175
loop

multicast distance vector routing, 360
RPB, 361

loopback, 213
loopback address, 147, 775
loose source route, 793
lossy compression, 734
lost acknowledgment, 472
LSA

network link, 312
summary link to network, 314

LSP, 300
generation, 301

M

M2UA, 503
M3UA, 503
MAA, 683
MAA.

 See

 message access agent

MAC, 47, 49, 838
MAC Sublayer, 56–57
MAC sublayer

Fast Ethernet, 56
magic cookie, 575

BOOTP, 575
mail, 685
mail access agent, 683, 694
mail server, 682, 686
mailbox, 681
mailing list, 686
management frame, 64
Management Information Base.

See

 MIB
manager

function, 719
mapped address (IPv6), 776
mapping

address to name, 593
dynamic, 222
name to address, 593

mapping addresses to names, 593
mapping names to addresses, 593
markup language, 920
masquerading, 818
master secret, 871
maturity level, 11
Max Resp Code, 354, 811
maximum segment lifetime

(MSL), 452
maximum segment size option, 484
Maximum Transfer Unit, 192
MBONE, 367
MD2, 837
MD4, 837
MD5, 837
media access control.

See

 MAC
media gateway control, 503
media player, 736
medium access

Gigabit Ethernet, 57
membership report, 809
membership-query message, 809
membership-report message, 810
memcmp, 553
memcpy, 553
memory management functions, 553
memset, 553
mesh topology, 24
message, 685
message access agent, 693
message authentication, 842, 844

Message Authentication Code
(MAC), 838

message digest, 856
message integrity, 836, 842
message transfer agent, 682, 687
message transfer agents.

See

 MTA
message-oriented protocol, 503
messages, 595
meta file, 737
metric, 283, 305
MIB, 708–709, 715, 719

accessing simple variable, 716
accessing tables, 717
accessing variable, 716
lexicographic ordering, 718
role, 709
table identification, 717

microswitch, 180
MILNET, 4
MIME, 695–696, 700, 881

application data type, 698
audio data type, 698
content description, 700
content-Id header, 700
content-transfer-encoding, 698
content-type, 696
NVT ASCII, 695

MIME.

See

 Multipurpose Internet Mail
Extension

minimum hamming distance, 907
mixer, 743
MLD, 809
MLDv1, 809
MLDv2, 809
mobile communication, 269

addressing, 269
agents, 270
agent advertisement, 272
agent discovery, 271
agent solicitation, 273
care-of address, 269
data transfer, 275
double crossing, 277
foreign agent., 270
foreign network, 270
home address, 269
home agent, 270
home network, 270
inefficiency, 277
mobile hosts, 269
registration, 273
request and reply, 274

for76042_Index.fm Page 968 Tuesday, February 24, 2009 7:32 PM

INDEX

969

stationary hosts, 269
triangle routing, 277

mobile host, 269
mobile IP, 268

co-located care-of address, 271
data transfer, 275
DHCP, 271
double crossing, 277
inefficiency solution, 277
registration request, 274

modern block ciphers, 826
modern ciphers, 826
modern stream ciphers, 830
modification, 818
modulo 2 arithmetic, 392
modulo 2 binary division, 910
modulo 2

m

, 402
monalphabetic cipher

additive cipher, 822
monoalphabetic ciphers, 822
monoalphabetic substitution, 821
more fragment bit, 194
MOSPF, 359

CBT, 364
Motion Picture Experts Group.

See

 MPEG
Moving Picture Experts Group, 698
MP3, 731
MPEG, 732, 735

bidirectional frame, 736
frame types, 735

MPEG audio layer 3, 731
MPEG audio layer 3 (MP3), 731
MPEG.

See

 Moving Picture Experts
Group

MPEG1, 736
MPEG2, 736
MPLS, 176
MSL, 452
MSS, 474
MTA, 682

server, 687
MTA.

See

 message transfer agent
MTU, 192, 794, 803

minimum size, 794
SCTP, 534

Mulicast addresses
Larger Group, 342

Multicast
Addresses, 338

Multicast Address, 772
selection, 341

Multicast address
Internetwork Control Block, 339

multicast address, 36, 50
IPv6, 778
IPv6 permanent, 778
IPv6 transient, 778
scope field, 778

Multicast Addresses, 338
AD-HOC Block, 340
Local Network Control Block, 339

multicast addresses
administratively scoped block, 341
GLOP block, 340
limited group, 341
SAP/SDP Block, 340
SSM block, 340
Stream Multicast Group Block, 340

multicast addresses in IPv4, 339
multicast applications, 338
multicast backbone.

See

 MBONE
multicast block (IPv6), 778
multicast distance vector, 360
multicast distance vector routing, 360

DVMRP, 364
Multicast Link State Routing, 359
Multicast Listener Delivery protocol.

See

 MLD
Multicast Open Shortest Path First.

See

 MOSPF
Multicast Packets at Data Link

Layer, 342
multicast routers, 344
multicast routing, 355

flooding, 360
grafting, 364
group-shared tree, 357
pruning, 363
shortest path tree, 356
source-based tree, 357

multicast routing protocols, 355
multicast routing versus unicast

routing, 356
multicasting, 336, 743

emulation, 337
RIPv2, 298
tunneling, 367
unicasting, 337

multicasting versus multiple
unicasting, 337

multihoming, 505
multihoming data transfer, 522
multihoming service, 505

multimedia, 728
multiple unicasting, 337

multicasting, 337
multiple-stream delivery, 505
multiplexed, 79
multiplexing, 379
multiplicative decrease, 476–477
multiplicative inverse, 834
multipoint configuration, 24
Multi-Protocol Label Switching.

See

 MPLS
Multipurpose Internet Mail Extension

(MIME), 881
Multipurpose Internet Mail Extensions.

See

 MIME
multistage, 180
multistage switch

banyan, 180
multistream delivery, 523
multistream service, 504
music

sampling rate, 730

N

Nagle’s algorithm, 464
name server

hierarchy, 587
name space, 584

distribution, 587
hierarchical, 584

name-address resolution, 593
NAP.

See

 network access point
NAT, 149
NAt, 149
National Institute of Standards and

Technology, 837
NAV, 62
NCP, 3, 76
NCP.

See

 Network Control Protocol
ND, 805
neighbor solicitation message, 781
Neighbor-Advertisement Message, 807
Neighbor-Discovery (ND) protocol, 805
Neighbor-Discovery Messages, 805
Neighbor-Solicitation Message, 806
netid, 123
Netscape, 685
Netstat Utility, 341
network, 95

definition, 3, 15

for76042_Index.fm Page 969 Tuesday, February 24, 2009 7:32 PM

970

INDEX

network access point, 6
network address, 129, 148
network address translation.

See

 NAT
Network Control Protocol., 3
Network Information Center, 14
network interface card.

See

 NIC
network layer, 25, 32, 94–95, 375

congestion control, 110
connectionless, 97
connectionless service, 97
connection-oriented service, 99
error control, 108
finding logical address of next

hop, 106
finding MAC address of next

hop, 106
flow control, 109
fragmentation, 106
logical Addressing, 25
packet, 25
packetizing, 105
routing, 111
security, 111

network layer services, 103
network link

fields, 313
network link LSA, 312
network management, 706, 709

programming analogy, 710
network mask, 130, 138
network nterface card.

See

 NIC
network security, 816
network support layers, 22
network to network interfaces.

See

 NNI
Network Virtual Terminal,

27, 612–613
network-specific method, 163
News, 659
next-hop address, 166
next-Hop Method, 163
NIC, 49, 222

Ethernet, 49
NIC.

See

 Network Information Center
NIC.

See

 network interface card
NIST, 837
nonlinear block codes, 908
nonrepudiation, 842
NOP, 483
no-transition mobility, 60
no-transition station, 60
NSFNET, 4
ntohl, 553

ntohs, 553
number system conversion, 898
numbering system, 896
NVT, 613

ASCII, 613
character set, 613
control character list, 614
control characters, 614
data characters, 613
FTP, 633

NVT.

See

 Network Virtual Terminal
Nyquist theorem, 730

O

Oakley protocol, 868
octet, 116
OMA

See Open Mobile Alliance
on-demand audio/video, 729
one’s complement addition, 914
one’s complement arithmetic,

257, 914
one-time pad, 830
one-to-many relationship, 824
Open Mobile Alliance, 9
Open Shortest Path First, 304
open system, 20
Open Systems Interconnection,

9, 20
Open Systems Interconnection

model, 18
open-loop congestion control, 385
operations on addresses, 118
optical fiber, 78

HFC, 73
optimal routing, 355
option acknowledgment, 651
option acknowledgment. See OACK
options, 650

function, 197
IP datagram, 197
types, 198

ordered data delivery, 523
OSI

interoperability, 21
OSI model, 20, 21, 29

architecture, 21
data link layer, 24
layer interface, 22
layer overview, 22

layers, 23
organization, 22
organization of the layers, 22
transport layer, 25

OSI. See Open System Interconnection
OSPF, 282, 284, 304–305

area, 304
area identification, 305
backbone, 304
backbone routers, 305
database description message, 318
encapsulation, 320
external link LSA, 316
hello message, 317
letwork Link LSA, 312
link, 305
link state acknowledgment

packet, 320
link state request packet, 319
link state update packet, 309
link types, 305
metric, 305
network as a link, 305
packet, 307
packet types, 317
point-to-point link, 306
router

area border, 304
router Link LSA, 310
stub link, 307
summary Link to AS Boundary

Router LSA, 316
transient link, 306
type of service, 305
virtual link, 305, 307

OSPF Packets, 307
out of band signaling, 620
Outbound SPD, 866
outlook, 685
output port, 178
output ports, 179
outstanding packets, 397

P

Packet Internet Groper. See ping
packet sniffing, 210
packet switching, 96, 187
packet switching at network layer, 97
packet too big, 803
packet-filter firewall, 885

for76042_Index.fm Page 970 Tuesday, February 24, 2009 7:32 PM

INDEX 971

Pad1 option, 791
padding

Ethernet, 49
RTP, 745

PadN option, 791
PAN, 67
paragraph tags, 921
parameter problem message, 252, 804
parity bit, 908
parked state, 67
Partially Qualified Domain Name, 586
PASS command, 640
passive open, 442
password-based authentication, 845
password, 845
PASV command, 633, 637
path, 659
path attribute

non-transitive, 324
transitive, 324

path MTU discovery technique, 794
path vector routing, 320

loops, 322
PAWS, 486
P-box, 827
PBX systems, 10
peer-to-peer (P2P) paradigm, 565
per hop behavio. See PHB
perceptual encoding, 731
performance

checksum, 916
periodic timer, 296
Perl, 661–662
permutation box. See P-box
persistence, 670
persistence timer, 473
personal area network (PAN), 67
P-frame, 736
PGP, 701, 876

algorithms, 878
applications, 881
code conversion, 877
compression, 877
confidentiality with one-time session

key, 877
key revocation, 881
key rings, 878
message integrity, 876
packets, 881
plaintext, 876
segmentation, 877
trust model, 880

trusts and legitimacy, 879
web of trust, 881

PGP certificates, 878
PHB, 763
PHP. See Hypertext Preprocessor
physical, 34
physical address, 34, 221

Ethernet, 36
example, 34

physical address in ATM
network, 209

physical characteristics of interfaces
and media, 24

physical layer, 23
ATM, 81
bit representation, 24
topology, 24

piconet, 67
piggybacking, 409, 438, 440
PIM, 366
PIM-DM, 366
PIM-SM, 366

CBT, 366
strategy, 367

pine, 685
ping, 254
pipelining, 395
pixels, 730, 735
plaintext, 820
plane, 893
playback buffer, 741
point-to-point configuration, 24
Point-to-Point Protocol. See PPP
Point-to-Point WANs, 70
point-to-point wide area network, 70
poison reversed, 292
policy routing, 323
polyalphabetic ciphers, 823
polyalphabetic substitution, 821
POP, 693
POP3, 694
port, 34
port address, 34

example, 39
port addresses, 38
PORT command, 633, 636, 640
port forwarding, 625
port number, 375–377, 410

ephemeral, 376, 410
well-known, 410

port unreachable message, 422
Post Office Protocol, 694

PPP, 76
layers, 76

PPP over Ethernet. See PPPoE
PPPoE, 77
PQDN. See partially qualified

domain name
preamble, 48
predefined client-server

applications, 565
predicted frame, 736
predictive encoding, 731
prefix, 136, 269
prefix length, 137
pre-master secret, 871
presentation layer, 27
Pretty Good Privacy (PGP), 875
primary address, 523
primary server, 589
priority queueing, 754
private address, 148

NAT, 150
private key, 832, 851
Private Use Planes (PUPs), 893
process-to-process communication,

375, 415
process-to-process delivery, 25
programming in Java, 926
Project 802, 47
propagation delay

CSMA, 52
protection against wrapped sequence

numbers (PAWS), 486
protocol, 7–8, 20–21

definition, 16
elements, 16

Protocol Independent Multicast, Dense
Mode. See PIM-DM

Protocol Independent Multicast, Sparse
Mode. See PIM-SM

Protocol Independent Multicast.
See PIM

protocol layers, 19
provider-based address

subnet identifier field, 779
proxy ARP, 226

mobile IP, 276
proxy firewall, 886
proxy server, 675
pruning, 363
pseudoheader, 419
pseudoterminal driver, 613
psychoacoustics, 731

for76042_Index.fm Page 971 Tuesday, February 24, 2009 7:32 PM

972 INDEX

PTR. See DNS pointer query
public key, 832, 851
public-key certificates, 852
public-key distribution, 851
pull program, 683
pulling, 380
push operation, 446
push program, 683
push protocol, 693
pushing, 380

Q

Q.931, 751
QoS, 111, 752, 762

admission control, 758
flow characteristics, 752
flow classes, 753
how to improve, 753
leaky bucket, 755
priority queuing, 754
resource reservation, 758
token bucket, 757
traffic shaping, 755
weighted fair queueing, 754

QQIC, 811
QRV, 354
quality of service, 111, 752
querier’s query interval, 355
query

DNS, 595
query message, 253, 595

ICMP, 246
query messages (ICMP), 246
question record, 598
queue

output, 385
queues in IP package, 213
QUIT command, 640

R

RARP. See Reverse Address Resolution
Protocol

reachability, 321
read call, 552
read-only memory, 569
ready state, 394, 399, 406

real-time
playback buffer, 741
threshold, 741

real-time interactive
audio/video, 740

Real-Time Streaming Protocol
(RTSP), 738

real-time traffic, 743–744
error control, 743
multicasting, 743
sequence number, 743
TCP, 743

Real-time Transport Protocol.
See RTP

receive method, 926–927
Record Protocol, 874
record route option

example, 199
recursive resolution, 593
recv functions, 552
recvfrom functions, 552
redirect message, 252, 808

purpose, 252
redirection

ICMPv6, 808
redirection message

ICMP package, 263
redundancy, 904
Reed-Solomon code, 912
regenerates, 83
regional ISP, 6
registered port, 377
registrar, 592, 604
registration, 273

lifetime field, 274
mobile IP, 271
port number, 275

registration reply, 274, 275
registration request, 274
Registration/Administration/Status

(RAS), 751
Registration/Administration/Status.

See RAS
Regulatory Agencies, 10
relay agent, 571
reliability, 752
reliable service

SCTP, 506
remote login, 612
rendezvous, 357
rendezvous router, 357, 364
renumbering, 782

repeater, 83
HDSL, 72

Replaying, 819
replaying, 818
representation of bits, 24
repudiation, 818, 819
Request for Comment, 11
Request for Comment. See RFC
request message, 664
request packet, 100
request to send (RTS), 62
requirement levels, 12
reservation, 758

refreshing, 762
resolution, 593, 730

name to address, 593
resolver, 593
resource record, 599

format, 599
resource reservation, 757, 758
Resource Reservation Protocol.

See RSVP
resource specification. See Rspec
response

DNS, 595
Response Message, 666

example, 601, 603
response message, 595
retimes, 83
RETR command, 639
retransmission, 466

Go-Back-N, 399
retransmission policy, 385
retransmission timeout (RTO),

466, 479
retransmission timer, 473
Reverse Address Resolution Protocol, 569
Reverse Address Resolution Protocol.

See RARP, 222
reverse path broadcasting, 362
reverse path forwarding. See RPF
reverse path multicasting. See RPM
RFC, 11–12, 16

draft Standard, 11
draft standard, 11
elective level, 12
experimental, 11
historic, 11
informational, 12
Internet Standard, 11
limited use level, 12
maturity levels, 16

for76042_Index.fm Page 972 Tuesday, February 24, 2009 7:32 PM

INDEX

973

not recommended level, 12
proposed standard, 11
recommended level, 12
required level, 12

RFC (list), 933
RFC.

 See

 Request for Comment
ring topology, 24
RIP, 282, 284, 293

broadcasting, 298
encapsulation, 299
expiration timer, 297
garbage collection timer, 297
message format, 294
periodic timer, 296
port assignment, 299
request message, 295
requests and responses, 295
response, 295
Response message, 295
shortcomings, 297
solicited response, 295
timers, 296
unsolicited response, 295
version 2, 297

RIPv2, 297
RLOGIN, 624
Rlogin, 610
rlogin

Security, 624
ROM.

See

 ready-only memory
root server, 589
round trip time, 256, 481
router, 25, 30, 86, 96, 178

bridge, 87
components, 178
input ports, 178
output ports, 178
processor, 178
structure, 178
switching fabric, 178

router advertisement message, 781
router link LSA, 310
router solicitation and advertisement

message
ICMPv6, 805

router solicitation and advertismen,
256

router solicitation message, 781
Router-Advertisement Message,

806
Router-Solicitation Message, 805
Routing, 111

routing
distance vector, 285
dynamic, 283
Example, 166, 168
network layer, 25
static, 283

Routing Information Protocol, 293
Routing Information Protocol.

See

 RIP
Routing Processor, 179
routing processor, 178
Routing Protocol, 283
routing protocol, 283
routing protocols, 111, 358
routing table, 162, 283

classless addressing, 169
hierarchy, 174
link state routing, 300
search, 175

RPB, 361–362
RPF, 362

RPF, 360
RPB, 362

RPM, 363
graft message, 364
grafting, 364
prune message, 363

RRQ message fields, 644
RSA, 834, 836

digital signature scheme, 843
realistic example, 835

RSA Cryptosystem, 834
RSA digital signature, 843
Rspec, 758
RST, 448
RST+ACK, 457
RSV

Soft State, 762
RSVP, 758–759

IntServ, 759
message, 760
messages, 760
Multicast Trees, 759
receiver

reservation, 760
Reservation Merging, 761
Reservation Styles, 761

RTCP, 746
Application-Specific Message, 747
port number, 747
Receiver Report, 747
Sender Report, 746
Source Description Message, 747

RTO, 466, 479
RTP, 739, 744, 746–747

marker, 745
Packet Format, 745
padding, 745
Port, 746
Source Description Message, 747
version field, 745

RTT, 478

S

S/MIME, 881
applications, 885
cryptographic algorithms, 884
key management, 884

SACK, 465, 516
SACK chunk, 516, 523
SAD, 865
sampling rate, 730
S-box, 827

DES, 829
scatternet, 67–68
scheduling, 753
scripting language, 663
Scripting Technologies for Dynamic

Documents, 662
SCTP, 502–503, 748

ABORT chunk, 518
acknowledgment number, 509
association, 504, 519
association abortion, 524
association establishment, 519
association termination, 524
chunk, 506, 511
congestion control, 510, 535
connection-oriented service, 506
cookie, 520
COOKIE ACK chunk, 516
COOKIE ECHO, 515, 520
DATA, 512
data chunk, 506
data transfer, 521
ERROR chunk, 518
error control, 509, 531
features, 506
flow control, 509, 529
forward TSN, 518
four-way handshake, 519
fragmentation, 523
full-duplex communication, 506
general header, 510

for76042_Index.fm Page 973 Tuesday, February 24, 2009 8:02 PM

974 INDEX

SCTP—Cont.
HEARTBEAT ACK chunk, 517
HEARTBEAT chunk, 517
INIT, 513
INIT ACK, 519
multihoming Data Transfer, 522
multistream Delivery, 523
packet format, 510
packets, 507
process-to-process

communication, 504
reliable service, 506
retransmission timer, 534
services, 504
SHUTDOWN ACK chunk, 517
SHUTDOWN chunk, 517
SHUTDOWN COMPLETE

chunk, 517
simultaneous close, 528
simultaneous open, 527
state transition diagram, 525
stream identifier, 506
stream sequence number, 507
verification tag, 508, 519

SCTP association, 519
SCTP packet, 507

vs TCP segment, 507
SCTP services, 504
SCTP. See Steam Control Transmission

Protocol
SDSL, 72
SEAL, 81, 208
search algorithm, 175
searching

classful addressing, 175
classless addressing, 175

searching using longest prefix
match, 175

secondaries
Bluetooth, 67

secondary server, 589
secrecy, 836
secret key, 821
secure file transfer protocol, 643
Secure Hash Algorithm (SHA), 837
Secure MIME, 701
Secure Shell, 624
Secure Sockets Layer (SSL)

Protocol, 869
Secure/Multipurpose Internet

Mail Extension (S/MIME),
875, 881

security, 605, 643, 675
key Management, 847
network layer, 859

security association (SA), 865
Security Association Database

(SAD), 865
security attacks, 818
security goal

confidentiality, 817
integrity, 817

security in IP, 210
security issue, 624
security parameter index, 862
security policy, 866
security policy database, 866
security services, 819
security techniques, 819
segment, 26, 435

header fields, 439
segmentation and reassembly, 26
selective acknowledgment (SACK), 465
selective repeat, 385

window, 403
selective repeat protocol (SR), 402, 403
semantics, 8
send functions, 552
send window, 397
sending mail, 685
sendto functions, 552
sequence, 713
sequence number, 383, 392, 742–743

range, 392
sequence of, 713
server, 375, 543–544

concurrent, 566
ephemeral port, 546
iterative, 566
queue, 545
root, 589

server process, 554, 558
server program, 376, 544

port number, 376
service class, 759
service classes

controlled load, 759
guaranteed, 759

service-point address, 26
service-point addressing, 25
services, 20, 684
services provided at each router, 106
services provided at the destination

computer, 107

services provided at the source
computer, 105

session, 872
Session Initiation Protocol. See SIP
session key, 849–850
session layer, 26
setup phase, 99–100
sftp program, 643
sftp. See secure file transfer program
SHA, 837
shaper, 763
shared secret key, 820
shift cipher, 822

brute force attack, 823
shift count, 484
Shnorr

forgeryForgery, 844
short interframe space (SIFS), 62
shortest path tree, 300–301

multicast routing, 355–356
root, 301
routing table, 304

shortest path trees, 355
SHUTDOWN, 517, 528
SHUTDOWN ACK, 517
SHUTDOWN COMPLETE

state, 517
SHUTDOWN PENDING state, 528
SHUTDOWN-ACK-SENT state,

526–528
SHUTDOWN-PENDING state, 527
SHUTDOWN-RECEIVED state, 527
SHUTDOWN-SENT state, 527, 529
SI, 506
SIFS, 62
signaling, 758
signing algorithm, 840
silly window syndrome, 463

created by sender, 463
delayed acknowledgment, 464
Nagle’s algorithm, 463, 464

simple and efficient adaptation layer.
See SEAL

Simple Mail Transfer Protocol, 687
Simple Network Management Protocol.

See SNMP
simple parity-check code, 908
Simple Protocol, 390
simplex, 24
simultaneous close, 455, 528
simultaneous open, 444, 454, 527
sin_addr, 549

for76042_Index.fm Page 974 Tuesday, February 24, 2009 7:32 PM

INDEX 975

single-bit error, 904
SIP, 503, 748

addresses, 748
messages, 748
registrar server, 749
simple session, 749
tracking the callee, 749

SKEME, 868
slash notation, 137, 138
sliding window, 383, 484

silly window syndrome, 463
sliding window size

formula, 484
slow start, 474, 670
slow start threshold, 475
SMI, 708–709, 711, 719

ASN.1, 712
BER, 713
data type, 711
encoding, 713
encoding method, 711
functions, 711
mib object, 712
object identifier, 711
object name, 711
object representation, 711
object type, 712
role, 708
simple type, 712
structured data type, 712
structured type, 713
tree structure, 711

SMIME
Cryptographic Message Syntax, 881
data content type, 882
signed-data content type, 882

SMIME. See Secure MIME
smoothed RTT, 479
SMTP, 664, 687, 691

commands, 687–688
connection establishment, 691
connection termination, 692
mail transfer phases, 691, 887
message transfer, 691
responses, 687, 690
service not available, 691
service ready, 691

SMTP. See Simple Mail Transfer Protocol
SNMP, 706–708, 719

agent, 707
client/server mechanism, 724
concept, 707

datagram Example, 723
error types, 721
function, 706
GetBulkRequest, 720
GetNextRequest, 719
GetRequest, 719
InformRequest, 720
management components, 708
manager, 707, 724
message elements, 722
messages, 722
overview, 710
PDU, 719
PDU format, 721
ports, 724
report, 720
response, 720
role, 708
security, 725
SetRequest, 720
trap, 708, 720
UDP ports, 724

SNMP. See Simple Network
Management Protocol

SNMPv3, 722, 725
snooping, 818
SOCK_DGRAM, 548
SOCK_RAW, 548
SOCK_SEQPACKET, 548
SOCK_STREAM, 548
sockaddr_in, 549–550
socket, 547
socket address

structure, 549
socket address, 378, 572
socket class, 930
socket function, 550
Socket Interfaces, 546
something inherent, 845
something known, 845
something possessed, 845
SONET, 75

video, 730
SONET WAN, 103
Sorcerer’s Apprentice Bug, 648
source quench message, 249
source routing (IPv6), 793
Source-Based Tree, 357
source-to-destination delivery, 25
SPD, 866
special addresses, 147–148
special blocks, 147

specific host on this network, 153
SPI, 862
split horizon, 292, 827
SQL, 662
SQL database queries, 662
SR

Acknowledgments, 405
FSMs, 405
timer, 405
window sizes, 408

src, 923
SSH, 624–626
SSH applications, 625
SSH authentication protocol, 625
SSH connection protocol, 625
SSH transport-layer protocol, 624
SSH. See Secure Shell
SSH-AUTH. See SSH Authentication

Protool
SSH-TRANS. See SSH transport Layer

Protocol
SSL, 869

Alert Protocol, 874
architecture, 869
ChangeCipherSpec Protocol, 874
client key exchange and

authentication, 873
compression algorithms, 870
cryptographic parameter

generation, 870
four protocols, 872
Handshake Protocol, 873
Key Exchange Algorithms, 870
key material, 871
master secret, 871
Record Protocol, 874
Server Key Exchange and

Authentication, 873
services, 870
session and connection, 872

SSLpre-master secret, 871
SSN, 507
ssthresh, 475
standard, 8

definition, 7
Internet, 16

Standard Ethernet, 51
implementations, 55

standards, 8
categories, 16
creation committees, 8
need for, 16

for76042_Index.fm Page 975 Tuesday, February 24, 2009 7:32 PM

976 INDEX

Standards Creation Committees, 8
standards organizations, 8
star topology, 24
state

multicast routing, 359
state transition diagram, 525
static configuration protocol, 570
static database, 576
static documents, 660
static mapping, 221
static routing, 283
static routing table, 283
static versus dynamic

routing, 283
stationary host, 269
steganography, 820
stop-and-wait Protocol, 391, 402
stop-and-wait protocol

FSMs, 393
STOR command, 639
STP, 56
straight permutation, 829
stream cipher, 825
Stream Control Transmission

Protocol, 33, 502
Stream Control Transmission Protocol.

See SCTP
stream identifier, 506
stream identifier. See SI
stream interface, 547
stream sequence number, 507
stream sequence number. See SSN
streaming, 736
streaming live audio/video, 729, 739
streaming server, 738
streaming stored audio/video, 729
streaming stored audio/visual, 736
strict source route, 793
Structure of Management Information.

See SMI
stub AS, 323
stub link, 307
subdomains, 587
subnet, 131, 142

forwarding, 167
subnet address, 134
subnet mask, 132
subnetting, 131, 142, 160
subnetwork, 142
substitution, 821
substitution box. See S-box
substitution cipher, 821

substitution ciphers
moonoalphabetic ciphers, 822

suffix, 136, 269, 586
suffix length, 137
summary link to AS boundary LSA, 316
summary link to network, 314
supernet

need for, 134
supernet mask, 134
supernetting, 134
Supplementary Ideographic Plane

(SIP), 893
Supplementary Multilingual Plane

(SMP), 893
Supplementary Special Plane

(SSP), 893
swap operation, 827
switch, 25, 30, 86, 96, 180

banyan, 180
switched LAN, 84
switched WANs, 77
switching, 96

circuit switching, 96
packet switching, 96

switching fabric, 178
symmetric, 72
symmetric digital subscriber line.

See SDSL
symmetric-key agreement, 850
symmetric-key cipher, 820
SYN flooding attack, 444
SYN segment, 442
SYN+ACK segment, 443
synchronization character, 620
synchronization points, 26
syndrome, 909

created by receiver, 464
SYN-RCVD state, 452, 454
SYN-SENT state, 450, 454
syntax, 7

T

T line, 75
tag

attribue, 920
values, 920

TCB, 490, 520
fields, 490

Tcl, 661
TCP. See Transmission Control

Protocol

TCP, 414, 432, 743
aborting a connection, 448
ACK segment, 443
acknowledgement number, 437
acknowledgment, 465
additive increase, 475
association, 504
buffers, 434
byte number, 437
checksum, 465
congestion avoidance, 475
congestion control, 473
congestion policy, 474
connection establishment, 442
connection termination, 446
connection-oriented service, 436
cookie, 444
cumulative acknowledgment, 465
data transfer, 444
deadlock, 473
delayed acknowledgment, 464
demultiplexing, 436
denying a connection, 448
denial of service attack, 444
DNS, 604
encapsulation, 441
error control, 438, 465, 531
Features, 437
FIN segment, 446–447
FIN+ACK segment, 447
flow control, 459
FSMs, 467
full-duplex service, 436
half-close, 447
input processing module, 495
Karn’s algorithm, 480
keepalive timer, 482
main module, 491
multiplexing, 436
multiplicative decrease, 476
Nagle’s Algorithm, 464
numbering system, 437
options, 482
out-of-order segments, 467
output processing module, 496
package, 489
persistence timer, 481
position in suite, 433
probe, 482
process-to-process communication,

433
pseudoheader, 441

for76042_Index.fm Page 976 Tuesday, February 24, 2009 7:32 PM

INDEX 977

push bit, 446
pushing data, 445
receive window, 458
receiver-side FSM, 468
reliable service, 436
retransmission time-out, 479
retransmission timer, 478
round-trip time, 478
SACK chunk, 516
SACK options, 487
SACK-permitted, 487
segment, 439
segment format, 439
segments, 435
selective acknowledgment

(SACK), 465
send window, 457
sender-side FSM, 467
sequence number, 437
services, 433
silly window syndrome, 463
simultaneous open, 444
SIP, 748
slow start, 474
split, 4
state transition diagram, 449
stream delivery service, 434
streaming live audio/video, 739
stream-oriented protocol, 446
SYN + ACK segment, 443
SYN flooding attack, 444
SYN segment, 442
syndrome created by the

sender, 463
TCB, 490
terminating an idle

connection, 449
three-way handshaking, 442
timers, 478
TIME-WAIT timer, 482
urgent data, 446
versus SCTP, 503
well-known port, 433
window scale factor, 484
window shutdown, 462
windows, 457

TCP connection, 442
TCP option

end of option (EOP), 482
maximum segment size

(MSS), 484
no operation (NOP), 483

TCP package
input processing module, 495
output processing module, 496
TCB, 490

TCP segment
TCP. See Transmission Control

Protocol
TCP/IP, 2, 29

IP, 187
physical and data link layers, 30
UNIX, 4

TCP/IP protocol suite, 18, 28
TCP/IP protocols, 34
TCP/IP. See Transmission Control

Protocol/Internetworking
Protocol

TCP retransmission of packets, 466
TDM, 79
teardown phase, 99, 102
teleconferencing, 338
telephony signalling, 503
TELNET, 610–611, 616–618,

620–624, 659
binary option, 615
character mode, 623
default mode, 622
disabling an option, 616
embeding, 614
enabling an option, 616
escape Character, 620
IAC, 617
line mode option, 626
mode of operation, 621
offer to disable, 617
option, 615
option negotiation, 616
option negotiation example, 617
port, 614
request to disable, 617
security, 624
sending control character, 614
sending data, 614
suboption negotiation, 618
symmetry, 618
synchronization character, 620
WONT command, 617

TELNET client, 612
temporal masking, 731
temporary port, 546
Ten-Gigabit Ethernet, 51, 59

Implementation, 59
terminal network. See TELNET

termination
SCTP, 524

text file, 635
TFTP, 645–651

ACK message, 645
BOOTP, 652
connection, 646
DATA message, 645
data transfer, 647
DHCP, 652
duplication of messages, 648
ERROR message, 647
flow control, 648
lack of checksum field, 648
messages, 644
need for, 643
port usage, 649
RRQ message, 644
security, 651
timeout, 648
WRQ, 646
WRQ message, 644

TFTP. See Trivial File Transfer Protocol
thick coax, 55
thin coax, 55
this host on this network, 153
threads, 928
three-layer switch, 87
three-node instability, 292
three-way handshake, 453
three-way handshaking, 442, 446
ticket, 849
time exceeded message, 251
time-exceeded message, 803
time-out, 465
timer, 399

keepalive, 482
persistence, 482
retransmission, 534
RIP, 296

timer for GBN, 399
timesharing, 611
timestamp, 741, 747

RTP, 746
timestamp messages

round-trip time, 254
timestamp option, 485

operation, 485
timestamp-reply message, 254
timestamp-request message, 254
time-to-live

caching, 594

for76042_Index.fm Page 977 Tuesday, February 24, 2009 7:32 PM

978 INDEX

time-to-live field, 251
TIME-WAIT state, 452
TIME-WAIT timer, 482
timing, 8
TLI. See Transport Layer Interface
TLS, 869

record protocol, 875
To DS address, 64
token bucket, 755, 757
traditional cable networks, 73
traditional checksum, 914
traditional ciphers, 820
traffic analysis, 818
traffic shaping, 755
trailer, 22
transition (IPv4 to IPv6), 796
transition strategy, 796
translation, 27
translation, 743

presentation layer, 27
translator, 743
transmission control block. See TCB
Transmission Control Protocol,

4, 33, 432
Transmission Control Protocol /

Internetworking Protocol, 4
transmission media

quality, 78
transmission mode, 24
transmission path (TP), 79
transmission rate, 24
transmission sequence number.

See TSN
transparent bridge, 85
transport layer, 25, 33

acknowledgment, 383
buffers, 381
congestion Control, 384
connection control, 26
decapsulation, 378
delivery to application program, 375
demultiplexing, 379
encapsulation, 378
error control, 382
flow control, 26, 379, 381
multiplexing, 379
process-to-process communication,

375
protocols, 414
pulling, 380
pushing, 380
responsibilities, 25

sequence numbers, 382
sliding window, 383

transport layer interface, 547
Transport Layer Security (TLS)

Protocol, 869
transport mode, 859
Transport-Layer Protocols, 389
transport-layer services, 375
transposition cipher, 821, 824

P-box, 827
trap, 720
triangle routing, 277
Trivial File Transfer Prtocol, 643
TSN, 506
TTL, 213, 452
tunnel mode, 860
tunneling, 343, 625

multicasting, 367
tunneling (IPv6 transition), 797
twisted pair

DSL, 72
two-layer switch, 86
two-level addressing, 126, 136
two-node loop instability, 292

U

user agent (UA), 681
envelope addresses, 685
GUI-based, 685
message, 686
receiving mail, 686

UA.See user agent
UDP, 414–415, 739, 744

input module, 427
output module, 428

checksum, 417, 419, 421
congestion control, 420
connection establishment, 646
connectionless, 415
connectionless service, 418
control-block module, 426
control-block table, 426
data link layer, 421
decapsulation, 378, 420
demultiplexing, 379, 423
DNS, 604
echo server, 926
encapsulation, 420
error Control, 418
features, 424

flow control, 418
input queue, 426
multiplexing, 423
operation, 417
optional inclusion of checksum, 419
package, 426
Ports, 649
process-to-process Communication,

417
pseudoheader, 419
queuing, 421
SNMP, 724
TFTP, 647
typical applications, 426
unreliable, 415
vs SCTP, 503

UDP. See User Datagram Protocol
ulticasting, 334
underlying technologies, 46, 268
unicast, 38
unicast address, 34, 36, 772
unicast routing protocols, 282
unicast routing vesus multicasting

routing, 356
unicasting, 335
Unicode, 892

planes, 893
spaces, 893

uniform resource locator (URL)., 659
unique local unicast block (IPv6), 777
Universal Plug and Play (UPnP), 10
Universal Plug and Play (UPnP)

Forum, 10
Universal Time, 201, 255
UNIX, 611
unspecified address, 775
update binding packet, 278
uploading, 70
upstream data band, 74
URG bit, 446
urgent byte, 446
urgent TCP segment, 620
URL, 659

components, 659
host, 659
HTTP, 659
port number, 659
protocol, 659

URL. See uniform resource locator
user agent, 681–682, 684–686

command-driven, 685
types, 685

for76042_Index.fm Page 978 Tuesday, February 24, 2009 7:32 PM

INDEX 979

user agent types, 685
User Datagram Protocol, 33, 414

format, 416
pseudoheader, 419

user Interface, 623
user support layers, 22
UTP, 56

V

V.90, 70
V.92, 70
variable-length blocks, 136
VC, 79–80

cell network, 80
VCI, 209
VDSL, 72
verification tag, 508, 520
verifier, 844, 854
verifying algorithm, 840
very high bit rate digital subscriber line.

See VDSL
video, 730

compression, 731
video compression

temporal, 735
video compression

spatial, 735
video conferencing, 740
Vint, Cerf, 3
virtual, 79
virtual circuit identifier, 99, 200
virtual circuit identifier. See VCI
virtual circuit. See VC
virtual connection, 79
virtual link, 305, 307
virtual path identifier. See VPI
virtual path. See VP
virtual private network (VPN), 868
voice

sampling rate, 730
voice over IP, 740, 748
VP, 79–80
VPI, 80, 209

VPN, 868
VT, 519

W

W3C. See World Wide Web
Consortium

w3c.org, 15
WAN, 77, 95, 103
WAN. See wide area network
warning packet, 278
Web, 672
Web caching, 675
Web client, 658
Web documents, 660
web of trust, 881
Web page, 657, 920
Web portal, 673
Web server, 659
web server cache, 659
Web site, 657
Web-based mail, 700
weighted fair queueing, 754
well-known port, 377, 545

queue, 422
server, 546
TFTP, 649

well-known ports, 376, 433, 631
wide area network, 30
WILL command, 616
window scale factor, 484
window size, 473
windowing policy, 385
wired local area networks, 47
wireless

addressing mechanism, 64
Bluetooth, 67
control frame, 64
data frame, 64
frame format, 63
frame types, 64
management frame, 64
NAV, 63

wireless Ethernet, 59

wireless LAN
BSS, 59
ESS, 60
MAC sublayer, 61

wireless LAN station, 60
wireless LANS, 59
WONT command, 616
World Wide Web (WWW), 6, 656, 664
World Wide Web Consortium, 9
WWW, 657, 660
WWW page, 657
WWW. See World Wide Web

X

X.25, 77
error checking, 78
error control, 77
flow control, 78

X.509, 852
xDSL, 71
XHTML, 924
XHTML. See Extended Hypertext

Markup Language
XML, 924–925
XML. See Extensible Markup Language
XOR, 829, 911

Hamming distance, 906
XSL, 924–925

Y

Yahoo, 700

Z

zero compression (IPv6), 770
zone, 588
zone file, 588

for76042_Index.fm Page 979 Tuesday, February 24, 2009 7:32 PM

for76042_Index.fm Page 980 Tuesday, February 24, 2009 7:32 PM

for76042_Index.fm Page 981 Tuesday, February 24, 2009 7:32 PM

for76042_Index.fm Page 982 Tuesday, February 24, 2009 7:32 PM

for76042_Index.fm Page 983 Tuesday, February 24, 2009 7:32 PM

for76042_Index.fm Page 984 Tuesday, February 24, 2009 7:32 PM

for76042_Index.fm Page 985 Tuesday, February 24, 2009 7:32 PM

for76042_Index.fm Page 986 Tuesday, February 24, 2009 7:32 PM

for76042_Index.fm Page 987 Tuesday, February 24, 2009 7:32 PM

for76042_Index.fm Page 988 Tuesday, February 24, 2009 7:32 PM

	Cover Page
	Title Page
	Copyright Page
	Dedication
	Brief Contents
	Preface
	Trademarks
	Contents
	Part 1: Introduction and Underlying Technologies
	Chapter 1: Introduction
	1.1 A BRIEF HISTORY
	1.2 PROTOCOLS AND STANDARDS
	1.3 STANDARDS ORGANIZATIONS
	1.4 INTERNET STANDARDS
	1.5 INTERNET ADMINISTRATION
	1.6 FURTHER READING
	1.7 KEY TERMS
	1.8 SUMMARY
	1.9 PRACTICE SET

	Chapter 2: The OSI Model and the TCP/IP Protocol Suite
	2.1 PROTOCOL LAYERS
	2.2 THE OSI MODEL
	2.3 TCP/IP PROTOCOL SUITE
	2.4 ADDRESSING
	2.5 FURTHER READING
	2.6 KEY TERMS
	2.7 SUMMARY
	2.8 PRACTICE SET

	Chapter 3: Underlying Technologies
	3.1 WIRED LOCAL AREA NETWORKS
	3.2 WIRELESS LANS
	3.3 POINT-TO-POINT WANS
	3.4 SWITCHED WANS
	3.5 CONNECTING DEVICES
	3.6 FURTHER READING
	3.7 KEY TERMS
	3.8 SUMMARY
	3.9 PRACTICE SET

	Part 2: Network Layer
	Chapter 4: Introduction to Network Layer
	4.1 INTRODUCTION
	4.2 SWITCHING
	4.3 PACKET SWITCHING AT NETWORK LAYER
	4.4 NETWORK LAYER SERVICES
	4.5 OTHER NETWORK LAYER ISSUES
	4.6 FURTHER READING
	4.7 KEY TERMS
	4.8 SUMMARY
	4.9 PRACTICE SET

	Chapter 5: IPv4 Addresses
	5.1 INTRODUCTION
	5.2 CLASSFUL ADDRESSING
	5.3 CLASSLESS ADDRESSING
	5.4 SPECIAL ADDRESSES
	5.5 NAT
	5.6 FURTHER READING
	5.7 KEY TERMS
	5.8 SUMMARY
	5.9 PRACTICE SET

	Chapter 6: Delivery and Forwarding of IP Packets
	6.1 DELIVERY
	6.2 FORWARDING
	6.3 STRUCTURE OF A ROUTER
	6.4 FURTHER READING
	6.5 KEY TERMS
	6.6 SUMMARY
	6.7 PRACTICE SET

	Chapter 7: Internet Protocol Version 4 (IPv4)
	7.1 INTRODUCTION
	7.2 DATAGRAMS
	7.3 FRAGMENTATION
	7.4 OPTIONS
	7.5 CHECKSUM
	7.6 IP OVER ATM
	7.7 SECURITY
	7.8 IP PACKAGE
	7.9 FURTHER READING
	7.10 KEY TERMS
	7.11 SUMMARY
	7.12 PRACTICE SET

	Chapter 8: Address Resolution Protocol (ARP)
	8.1 ADDRESS MAPPING
	8.2 THE ARP PROTOCOL
	8.3 ATMARP
	8.4 ARP PACKAGE
	8.5 FURTHER READING
	8.6 KEY TERMS
	8.7 SUMMARY
	8.8 PRACTICE SET

	Chapter 9: Internet Control Message Protocol Version 4 (ICMPv4)
	9.1 INTRODUCTION
	9.2 MESSAGES
	9.3 DEBUGGING TOOLS
	9.4 ICMP PACKAGE
	9.5 FURTHER READING
	9.6 KEY TERMS
	9.7 SUMMARY
	9.8 PRACTICE SET

	Chapter 10: Mobile IP
	10.1 ADDRESSING
	10.2 AGENTS
	10.3 THREE PHASES
	10.4 INEFFICIENCY IN MOBILE IP
	10.5 FURTHER READING
	10.6 KEY TERMS
	10.7 SUMMARY
	10.8 PRACTICE SET

	Chapter 11: Unicast Routing Protocols (RIP, OSPF,and BGP)
	11.1 INTRODUCTION
	11.2 INTRA- AND INTER-DOMAIN ROUTING
	11.3 DISTANCE VECTOR ROUTING
	11.4 RIP
	11.5 LINK STATE ROUTING
	11.6 OSPF
	11.7 PATH VECTOR ROUTING
	11.8 BGP
	11.9 FURTHER READING
	11.10 KEY TERMS
	11.11 SUMMARY
	11.12 PRACTICE SET

	Chapter 12: Multicasting and Multicast Routing Protocols
	12.1 INTRODUCTION
	12.2 MULTICAST ADDRESSES
	12.3 IGMP
	12.4 MULTICAST ROUTING
	12.5 ROUTING PROTOCOLS
	12.6 MBONE
	12.7 FURTHER READING
	12.8 KEY TERMS
	12.9 SUMMARY
	12.10 PRACTICE SET

	Part 3: Transport Layer
	Chapter 13: Introduction to the Transport Layer
	13.1 TRANSPORT-LAYER SERVICES
	13.2 TRANSPORT-LAYER PROTOCOLS
	13.3 FURTHER READING
	13.4 KEY TERMS
	13.5 SUMMARY
	13.6 PRACTICE SET

	Chapter 14: User Datagram Protocol (UDP)
	14.1 INTRODUCTION
	14.2 USER DATAGRAM
	14.3 UDP SERVICES
	14.4 UDP APPLICATIONS
	14.5 UDP PACKAGE
	14.6 FURTHER READING
	14.7 KEY TERMS
	14.8 SUMMARY
	14.9 PRACTICE SET

	Chapter 15: Transmission Control Protocol (TCP)
	15.1 TCP SERVICES
	15.2 TCP FEATURES
	15.3 SEGMENT
	15.4 A TCP CONNECTION
	15.5 STATE TRANSITION DIAGRAM
	15.6 WINDOWS IN TCP
	15.7 FLOW CONTROL
	15.8 ERROR CONTROL
	15.9 CONGESTION CONTROL
	15.10 TCP TIMERS
	15.11 OPTIONS
	15.12 TCP PACKAGE
	15.13 FURTHER READING
	15.14 KEY TERMS
	15.15 SUMMARY
	15.16 PRACTICE SET

	Chapter 16: Stream Control Transmission Protocol (SCTP)
	16.1 INTRODUCTION
	16.2 SCTP SERVICES
	16.3 SCTP FEATURES
	16.4 PACKET FORMAT
	16.5 AN SCTP ASSOCIATION
	16.6 STATE TRANSITION DIAGRAM
	16.7 FLOW CONTROL
	16.8 ERROR CONTROL
	16.9 CONGESTION CONTROL
	16.10 FURTHER READING
	16.11 KEY TERMS
	16.12 SUMMARY
	16.13 PRACTICE SET

	Part 4: Application Layer
	Chapter 17: Introduction to the Application Layer
	17.1 CLIENT-SERVER PARADIGM
	17.2 PEER-TO-PEER PARADIGM
	17.3 FURTHER READING
	17.4 KEY TERMS
	17.5 SUMMARY
	17.6 PRACTICE SET

	Chapter 18: Host Configuration: DHCP
	18.1 INTRODUCTION
	18.2 DHCP OPERATION
	18.3 CONFIGURATION
	18.4 FURTHER READING
	18.5 KEY TERMS
	18.6 SUMMARY
	18.7 PRACTICE SET

	Chapter 19: Domain Name System (DNS)
	19.1 NEED FOR DNS
	19.2 NAME SPACE
	19.3 DNS IN THE INTERNET
	19.4 RESOLUTION
	19.5 DNS MESSAGES
	19.6 TYPES OF RECORDS
	19.7 COMPRESSION
	19.8 ENCAPSULATION
	19.9 REGISTRARS
	19.10 DDNS
	19.11 SECURITY OF DNS
	19.12 FURTHER READING
	19.13 KEY TERMS
	19.14 SUMMARY
	19.15 PRACTICE SET

	Chapter 20: Remote Login: TELNET and SSH
	20.1 TELNET
	20.2 SECURE SHELL (SSH)
	20.3 FURTHER READING
	20.4 KEY TERMS
	20.5 SUMMARY
	20.6 PRACTICE SET

	Chapter 21: File Transfer: FTP and TFTP
	21.1 FTP
	21.2 TFTP
	21.3 FURTHER READING
	21.4 KEY TERMS
	21.5 SUMMARY
	21.6 PRACTICE SET

	Chapter 22: World Wide Web and HTTP
	22.1 ARCHITECTURE
	22.2 WEB DOCUMENTS
	22.3 HTTP
	22.4 FURTHER READING
	22.5 KEY TERMS
	22.6 SUMMARY
	22.7 PRACTICE SET

	Chapter 23: Electronic Mail: SMTP, POP, IMAP, and MIME
	23.1 ARCHITECTURE
	23.2 USER AGENT
	23.3 MESSAGE TRANSFER AGENT: SMTP
	23.4 MESSAGE ACCESS AGENT: POP AND IMAP
	23.5 MIME
	23.6 WEB-BASED MAIL
	23.7 E-MAIL SECURITY
	23.8 FURTHER READING
	23.9 KEY TERMS
	23.10 SUMMARY
	23.11 PRACTICE SET

	Chapter 24: Network Management: SNMP
	24.1 CONCEPT
	24.2 MANAGEMENT COMPONENTS
	24.3 SMI
	24.4 MIB
	24.5 SNMP
	24.6 UDP PORTS
	24.7 SECURITY
	24.8 FURTHER READING
	24.9 KEY TERMS
	24.10 SUMMARY
	24.11 PRACTICE SET

	Chapter 25: Multimedia
	25.1 INTRODUCTION
	25.2 DIGITIZING AUDIO AND VIDEO
	25.3 AUDIO AND VIDEO COMPRESSION
	25.4 STREAMING STORED AUDIO/VIDEO
	25.5 STREAMING LIVE AUDIO/VIDEO
	25.6 REAL-TIME INTERACTIVE AUDIO/VIDEO
	25.7 RTP
	25.8 RTCP
	25.9 VOICE OVER IP
	25.10 QUALITY OF SERVICE
	25.11 INTEGRATED SERVICES
	25.12 DIFFERENTIATED SERVICES
	25.13 RECOMMENDED READING
	25.14 KEY TERMS
	25.15 SUMMARY
	25.16 PRACTICE SET

	Part 5: Next Generation
	Chapter 26: IPv6 Addressing
	26.1 INTRODUCTION
	26.2 ADDRESS SPACE ALLOCATION
	26.3 GLOBAL UNICAST ADDRESSES
	26.4 AUTOCONFIGURATION
	26.5 RENUMBERING
	26.6 FURTHER READING
	26.7 KEY TERMS
	26.8 SUMMARY
	26.9 PRACTICE SET

	Chapter 27: IPv6 Protocol
	27.1 INTRODUCTION
	27.2 PACKET FORMAT
	27.3 TRANSITION FROM IPv4 TO IPv6
	27.4 FURTHER READING
	27.5 KEY TERMS
	27.6 SUMMARY
	27.7 PRACTICE SET

	Chapter 28: ICMPv6
	28.1 INTRODUCTION
	28.2 ERROR MESSAGES
	28.3 INFORMATIONAL MESSAGES
	28.4 NEIGHBOR-DISCOVERY MESSAGES
	28.5 GROUP MEMBERSHIP MESSAGES
	28.6 FURTHER READING
	28.7 KEY TERMS
	28.8 SUMMARY
	28.9 PRACTICE SET

	Part 6: Security
	Chapter 29: Cryptography and Network Security
	29.1 INTRODUCTION
	29.2 TRADITIONAL CIPHERS
	29.3 MODERN CIPHERS
	29.4 ASYMMETRIC-KEY CIPHERS
	29.5 MESSAGE INTEGRITY
	29.6 MESSAGE AUTHENTICATION
	29.7 DIGITAL SIGNATURE
	29.8 ENTITY AUTHENTICATION
	29.9 KEY MANAGEMENT
	29.10 FURTHER READING
	29.11 KEY TERMS
	29.12 SUMMARY
	29.13 PRACTICE SET

	Chapter 30: Internet Security
	30.1 NETWORK LAYER SECURITY
	30.2 TRANSPORT LAYER SECURITY
	30.3 APPLICATION LAYER SECURITY
	30.4 FIREWALLS
	30.5 RECOMMENDED READING
	30.6 KEY TERMS
	30.7 SUMMARY
	30.8 PRACTICE SET

	Part 7: Appendices
	Appendix A: Unicode
	Appendix B: Positional Numbering Systems
	Appendix C: Error Detection Codes
	Appendix D: Checksum
	Appendix E: HTML, XHTML, XML, and XSL
	Appendix F: Client-Server Programming in Java
	Appendix G: Miscellaneous Information

	Glossary
	References
	Index

